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Recap:
2D Linear systems

ẋ = ax+ by
ẏ = cx+ dy

ẋ = Ax

A =

✓
a b
c d

◆
x =

✓
x
y

◆

Matrix form



Classification of linear 
systems

Eigenvalues and eigenvectors

Av = �v

det(A� �I) = 0

Characteristic equation

A =

✓
a b
c d

◆
! det

✓
a� � b
c d� �

◆
= 0

�2 � ⌧�+� = 0

⌧ = trace(A) = a+ d
� = det(A) = ad� bc



Classification of fixed points
�1,2 =

1

2

⇣
⌧ ±

p
⌧2 � 4�

⌘
, � = �1�2, ⌧ = �1 + �2

(�� �1)(�� �2) = �2 � (�1 + �2)�+ �1�2 = �2 � ⌧�+� = 0

D and t are solved from



The general form of a vector field on the phase plane:

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

ẋ = f(x)

In vector notation:

[x = (x1, x2), f(x) = (f1(x), f2(x))]

x = point in phase plane

ẋ = velocity at that point

Phase portraits



Phase portraits
Solution x(t) describes a trajectory on the phase plane

The whole plane is filled with (non-intersecting)
trajectories starting from different phase points.

For nonlinear systems there is no hope to find trajectories
analytically + the analytical solutions would not provide
much insight.
Our approach: determine the qualitative behavior of the
solutions via phase portraits.



Example I

Phase portrait: plot the nullclines.

ẋ = x+ e�y

ẏ = �y

The nullclines are the curves where

ẋ = 0 or ẏ = 0

On the nullclines the flow is either purely horizontal or
purely vertical

x+ e�y = 0
y = 0



Example I
ẋ = x+ e�y

ẏ = �y
Numerical solution:Analysis:



Existence, uniqueness and 
topological consequences

ẋ = f(x), x(t0) = x0

Corollary: different trajectories never intersect!

If two trajectories did intersect there would be two solutions
starting from the same point (the crossing point).



Existence, uniqueness and 
topological consequences

Consequence in two dimensions: any trajectory starting
from inside a closed orbit will be trapped inside it forever!

(End of recap.)



Fixed points and linearization

ẋ = f(x, y)
ẏ = g(x, y)

Fixed point (x*, y*)
f(x⇤, y⇤) = 0, g(x⇤, y⇤) = 0

u = x� x⇤, v = y � y⇤

Does the disturbance (perturbation) grow or decay?

u̇ = ẋ, v̇ = ẏ

Aim: To approximate the phase portrait near a fixed point by 
that of a corresponding linear system.

The complete system

Components of a small disturbance from the fixed point



Fixed points and linearization
u̇ =ẋ

=f(x⇤ + u, y
⇤ + v)
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Fixed points and linearization

A =

 
@f
@x

@f
@y

@g
@x

@g
@y

!

(x⇤,y⇤)

is the Jacobian matrix at the fixed point (x*, y*). It is the
multivariate analog of the derivative f’(x*) for 1-dimensional
systems.
Neglecting terms of the second and higher order we obtain
the linearized system
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Fixed points and linearization

Gain: The dynamics near the fixed points can be analyzed
using the methods for linear systems.
The effect of small nonlinear terms:

If the fixed point is not one of the borderline cases (centers,
degenerate nodes, stars, non-isolated fixed points) the
predicted type of the linearized system is the correct one.
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Example I

Fixed points: (0,0), (1,0), (-1,0)

ẋ = �x+ x3

ẏ = �2y

A =

 
@f
@x

@f
@y

@g
@x

@g
@y

!

(x⇤,y⇤)

=

✓
�1 + 3x⇤2 0

0 �2

◆

stable node

✓
�1 0
0 �2

◆
(0,0)→

✓
2 0
0 �2

◆
(±1,0)→

saddle points
⌧ = �3, � = 2; ⌧2 � 4� = 1 ) ⌧ = 0, � = �4 )



Example I
ẋ = �x+ x3

ẏ = �2y

1) Equations for x and y are 
uncoupled.

2) y-direction: trajectories decay 
exponentially to y = 0.

