Computational Algebraic Geometry The Algebra-Geometry Dictionary

Kaie Kubjas
kaie.kubjas@aalto.fi

February 8, 2021

Overview

Last time:

- Nullstellensätze
- Radical ideals
- Ideal and variety correspondence

Today:

- Sums of ideals
- Products of ideals
- Intersections of ideals
- Zariski closure
- Quotients of ideals (postponed to next time)

Algebraic operations on ideals

The following are algebraic operations on ideals:

- Sums of ideals
- Products of ideals
- Intersections of ideals
- Quotients of ideals

We are particularly interested in the following two questions related to these different operations:

- Given generators of a pair of ideals, can one compute generators of the ideals obtained by these operations?
- What geometric operations correspond to these algebraic operations?

Sums, products and intersections of ideals

Sum of Ideas

Definition

If I and J are ideals of the ring $k\left[x_{1}, \ldots, x_{n}\right]$, then the sum of I and J, denoted $I+J$, is the set

$$
I+J=\{f+g: f \in I \text { and } g \in J\}
$$

Sum of Ideas

Definition

If I and J are ideals of the ring $k\left[x_{1}, \ldots, x_{n}\right]$, then the sum of I and J, denoted $I+J$, is the set

$$
I+J=\{f+g: f \in I \text { and } g \in J\} .
$$

Proposition

If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $I+J$ is also an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. In fact, $I+J$ is the smallest ideal containing I and J. Furthermore, if $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle$, then $I+J=\left\langle f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}\right\rangle$.

Proof: (1) $I+1$ is an ideal:

$$
* 0=0+0 \in I+\rho
$$

* Let $f_{1}, f_{2} \in I+\rho$. Then $\not g_{1}, g_{2} \in I$ and
 Thun $f_{1}+f_{2}=\left(g_{1}+h_{1}\right)+\left(g_{2}+h_{2}\right)=\underbrace{\left.g_{1}+g_{2}\right)}_{\frac{n}{I}}+\underbrace{\left(h_{1}+h_{2}\right)}_{J}) \in I+J$.
* Let $f \in I+J$ and $l \in k\left[x_{1}, \ldots, x_{n}\right]$. Thun $\exists g \in I$ and $\exists h \in S$ sit $f=g+h$. Then $l \cdot f=l(g+h)=$ $=\underbrace{l \cdot g}_{\substack{\pi \\ I}}+\underbrace{l \cdot h}_{\substack{\pi \\ l}} \in I+J$.
(2) I+J is the smallest ideal containing I and 1 : If H is an in hal that contains I and S, then it must contain all $f \in I$ and $g \in \mathcal{P}$. Since H is an ideal, it must contain all sums $f+g$, where $f \in I$ and $g \in S$. Hence $I+J \subseteq H$ and wendy ideal containing I and I must contain Its.
(3) Generating set:

$$
\text { If } I=\left\langle f_{1, \ldots,} f_{t}\right\rangle \text { and } J=\left\langle g_{1}, \ldots, g_{s}\right\rangle_{1}
$$ then $\left\langle f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}\right\rangle$ is an ideal

containing both I and S. Hence $I+S$ is contained in $\left\langle f_{11,-1} f_{r}, g_{1,-1} g_{s}\right\rangle$. The menes inclusion follows since $f_{i} \in I$ and $g_{j} \in J$ and I and I are both contained in I+S.

Sum of Ideas

Definition

If I and J are ideals of the ring $k\left[x_{1}, \ldots, x_{n}\right]$, then the sum of I and J, denoted $I+J$, is the set

$$
I+J=\{f+g: f \in I \text { and } g \in J\} .
$$

Proposition

If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $I+J$ is also an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. In fact, $I+J$ is the smallest ideal containing I and J. Furthermore, if $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle$, then $I+J=\left\langle f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}\right\rangle$.

Corollary

If $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\left\langle f_{1}, \ldots, f_{r}\right\rangle=\left\langle f_{1}\right\rangle+\cdots+\left\langle f_{r}\right\rangle .
$$

Sum of ideals

Theorem
If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $\mathbb{V}(I+J)=\mathbb{V}(I) \cap \mathbb{V}(J)$.