3) x-direction: trajectories are 
attracted to x = 0 and repelled 
from x = ± 1.

4) Vertical lines x = 0 and x = ± 1 are 
invariant: a trajectory starting on 
these lines stays on them forever.

5) The horizontal line y = 0 is 
invariant. 
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Let’s check the result from linearization::



Example I
ẋ = �x+ x3

ẏ = �2y
The phase portrait is symmetric with respect to the 𝑥- and
the 𝑦 -axes, since the equations are invariant under
transformations 𝑥 → −𝑥 and 𝑦 → −𝑦.



Example II (a borderline case)
ẋ = �y + ax(x2 + y2)
ẏ = x+ ay(x2 + y2)

(0, 0) is a fixed point→ linearisation. The Jacobian

τ = 0, Δ = 1 > 0 → the fixed point (0, 0) of the linearized
system is a center.

To analyze the full system we switch to polar coordinates.

A =

✓
0 �1
1 0

◆



Example II
ẋ = �y + ax(x2 + y2)
ẏ = x+ ay(x2 + y2)

x = r cos ✓
y = r sin ✓

x2 + y2 = r2 ! xẋ+ yẏ = rṙ

rṙ = x[�y + ax(x2 + y2)] + y[x+ ay(x2 + y2)] = a(x2 + y2)2 = ar4

ṙ = ar3

Standard trick for deriving the differential equation for r in polar 
coordinates (remember this):

A: Use

Substitute for       and      to get

è

ẋ ẏ

Polar coordinates:



Example II
x = r cos ✓
y = r sin ✓

B: Use ✓̇ =
xẏ � ẋy

r2

Derivation: ✓ = arctan(
y

x
);

d

dx
arctanx =

1

1 + x2

✓̇ =
d

dt
arctan(

y

x
) =

xẏ � ẋy

x2

x2

x2 + y2
=

xẏ � ẋy

r2

(… and remember this)



Example II
✓̇ =

xẏ � ẋy

r2
=

x2 + axy(x2 + y2) + y2 � axy(x2 + y2)

r2
= 1

✓̇ = 1

ṙ = ar3

✓̇ = 1
⟹



Example II
ṙ = ar3

✓̇ = 1
Radial and angular motions are independent

The fixed point is a spiral (stable for a < 0, unstable for a > 0).
Centers (a = 0) are delicate: the orbit needs to close perfectly
after one cycle, the slightest perturbation turns it into a spiral.



Fixed points and linearization
Stars and degenerate nodes can be altered by small
nonlinearities; however, unlike in the case of centers their
stability does not change! (Example: stable star è stable
spiral.)

In other words, stars and degenerate nodes stay well within
regions of stability or instability: small perturbations will
leave them in those areas.



Fixed points and linearization
Robust cases
1) Repellers (or sources): both eigenvalues have positive real

part
2) Attractors (or sinks): both eigenvalues have negative real

part
3) Saddles: one eigenvalue is positive, the other is negative

Marginal cases
1) Centers: both eigenvalues are purely imaginary
2) Higher-order and non-isolated fixed points: at least one

eigenvalue is zero

Marginal cases are those where at least one eigenvalue
satisfies Re(λ) = 0.



If Re(λ) ≠ 0 for both eigenvalues, the fixed point is called
hyperbolic: in this case its type is predicted by the
linearization. The condition Re(λ) ≠ 0 is the exact analog of
f’(x*) ≠ 0 in one dimension for the stability of the FP to be
accurately predictable by linearization.

Re(λ) ≠ 0, of course, applies also in higher-order systems.

Hartman-Grobman Theorem: The local phase portrait near a
hyperbolic fixed point is topologically equivalent to the phase
portrait of the linearization. (In other words, there is a
homeomorphism that maps one to the other.)

Fixed points and linearization



Fixed points and linearization
Homeomorpism: Let X1 and X2 be topological spaces. A map
f : X1→ X2 is a homeomorphism if it is continuous and has
an inverse f -1 : X2→ X1 , which is also continuous. If there
exists a homeomorpism between X1 and X2, X1 is said to be
homeomorphic to X2 and vice versa.
Examples: a) An open disc D2 = {(x, y) ∈ ℝ!| 𝑥! + 𝑦! < 1} is 
homeomorphic to ℝ!.