Proof: " \leq " if $x \in \mathbb{V}(I+J)$, then $x \in \mathbb{V}(I)$, since $I \leq I+J$. Similarly $x \in \mathbb{Y}(J)$. Hence $x \in \mathbb{V}(I) \cap V(\rho)$.
" \geq " Let $x \in \mathbb{V}(I) \cap \mathbb{V}(J)$. hat $h \in I+J$. Then $\exists f \in I, g \in S$ s.t. $h=f+g$. Then $h(x)=\underset{0}{f(x)}+\underset{0}{g(x)}=0$.
Hence $x \in V(I+J)$

Products of Ideals

Definition

If I and J are two ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then their product, denoted $I \cdot J$, is defined to be the ideal generated by all polynomials $f \cdot g$ where $f \in I$ and $g \in J$.

Thus, the product $I \cdot J$ of I and J is the set

$$
I \cdot J=\left\{f_{1} g_{1}+\cdots+f_{r} g_{r}: f_{1}, \ldots, f_{r} \in I, g_{1}, \ldots, g_{r} \in J, r>0\right\}
$$

Products of Ideals

Definition

If I and J are two ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then their product, denoted $I \cdot J$, is defined to be the ideal generated by all polynomials $f \cdot g$ where $f \in I$ and $g \in J$.

Thus, the product $I \cdot J$ of I and J is the set

$$
I \cdot J=\left\{f_{1} g_{1}+\cdots+f_{r} g_{r}: f_{1}, \ldots, f_{r} \in I, g_{1}, \ldots, g_{r} \in J, r>0\right\}
$$

Proposition

If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $I \cdot J$ is also an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. Furthermore, if $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle$, then $I \cdot J=\left\langle f_{i} g_{j}: 1 \leq i \leq r, 1 \leq j \leq s\right\rangle$.

Proof: *I. \mathcal{I} is an idol - EXERCISE

* Generating set " 2 The products $f_{i} \cdot g_{j}$ are contained in I. \mathcal{J} by definition.
" \subseteq " Consider an clement of I.S. H is sem of terms of the fores $f \cdot g_{r}$, when $f \in I$ and $g \in \mathcal{D}$.
We can unite $f=\sum_{i=1}^{r} a_{i} \cdot f_{i}$ and $g=\sum_{j=1}^{3} b_{j} g_{j}$, where $a_{i}, b_{j} \in k\left[x_{1}, \ldots, x_{n}\right]$.
Hence $f \cdot g=\sum_{i, j} \underbrace{\left(a_{i} b_{j}\right)}_{k\left[x_{n} \ldots, x_{n}\right]} f_{i} \cdot g_{j}$. Hence $f \cdot g \in\left\langle f i g_{j}\right\rangle$.
The same is true for any sum of polynomials when each term has the form fig. This roves the claim.

Products of Ideals

Definition

If I and J are two ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then their product, denoted $I \cdot J$, is defined to be the ideal generated by all polynomials $f \cdot g$ where $f \in I$ and $g \in J$.

Thus, the product $I \cdot J$ of I and J is the set

$$
I \cdot J=\left\{f_{1} g_{1}+\cdots+f_{r} g_{r}: f_{1}, \ldots, f_{r} \in I, g_{1}, \ldots, g_{r} \in J, r>0\right\}
$$

Proposition

If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $I \cdot J$ is also an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. Furthermore, if $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle$, then $l \cdot J=\left\langle f_{i} g_{j}: 1 \leq i \leq r, 1 \leq j \leq s\right\rangle$.

Theorem

If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $\mathbb{V}(I \cdot J)=\mathbb{V}(I) \cup \mathbb{V}(J)$.

$$
\begin{array}{ll}
I=\langle x\rangle, J=\langle y\rangle, I \cdot J=\langle x y\rangle \\
V(I \cdot J)=\{ & V(I)=1
\end{array}
$$

Proof: " \subseteq " let $x \in \mathbb{V}(I \cdot S)$. Then $g(x) \cdot h(x)=0$ po all $g \in I$ and $h \in \mathcal{L}$. If $g(x)=0$ po all $g \in I$, then $x \in \mathbb{V}(I)$. Otherwise there exists some $g \in I$ s.t. $g(x) \neq 0$. Then it must be that $h(x)=0$ for all $h \in Y$. Them $x \in \mathbb{V}(J)$. Hence $x \in \mathbb{V}(I) \cup \mathbb{V}(J)$.
"2" Let $x \in \mathbb{V}(I) \cup \mathbb{V}(y)$. Either $g(x)=0 \quad \forall g \in I$ or $h(x)=0 \quad \forall h \in J$. Hence $g(x) \cdot h(x)=0 \quad \forall g \in I$, he S. Thus $f(x)=0 \quad \forall f \in I \cdot \rho$ and $x \in V(I \cdot \rho)$.

Intersections of Ideals

Definition

The intersection $I \cap J$ of two ideals I and J in $k\left[x_{1}, \ldots, x_{n}\right]$ is the set of polynomials which belong to both I and J.

Intersections of Ideals

Definition

The intersection $I \cap J$ of two ideals I and J in $k\left[x_{1}, \ldots, x_{n}\right]$ is the set of polynomials which belong to both I and J.

Proposition

If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $I \cap J$ is also an ideal.

Intersections of Ideals

Definition

The intersection $I \cap J$ of two ideals I and J in $k\left[x_{1}, \ldots, x_{n}\right]$ is the set of polynomials which belong to both I and J.

Proposition

If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $I \cap J$ is also an ideal.

- $I J \subseteq I \cap J \quad f \in I \cdot J \quad \sum_{i=1}^{r} f_{i} g_{i}, f_{i} \in I, g_{i} \in S$
- Quiz: Let $I=J=\langle x, y\rangle$. Find generating sets for $I J$ and $I \cap J$.

Intersections of Ideals

Definition

The intersection $I \cap J$ of two ideals I and J in $k\left[x_{1}, \ldots, x_{n}\right]$ is the set of polynomials which belong to both I and J.

Proposition

If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $I \cap J$ is also an ideal.

- $I J \subseteq I \cap J$
- Quiz: Let $I=J=\langle x, y\rangle$. Find generating sets for $I J$ and $I \cap J$.
- $I J=\left\langle x^{2}, x y, y^{2}\right\rangle$ and $I \cap J=\langle x, y\rangle$
- How to compute a set of generators for the intersection?

Intersections of Ideals

- $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ ideal
- $f(t) \in k[t]$ polynomial in a single variable
- $f l \subseteq k\left[x_{1}, \ldots, x_{n}, t\right]$ ideal generated by $\{f h: h \in I\}$

Intersections of Ideals

- $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ ideal
- $f(t) \in k[t]$ polynomial in a single variable
- $f l \subseteq k\left[x_{1}, \ldots, x_{n}, t\right]$ ideal generated by $\{f h: h \in I\}$

Lemma

(1) If I is generated as an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ by $p_{1}(x), \ldots, p_{r}(x)$, then $f(t) I$ is generated as an ideal in $k\left[x_{1}, \ldots, x_{n}, t\right]$ by $f(t) p_{1}(x), \ldots, f(t) p_{r}(x)$.
(2) If $g(x, t) \in f(t) /$ and a is any element of the field k, then $g(x, a) \in I$.

Proof: 1) Any polynomial $g(x, t) \in f(t) \cdot I$ can be expressed as a sum of terms of the form $h(x, t) \cdot f(t) \cdot p(x)$ for $h(x, t) \in K\left[x_{1}, \ldots, x_{n}, t\right]$ and $p \in I$. Since $p \in \frac{T}{r}$ and I is gemated by $p_{1} \ldots p_{r}$ then $p(x)=\sum_{i=1}^{r} q_{i}(x) \cdot p_{i}(x)$, when $q_{i} \in k\left[x_{1} \ldots, x_{n}\right]$.
Then $h(x, t) \cdot f(t) \cdot p(x)=\sum_{i=1}^{r} \underbrace{h(x, t) \cdot q_{i}(x)}_{\hat{p}} ; f(t) \cdot \gamma_{i}(x) \in$

$$
\epsilon\left\langle f(t) \cdot p_{1}(x), \ldots, f(t) \cdot p_{r}(x)\right\rangle
$$

Sine $g(x, t)$ is a sum of such tums, then it belongs to the ideal as well.
2) If $g(x, t) \in f(t) \cdot I$, then

$$
g(x, t)=\sum_{i=1}^{r} h(x, t) \cdot f(t) \cdot \gamma_{i}(x)
$$

Thin $g(x, a)=\sum_{i=1}^{r} \underbrace{h(x, a) \cdot f(a)}_{k\left[x_{1},-x_{n}\right]} \cdot p_{i}(x) \in I$.