→

b) A coffee cup is homeomorphic to a doughnut.



Intuitively, two phase portraits are topologically equivalent
if one is a distorted (bending, warping, but not tearing)
version of the other. Hence, closed orbits stay closed,
trajectories connecting saddle points must not be broken,
etc.

Fixed points and linearization

A phase portrait is structurally stable if its topology cannot
be changed by an arbitrarily small perturbation of the vector
field. Hence, the phase portrait of a saddle point is
structurally stable, that of a center is not, since a small
perturbation converts the center into a spiral



Rabbits versus Sheep



Lotka-Volterra model of competition between two species.

Rabbits versus Sheep

Rabbits and sheep are competing for the same limited
resource (e.g. grass): no predators, seasonal effects, etc.

1) Each species would grow to its carrying capacity in the
absence of the other→ logistic growth.

2) When rabbits and sheep encounter each other, trouble
starts: sheep push rabbits away → conflicts occur at a
rate proportional to the size of each population, reducing
the growth rate for each species.

3) Rabbits reproduce faster but they are more severely
penalized by conflicts.



Rabbits versus Sheep

x(t) ≥ 0→ population of rabbits
y(t) ≥ 0→ population of sheep

A =

 
@f
@x

@f
@y

@g
@x

@g
@y

!

(x⇤,y⇤)

=

✓
3� 2x⇤ � 2y⇤ �2x⇤

�y⇤ 2� x⇤ � 2y⇤

◆

Fixed points

(0,0), (0,2), (3,0), (1,1)

ẋ = x(3� x� 2y)

ẏ = y(2� y � x)



Rabbits versus Sheep

(0,0) A =

✓
3 0
0 2

◆

Eigenvalues are λ = 2, 3→ the origin is an unstable node.

Trajectories near a node are tangential to the slower
eigendirection (here the y-axis, for which λ = 2 < 3).

(Eigenvectors: (λ = 2) (0,1), (λ = 3) (1,0).) 



Rabbits versus Sheep

Eigenvalues are λ = -1, -2→ (0,2) is a stable node

(0,2) A =

✓
�1 0
�2 �2

◆

Trajectories near a node are tangential to the slower
eigendirection [here v = (1, -2), for which λ = -1→ |-1|<|-2|]



Rabbits versus Sheep

Eigenvalues are λ= -3, -1→ (3,0) is a stable node

(3,0) A =

✓
�3 �6
0 �1

◆

Trajectories near a node are tangential to the slower
eigendirection [here v = (3, -1), for which λ = -1→ |-1|<|-3|)].



Rabbits versus Sheep
(1,1) A =

✓
�1 �2
�1 �1

◆

Eigenvalues are λ= → (1,1) is a saddle point�1±
p
2



Rabbits versus Sheep

Collecting the previous local portraits and adding the
solutions dx/dt = 0 for x = 0 and dy/dt = 0 for y = 0 giving the
horizontal and vertical trajectories:

ẋ = x(3� x� 2y)
ẏ = y(2� x� y)



Rabbits versus Sheep
ẋ = x(3� x� 2y)
ẏ = y(2� x� y)

Biological interpretation: one species drives the other to extinction.



Rabbits versus Sheep

The basin of attraction of
an attracting fixed point is
the set of initial conditions
x0 leading to that fixed
point (x(t)→ x*) as t→ ∞.

Principle of competitive exclusion: two species competing for the
same limited resource typically cannot coexist.

Because the stable 
manifold separates the 
basins for the two 
nodes it is called the 
basin boundary.



Conservative systems
Equation of motion of a mass m moving along the 𝑥-axis, subject to
a nonlinear force F(x):

mẍ = F (x)

F(x) has no dependence on the velocity or time → no damping or
friction, no time-dependent driving force.

The energy is conserved

F (x) = �dV

dx
! mẍ+

dV

dx
= 0

V(x) is the potential energy.



Conservative systems

mẋẍ+
dV (x(t))

dx
ẋ = 0 ! d

dt


1

2
mẋ2 + V (x)

�
= 0

E =
1

2
mẋ2 + V (x) is a constant of motion

Systems with a conserved quantity are called conservative.