Intersections of Ideals

- $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ ideal
- $f(t) \in k[t]$ polynomial in a single variable
- $f l \subseteq k\left[x_{1}, \ldots, x_{n}, t\right]$ ideal generated by $\{f h: h \in I\}$

Lemma

(1) If I is generated as an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ by $p_{1}(x), \ldots, p_{r}(x)$, then $f(t)$ I is generated as an ideal in $k\left[x_{1}, \ldots, x_{n}, t\right]$ by $f(t) p_{1}(x), \ldots, f(t) p_{r}(x)$.
(2) If $g(x, t) \in f(t) I$ and a is any element of the field k, then $g(x, a) \in I$.

Theorem

Let I, J be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
I \cap J=(t I+(1-t) J) \cap k\left[x_{1}, \ldots, x_{n}\right] .
$$

Proof:

* $t I+(1-t) \cdot \mathcal{J}$ is an ideal.
" \subseteq " tet $t \in I \cap S$. Thun $t f \in t \cdot I$ and $(1-t) \cdot f \in(1-t) \cdot \mathcal{J}$. Hence $f=t \cdot f+(1-t) \cdot f \in t I+(l-t) \cdot \mathcal{S}$. Since $I_{1} J \subseteq k\left[x_{1}, \ldots, x_{n}\right]$, we have $f \in(t \cdot I+(1-t) \cdot J) n k\left[x_{1}, \ldots, x_{n}\right]$.
"פ" Let $f \in(t I+(1-t) \rho) \cap k\left[x_{\left.1, \ldots, x_{n}\right] \text {. then }}\right.$ $f(x)=g(x, t)+h(x, t)$, when $g(x, t) \in t I$ and $h(x, t) \in(1-t) \cdot S$. First we set $t=0$: Since may clement of $t \cdot I$ is a multiple of t_{1} then $g(x, 0)=0$. Hence $f(x)=h(x, 0) \in \mathcal{I}$ by the previous lemmere. Similarly, setting $t=1$ gives that $f(x)=g(x, 0) \in I$. Hence $f \in I \cap J$.

Intersections of Ideals

Algorithm for computing intersections of ideals:

- $I=\left\langle x^{2} y\right\rangle, J=\left\langle x y^{2}\right\rangle$

Intersections of Ideals

Algorithm for computing intersections of ideals:

- $I=\left\langle x^{2} y\right\rangle, J=\left\langle x y^{2}\right\rangle$
- $t l+(1-t) J=\left\langle t x^{2} y,(1-t) x y^{2}\right\rangle=\left\langle t x^{2} y, t x y^{2}-x y^{2}\right\rangle$

Intersections of Ideals

Algorithm for computing intersections of ideals:

- $I=\left\langle x^{2} y\right\rangle, J=\left\langle x y^{2}\right\rangle$
- $t l+(1-t) J=\left\langle t x^{2} y,(1-t) x y^{2}\right\rangle=\left\langle t x^{2} y, t x y^{2}-x y^{2}\right\rangle$
- $\left\{t x^{2} y, t x y^{2}-x y^{2}, x^{2} y^{2}\right\}$ is a Groebner basis of $t I+(1-t) J$ wrt lex order with $t>x>y$

Intersections of Ideals

Algorithm for computing intersections of ideals:

- $I=\left\langle x^{2} y\right\rangle, J=\left\langle x y^{2}\right\rangle$
- $t l+(1-t) J=\left\langle t x^{2} y,(1-t) x y^{2}\right\rangle=\left\langle t x^{2} y, t x y^{2}-x y^{2}\right\rangle$
- $\left\{t x^{2} y, t x y^{2}-x y^{2}, x^{2} y^{2}\right\}$ is a Groebner basis of $t I+(1-t) J$ wrt lex order with $t>x>y$
- Quiz: What is a generating set of $I \cap J$?

Intersections of Ideals

Algorithm for computing intersections of ideals:

- $I=\left\langle x^{2} y\right\rangle, J=\left\langle x y^{2}\right\rangle$
- $t l+(1-t) J=\left\langle t x^{2} y,(1-t) x y^{2}\right\rangle=\left\langle t x^{2} y, t x y^{2}-x y^{2}\right\rangle$
- $\left\{t x^{2} y, t x y^{2}-x y^{2}, x^{2} y^{2}\right\}$ is a Groebner basis of $t I+(1-t) J$ wrt lex order with $t>x>y$
- Quiz: What is a generating set of $I \cap J$?
- Elimination Theorem: $\left\{x^{2} y^{2}\right\}$ is a Groebner basis of $t l+(1-t) J \cap \mathbb{Q}[x, y]$
- $I \cap J=\left\langle x^{2} y^{2}\right\rangle$

Least Common Multiple

Definition

A polynomial $h \in k\left[x_{1}, \ldots, x_{n}\right]$ is called a least common multiple of $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ and denoted $h=\operatorname{LCM}(f, g)$ if
(1) f divides h and g divides h.
(2) h divides any polynomial which both f and g divide.

Least Common Multiple

Definition

A polynomial $h \in k\left[x_{1}, \ldots, x_{n}\right]$ is called a least common multiple of $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ and denoted $h=\operatorname{LCM}(f, g)$ if
(1) f divides h and g divides h.
(2) h divides any polynomial which both f and g divide.

Example

$\operatorname{LCM}\left(x^{2} y, x y^{2}\right)=x^{2} y^{2}$

Least Common Multiple

Definition

A polynomial $h \in k\left[x_{1}, \ldots, x_{n}\right]$ is called a least common multiple of $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ and denoted $h=\operatorname{LCM}(f, g)$ if
(1) f divides h and g divides h.
(2) h divides any polynomial which both f and g divide.

Example

$\operatorname{LCM}\left(x^{2} y, x y^{2}\right)=x^{2} y^{2}$

- $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$
- $f=c f_{1}^{a_{1}} \cdots f_{r}^{a_{r}}, g=c^{\prime} g_{1}^{b_{1}} \cdots g_{s}^{b_{s}}$ factorizations into distinct irreducible polynomials
- for $1 \leq i \leq I, f_{i}$ is a constant multiple of g_{i} and for all $i, j>I$, f_{i} is not a constant multiple of g_{j}
- $\operatorname{LCM}(f, g)=f_{1}^{\max \left(a_{1}, b_{1}\right)} \cdots f_{l}^{\max \left(a_{l}, b_{l}\right)} g_{l+1}^{b_{l+1}} \cdots g_{s}^{b_{s}} \cdot f_{l+1}^{a_{l+1}} \cdots f_{r}^{a_{r}}$

Least Common Multiple

Proposition

(1) The intersection $I \cap J$ of two principal ideals $I, J \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is a principal ideal.
(2) If $I=\langle f\rangle, J=\langle g\rangle$ and $I \cap J=\langle h\rangle$, then

$$
h=L C M(f, g)
$$

Least Common Multiple

Proposition

(1) The intersection $I \cap J$ of two principal ideals $I, J \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is a principal ideal.
(2) If $I=\langle f\rangle, J=\langle g\rangle$ and $I \cap J=\langle h\rangle$, then

$$
h=L C M(f, g)
$$

Algorithm for computing the least common multiple of two polynomials:

- $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$
- compute $\langle f\rangle \cap\langle g\rangle$
- any generator of it is $\operatorname{LCM}(f, g)$

Greatest Common Divisor

Definition

Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $h \in k\left[x_{1}, \ldots, x_{n}\right]$ is called a greatest common divisor of f and g, and denoted
$h=\operatorname{GCD}(f, g)$, if
(1) h divides f and g.
(2) If p is any polynomial which divides both f and g, then p divides h.

Greatest Common Divisor

Definition

Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $h \in k\left[x_{1}, \ldots, x_{n}\right]$ is called a greatest common divisor of f and g, and denoted
$h=\operatorname{GCD}(f, g)$, if
(1) h divides f and g.
(2) If p is any polynomial which divides both f and g, then p divides h.