ẋ = f(x)

General definition: given a system

a conserved quantity is a real-valued continuous function
E(x) that is constant on trajectories ( 𝑑𝐸/𝑑𝑡 = 0 ), but
nonconstant on every open set (to exclude e.g. 𝐸(𝐱) ≡ 0).

Standard trick (to be remembered), multiply by    :ẋ



Example I
A conservative system cannot have any attracting fixed points.

If there were a fixed point x*, then all points in its basin of
attraction would have to be at the same energy E(x*) (since
energy is constant on all trajectories leading to x*), so there
would be an open set with constant energy.

No attracting fixed points. So, what kind of fixed points can
occur in conservative systems?



Example II
Particle of mass m = 1 moving in a double-well potential

V (x) = �1

2
x2 +

1

4
x4

ẋ = y
ẏ = x� x3

Fixed points: (0, 0), (±1, 0)

F (x) = �dV

dx
= x� x3 ! ẍ = x� x3

As a vector field:



Example II
ẋ = y
ẏ = x� x3

(0, 0)→ Δ = -1 < 0→ saddle point!

A =
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@x

@f
@y

@g
@x

@g
@y

!

(x⇤,y⇤)

=

✓
0 1

1� 3x⇤2 0

◆

(±1, 0)→ τ = 0, Δ = 2→ centers!

Question: Will the nonlinear terms destroy the center
predicted by the linear approximation?
Answer: In the conserved system no!



Example II

E =
1

2
y2 � 1

2
x2 +

1

4
x4 = constant

In conservative systems trajectories are (typically) closed curves 
defined by contours of constant energy. In this particular case:

𝐸"#$ =
1
2
𝑣̇!

(𝑚 = 1)

↗



Example II

1) Near the centers there are small periodic orbits.
2) There are also large periodic orbits encircling all fixed

points.
3) Solutions are periodic except for equilibria (fixed points)

and the homoclinic orbits, which approach the origin when
t → ± ∞. (Note: homoclinic orbits are ones starting and
ending at the same point; not periodic, since it takes
forever to reach a fixed point.)



Example II

1) Neutrally stable equilibria correspond to the particle at rest
at the bottom of either one of the wells.

2) Small closed orbits→ small oscillations about equilibria.
3) Large closed orbits → oscillations taking the particle back

and forth over the hump.
4) Saddle point? Homoclinic orbits?



Example II
Sketch the graph of the energy function

E =
1

2
y2 � 1

2
x2 +

1

4
x4

1) Local minima of E project down to centers in the phase plane
2) Contours of slightly higher energy are small closed orbits
3) At E-value of local maximum (saddle point):homoclinic orbits
4) At higher E-values→ large periodic orbits



Nonlinear centers
Theorem (nonlinear centers for conservative systems):
Consider the system , where and
f is continuously differentiable. Suppose that there exists a
conserved quantity E(x) and an isolated fixed point x*. If x* is a
local minimum of E, then all trajectories sufficiently close to x*
are closed.

ẋ = f(x) x = (x, y) 2 R2

Ideas behind the proof:
1) Since E is constant on trajectories, each trajectory is
contained in some contour of E.

2) Near a local maximum (or minimum), contours are closed
3) The orbit is periodic, i.e. it does not stop at some point of

the contour because x* is isolated, so there are no other fixed
points in its close proximity



Reversible systems
Many mechanical systems have time-reversal symmetry, i.e.
their dynamics looks the same whether time runs forward or
backward. (For example, think of a pendulum.)

mẍ = F (x)
Any mechanical system of the form

is symmetric under time reversal!

t ! �t �! ẍ ! ẍ

The acceleration does not change, the velocity changes sign!