Proposition
Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
\operatorname{LCM}(f, g) \cdot G C D(f, g)=f g
$$

Greatest Common Divisor

$$
\operatorname{GCD}(f, g)=\frac{f g}{\operatorname{LCM}(f, g)}
$$

Greatest Common Divisor

$$
\operatorname{GCD}(f, g)=\frac{f g}{\operatorname{LCM}(f, g)}
$$

Algorithm for computing the greatest common divisor:
(1) compute $\operatorname{LCM}(f, g)$
(2) divide it into $f g$ by using the division algorithm

Greatest Common Divisor

$$
\operatorname{GCD}(f, g)=\frac{f g}{\operatorname{LCM}(f, g)}
$$

Algorithm for computing the greatest common divisor:
(1) compute $\operatorname{LCM}(f, g)$
(2) divide it into $f g$ by using the division algorithm

Recall that $f_{\text {red }}$ is the polynomial that satisfies $\left\langle f_{\text {red }}\right\rangle=\sqrt{\langle f\rangle}$. Last time we stated:

$$
f_{\text {red }}=\frac{f}{\operatorname{GCD}\left(f, \frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)} .
$$

Now we have an algorithm for computing $f_{\text {red }}$.

Intersections of Ideals

Theorem

If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $\mathbb{V}(I \cap J)=\mathbb{V}(I) \cup \mathbb{V}(J)$.

Proof: " \subseteq " Since $I \cdot S \subseteq I \cap J$. thence $\mathbb{V}(I \cap J) \subseteq \mathbb{V}(I \cdot J)=\mathbb{V}(I) \cup \mathbb{V}(J)$.
$" \supseteq$ " Let $x \in \mathbb{Y}(I) \cup \mathbb{V}(J)$. Then $x \in \mathbb{V}(I)$ on $x \in \mathbb{V}(J)$. Thus lither $f(x)=0 \quad \forall f \in I$ or $f(x)=0$ for all $f \in \mathcal{J}$. Hence $f(x)=0$ $\forall f \in I \cap J$ and $x \in \mathbb{Y}(I \cap J)$.

Intersections of Ideals

Theorem

If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $\mathbb{V}(I \cap J)=\mathbb{V}(I) \cup \mathbb{V}(J)$.

- the intersection of two ideals corresponds to the same variety as the product
- why bother with the intersection?
- the product of radical ideals need not be a radical ideal

Intersections of Ideals

Theorem

If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $\mathbb{V}(I \cap J)=\mathbb{V}(I) \cup \mathbb{V}(J)$.

- the intersection of two ideals corresponds to the same variety as the product
- why bother with the intersection?
- the product of radical ideals need not be a radical ideal

Proposition

If I, J are any ideals, then

$$
\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}
$$

Zariski closure and quotients of ideals

Zariski closure

For $S \subseteq k^{n}$, define

$$
\mathbb{I}(S)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(a)=0 \text { for all } a \in S\right\} .
$$

This set is an ideal.

Zariski closure

For $S \subseteq k^{n}$, define

$$
\mathbb{I}(S)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(a)=0 \text { for all } a \in S\right\} .
$$

This set is an ideal.
Proposition
If $S \subseteq k^{n}$, the affine variety $\mathbb{V}(\mathbb{I}(S))$ is the smallest variety that contains S.

Proof: Let W be a varicty containing $S: S \subseteq W \Rightarrow$

$$
I(W) \subseteq I(S) \quad \Rightarrow \underbrace{\mathbb{V}(\mathbb{I}(W))}_{\mathbb{W} \text { sance } W \text { is a varicty. }} \geq \vec{V}(I(S))
$$

Hence $\mathbb{V}(\mathbb{I}(s)) \subseteq \mathbb{W}$ and the venilt phlows.

Zariski closure

For $S \subseteq k^{n}$, define

$$
\mathbb{I}(S)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(a)=0 \text { for all } a \in S\right\} .
$$

This set is an ideal.

Proposition

If $S \subseteq k^{n}$, the affine variety $\mathbb{V}(\mathbb{I}(S))$ is the smallest variety that contains S.