Reversible systems
ẋ = y

ẏ = F (x)
m

!
ẋ = y

ẏ = F (x)
m

Consequence: if (𝑥(𝑡), 𝑦 𝑡 is a solution, also (𝑥(−𝑡), −𝑦(−𝑡)) is
a solution!

t ! �t, y ! �y )



Reversible systems
More generally, any second-order system

ẋ = f(x, y)
ẏ = g(x, y)

such that 𝑓 is odd in 𝑦, 𝑓(𝑥, −𝑦) = −𝑓(𝑥, 𝑦), and 𝑔 is even in 𝑦,
𝑔(𝑥, −𝑦) = 𝑔(𝑥, 𝑦), is reversible!
Reversible systems are different from conservative systems,
but they share some properties.

Theorem (nonlinear centers for reversible systems): Suppose
the origin x* = 0 is a linear center of a reversible system. Then,
sufficiently close to the origin, all orbits are closed.

In other words, for a reversible system a linear center is also a 
nonlinear center. 



Reversible systems
Ideas behind the proof:
1) Let us take a trajectory starting on the positive x-axis near

the origin.
2) Because of the influence of the linear center (if the system

is close enough to it), the trajectory will bend and intersect
the negative x-axis.



Reversible systems
Ideas behind the proof:
3) By using reversibility we can reflect the trajectory above

the x-axis, obtaining a twin trajectory (we know that it is a
solution of the equation of motion and it must be the only
one).

4) The two trajectories form a closed orbit, as desired.



Example I
ẋ = y � y3

ẏ = �x� y2

The system is reversible and the origin (0, 0) is a fixed point.
What kind of a fixed point is it?

A =

✓
0 1
�1 0

◆Jacobian at the origin:

τ = 0, Δ = 1 → a linear center → also a nonlinear center (due to
the theorem).
Other fixed points are (-1, 1) and (-1, -1)

A =

✓
0 �2
�1 ⌥2

◆

Δ = -2 < 0→ saddle points.



Example I

The twin saddle points are joined by a pair of trajectories,
called heteroclinic orbits or saddle connections.

Homoclinic and heteroclinic orbits are common in
conservative and reversible systems.



Example II

Show that there is a homoclinic orbit in the half-plane x ≥ 0.

ẋ = y
ẏ = x� x2

Jacobian:

For FP (0,0) the eigenvectors corresponding to the eigenvalues
1 and -1 are v1 = (1, 1) and v2 = (1, -1).
The unstable manifold leaves the origin along v1 = (1, 1).

Fixed points: (0, 0) 𝜏 = 0, D = -1→ saddle point.
(1, 0) 𝜏 = 0, D = 1 → linear center and due to reversibility also
nonlinear center.

A =

✓
0 1

1� 2x 0

◆



Example II

1) Initially we are in the first quadrant
(x > 0 and y > 0).

2) Velocity in the x-direction is positive,
in the 𝑦-direction it is positive until
the system passes x = 1.

3) For x > 1 the velocity in the 𝑦 -
direction becomes negative and the
particle ends up hitting the x-axis.

4) By reversibility there must be a twin
trajectory with the same endpoints
and arrows reversed.

5) The two trajectories together form a
homoclinic orbit.

𝑓(𝑥, 𝑦) = 𝑦 = −𝑓(𝑥,−𝑦); 𝑔(𝑥, 𝑦) = 𝑥 – 𝑥2 = 𝑔(𝑥,−𝑦), so the 
system is reversible: use this to plot the trajectories.



Reversibility
More general definition of reversibility: If there exists a 
mapping R(x) of the phase space to itself that satisfies R2(x) = x, 
then the system is invariant under the change of 
variables t → -t, x → R(x). (Reflection about the x-axis has the
property R2(x) = x.)

ẋ = f(x)

Example ẋ = 2 cosx� cos y

ẏ = 2 cos y � cosx

This system is invariant under 𝑡 → −𝑡, x → -x, and 𝑦 → −𝑦, so
it is  reversible, with 𝑅(𝑥, 𝑦) = (−𝑥,−𝑦). However, it is not
conservative because it has an attractive fixed point at (-%

!
, -%
!

).



Pendulum
d2✓

dt2
+

g

L
sin ✓ = 0

Nondimensionalization: ! =
p
g/L, ⌧ = !t

d2✓

dt2
+

g

L
sin ✓ = 0 ! ✓̈ + sin ✓ = 0

✓̇ = ⌫
⌫̇ = � sin ✓

Note: 
differentiation 
with respect to t.