Definition

The Zariski closure of a subset of affine space is the smallest affine algebraic variety containing the set. If $S \subseteq k^{n}$, the Zariski closure of S is denoted \bar{S} and is equal to $\mathbb{V}(\mathbb{I}(S))$.

Zariski closure

For $S \subseteq k^{n}$, define

$$
\mathbb{I}(S)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(a)=0 \text { for all } a \in S\right\} .
$$

This set is an ideal.

Proposition

If $S \subseteq k^{n}$, the affine variety $\mathbb{V}(\mathbb{I}(S))$ is the smallest variety that contains S.

Definition

The Zariski closure of a subset of affine space is the smallest affine algebraic variety containing the set. If $S \subseteq k^{n}$, the Zariski closure of S is denoted \bar{S} and is equal to $\mathbb{V}(\mathbb{I}(S))$.

Quiz: Let S be the x-axis without the point $(0,0)$ inside \mathbb{R}^{2}. What is the Zariski closure of S ?

Zariski closure

Claim: $\mathbb{I}(\bar{S})=\mathbb{I}(S)$

- $S \subseteq \bar{S} \Longrightarrow \mathbb{I}(\bar{S}) \subseteq \mathbb{I}(S)$
- $f \in \mathbb{I}(S)$ implies $S \subseteq \mathbb{V}(f)$. Since \bar{S} is the smallest variety containing S, we have $S \subseteq \bar{S} \subseteq \mathbb{V}(f)$. Finally $f \in \mathbb{I}(\mathbb{V}(f)) \subseteq \mathbb{I}(\bar{S})$.

Zariski closure

Theorem

Let k be an algebraically closed field. Suppose
$V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right) \subseteq k^{n}$ and let $\pi_{l}: k^{n} \rightarrow k^{n-1}$ be projection onto
the last $n-I$ components. If I_{I} is the Ith elimination ideal
$I_{I}=\left\langle f_{1}, \ldots, f_{s}\right\rangle \cap k\left[x_{I+1}, \ldots, x_{n}\right]$, then $\mathbb{V}\left(I_{I}\right)$ is the Zariski closure of $\pi_{l}(V)$.

Proof: We want b show that $V\left(I_{e}\right)=V\left(\mathbb{I}\left(\pi_{l}(V)\right)\right)$.
$\stackrel{\prime}{\bullet}$ We know from carlin that $\pi_{l}(V) \subseteq \mathbb{V}\left(I_{e}\right)$. Since $V\left(\mathbb{I}\left(\pi_{l}(V)\right)\right)$ is the smallest variety butaining $\pi_{l}(V)$, then $\mathbb{V}\left(\mathbb{T}\left(\pi_{l}(V)\right)\right) \subseteq \mathbb{V}\left(I_{l}\right)$.
"c" let $f \in \mathbb{I}\left(\pi_{l}(v)\right)$, i.e $f\left(a_{e+1}, \ldots, a_{n}\right)=0$ for all $\left(a_{l+1}, \ldots, a_{n}\right) \in \pi_{l}(V)$. Cowridend as an clement of $k\left[x_{11}, x_{n}\right]$, we have $f\left(a_{1},-a_{n}\right)-0$ for all $\left(a_{n}, \ldots, a_{n}\right) \in V$.
By tulbent's Nullstelleastatz, $\exists m>0$ sit. $f^{m} \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$. This implies $\left.f^{m} \in\left\langle f_{1 \cdots+f_{1}}\right\rangle+x_{x_{e n i}} x_{n}\right]=$ $=I_{e}$. Thus $f \in \widetilde{I}_{e}$. Hence $\mathbb{I}\left(\pi_{l}(v)\right) \leq \mathbb{I}_{e}$. it follows $V\left(I_{l}\right)=V\left(\mathbb{I}_{l}\right) \leqslant V\left(\mathbb{I}\left(\pi_{e}(V)\right)\right)$.

Conclusion

Today:

- Three ideal operations: Sums, products, intersections
- Generating sets of the ideals obtained by these operations
- Geometric operations corresponding to the algebraic operations
- Zariski closure
- Finished the proof of the Closure Theorem

Next time:

- Quotients of ideals
- Irreducible varieties and prime ideals
- Decomposition of a variety into irreducibles