This was linearized at high school: sin q ≈ 
q. Here we solve the system for all q 
diagrammatically.  



Pendulum
✓̇ = ⌫
⌫̇ = � sin ✓
Fixed points: (θ*, ν*) = (kπ, 0), where k is any integer.

Focus on the FPs (0, 0), (π, 0) (the other fixed points coincide
with either of them, θ→ θ + 2π). The Jacobian:

A =

✓
0 1

� cos ✓ 0

◆

(0, 0) → τ = 0, Δ = 1 > 0 → linear center → nonlinear center
(reversible system).
(π, 0)→ τ = 0, Δ = -1 < 0→ saddle point.

The system is reversible, since the equations are 
invariant under τ→ -τ and ν→ -ν, that is, f(θ, -ν) 
=  -f(θ, ν) and g(θ, -ν) =  g(θ, ν).



Pendulum
✓̇ = ⌫
⌫̇ = � sin ✓

The system is reversible

⌧ ! �⌧
⌫ ! �⌫

! ✓̇ = ⌫
⌫̇ = � sin ✓

The system is conservative (multiply the nondimensionalized
equation by dθ/dτ):

✓̇(✓̈ + sin ✓) = 0 ! 1

2
✓̇2 � cos ✓ = constant

E(✓, ⌫) =
1

2
⌫2 � cos ✓

The energy function

has a local minimum at (0, 0).
So, again: the origin is a nonlinear center.



Pendulum
✓̇ = ⌫
⌫̇ = � sin ✓

The eigenvalues and -vectors at the saddle fixed point (π,0)
are l1 = -1, v1 = (1, -1); l2 = 1, v2 = (1, 1).



Pendulum
Now include the energy contours

E(✓, ⌫) =
1

2
⌫2 � cos ✓

for different values of E:

The portrait is periodic in the θ-direction.



Pendulum

Physical interpretation:
1) The center is the neutrally stable equilibrium with the

pendulum at rest straight down (minimum energy E = -1).
2) Small orbits about the center→ small oscillations (librations).
3) If the energy increases, the amplitude of the oscillations

increases. At the critical value E = 1 an unstable saddle (the
pendulum straight up) is approached along the heteroclinic
trajectory, and the pendulum slows down to a halt.

4) For E > 1 the pendulum whirls repeatedly over the top.



Pendulum
Cylindrical phase space

• Natural space for pendulum: one
variable (θ) is periodic, the other
(ν) is not

• Periodic whirling motions (E > 1)
look periodic

• Saddle points indicate the same
physical state

• Heteroclinic trajectories become
homoclinic orbits



Pendulum
Cylindrical phase space

Plotting vertically the energy instead of the velocity: U-tube



Pendulum
Cylindrical phase space

• Orbits are sections at constant
height/energy

• The two arms correspond to
the two senses of rotations

• Homoclinic orbits lie at E = 1,
borderline between librations
and rotations



Pendulum
Damping

✓̈ + b✓̇ + sin ✓ = 0, damping strength b > 0

Centers→ stable spirals
Saddle points→ saddle points

All trajectories continuously lose altitude, except for the fixed
points.



Pendulum
Damping

Change of energy along trajectory:

dE

d⌧
=

d

d⌧

✓
1

2
✓̇2 � cos ✓

◆
= ✓̇(✓̈ + sin ✓) = �b✓̇2

✓̈ + b✓̇ + sin ✓ = 0, damping strength b > 0

Consequence: E decreases monotonically along trajectories,
except at fixed points (where ).✓̇ = 0



Pendulum
Damping

✓̇ = 0

Physics: pendulum rotates over the top with decreasing energy,
until it cannot complete the rotation and makes damped
oscillations about equilibrium, where it eventually stops



Index theory
Global information about the phase portrait, as opposed to
the local information provided by linearization

Questions:
1) Must a closed trajectory always encircle a fixed point?
2) If so, what types of fixed points are permitted?
3) What types of fixed points can coalesce in bifurcations?
4) Trajectories near higher-order fixed points?
5) Possibility of closed orbits?

Index of a closed curve C: integer that measures the winding
of the vector field on C

Similarity with electrostatics: from the behavior of electric
field on a surface one may deduce the total amount of charges
inside the surface; here one gets info on possible fixed points



Index theory
Suppose a smooth vector field on the phase plane
and consider a simple (= non-self-intersecting) closed curve
C, which does not pass through fixed points of the system.

ẋ = f(x)

Then at each point of C the vector field makes a well-defined
angle � = tan�1(ẏ/ẋ)

with the positive x-axis.

(arctan(x) ⌘ tan�1(x))



Index theory
As x moves counterclockwise
around C, the angle φ changes
continuously (the vector field is
smooth) → when x comes back to
the starting position φ has varied
by a multiple of 2π.

[φ]C = the net change in φ over one circuit

The index of the closed curve C:

IC =
1

2⇡
[�]C



Example I
What’s the index?

The vector field makes one complete rotation
counterclockwise, so IC = + 1.



Trick

The index is the net number of counterclockwise revolutions
made by the numbered vectors in (b).



Example II

The vector field makes one complete rotation clockwise: IC = - 1.



Example III
ẋ = x2y
ẏ = x2 � y2

The curve C is the unit circle x2 + y2 = 1

What is IC ?

[φ]C = -π + 2π -π = 0

IC = 0

The vector field



Properties of the index
1) If C can be continuously deformed into C’ without passing

through a fixed point, IC = IC’.

2) If C does not enclose any fixed points, IC = 0.
Proof: By squeezing C until it becomes a very small circle
the index does not change because of 1) and it equals zero
because all vectors on the tiny circle point in the same
direction.

Proof: The index cannot vary continuously, but only by
integer values, so it cannot be altered by a continuous
change of C.



Properties of the index
3) Under time reversal (t → -t), the index is the same.

Proof: The time reversal changes the signs of the velocity
vectors, so the angles change from φ to φ + π, hence [φ]C
stays the same

4) If C is a trajectory of the system, IC = + 1



Index of a point
The index of an isolated fixed point x* is the index of the vector
field on any closed curve encircling x* and no other fixed point.

By property 1), the value of the index is the same on any curve
C, since it can be continuously deformed onto any other.

What is the index of a stable node?

The vector field makes one complete 
rotation counterclockwise, so I = + 1

The value is the same for unstable nodes as well, as the
situation would be the same, only with reversed arrows
(property 3).



Index of a point
What is the index of a saddle point?

The vector field makes one complete rotation clockwise: I = - 1.

Spiral, centers, degenerate nodes and stars all have I = + 1, only
saddle points have a different value.



Index of a point
Theorem: If a closed curve C surrounds n isolated fixed points,
the index of the vector field on C equals the sum of the indices
of the enclosed fixed points.

Proof:
C can be deformed to the
contour Γ of the figure; the
contributions of the bridges
cancel as each bridge is
crossed in both directions so
the net changes in the angle
are equal and opposite.

I� =
1

2⇡
[�]� =

1

2⇡

nX

k=1

[�]�k =
1

2⇡

nX

k=1

2⇡Ik =
nX

k=1

Ik



Index of a point
Theorem: Any closed orbit (trajectory) in the phase plane must
enclose fixed points whose indices sum to +1.

Proof:
If C is a closed orbit, IC = +1. From the previous theorem this is
also the sum of the indices of the fixed points enclosed by C.

Consequence: Any closed orbit encloses at least one fixed
point (if there were none, the index on the curve would be 0,
instead of + 1). If there is a unique fixed point, it cannot be a
saddle (as in this case the index would be – 1).



Example I
Show that closed orbits are impossible for the “rabbits versus
sheep” system

ẋ = x(3� x� 2y)
ẏ = y(2� x� y)

The only orbits enclosing
good fixed points (i.e. with
index + 1) would have to cross
the 𝑥/𝑦 -axes, which contain
trajectories of the system, and
trajectories cannot cross
(uniqueness)!



Example II
Show that the system

ẋ = xe�x

ẏ = 1 + x+ y2

has no closed orbits.

Solution: The system has no fixed points, so it cannot have
closed orbits, since the latter have to enclose at least one fixed
point.


