Computational Algebraic Geometry

The Algebra-Geometry Dictionary

Kaie Kubjas

kaie.kubjas@aalto.fi

February 8, 2021

Kaie Kubjas The Algebra-Geometry Dictionary



Overview

Last time:
@ Nullstellensatze
@ Radical ideals
@ Ideal and variety correspondence
Today:
@ Sums of ideals
@ Products of ideals
@ Intersections of ideals
@ Zariski closure
@ Quotients of ideals (postponed to next time)
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Algebraic operations on ideals

The following are algebraic operations on ideals:
@ Sums of ideals
@ Products of ideals
@ Intersections of ideals
@ Quotients of ideals

We are particularly interested in the following two questions
related to these different operations:

@ Given generators of a pair of ideals, can one compute
generators of the ideals obtained by these operations?

@ What geometric operations correspond to these algebraic
operations?
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Sums, products and
Intersections of ideals




Sum of Ideas

If / and J are ideals of the ring k[x, ..., Xn], then the sum of /
and J, denoted / + J, is the set

I+J={f+g:feland g€ J}.
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Sum of ldeas

If / and J are ideals of the ring k[x, ..., Xn], then the sum of /
and J, denoted / + J, is the set

I+J={f+g:feland g€ J}.

Proposition
If | and J are ideals in k[x1, ..., Xn|, then | + J is also an ideal in
K[x1,...,Xn]. Infact, | + J is the smallest ideal containing | and

J. Furthermore, if | = (fy,...,f;) andJ = (g1, ...,3s), then
I+J:<f17°°'7frag17"'7gs>-
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Sum of ldeas

If / and J are ideals of the ring k[x, ..., Xn], then the sum of /
and J, denoted / + J, is the set

I+J={f+g:feland g€ J}.

If | and J are ideals in k[x1, ..., Xn|, then | + J is also an ideal in
K[x1,...,Xn]. Infact, | + J is the smallest ideal containing | and
J. Furthermore, if | = (fy,...,f,) andJ = (gy,...,3s), then

I+ J = <f1,...,fr,g1,...,gs>.

A

lff‘],...,frEk[X‘],...,Xn], then

(oo B = (f) 4o (.
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Sum of ideals

\V(%-%‘L ( 3* D

V(y-x"2)

<« V(y-1)

If | and J are ideals in K[X1, ..., Xn], thenV(I+J) = V()N V(J).
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Products of Ideals

Definition

If / and J are two ideals in k[xq, ..., Xp], then their product,
denoted /- J, is defined to be the ideal generated by all
polynomials f- g where f € land g € J.

Thus, the product /- J of [ and J is the set
I-J:{f1g1+---+f,g,:f1,...,f,€l,g1,...,gr€J,r>O}
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Products of Ideals

If / and J are two ideals in k[xq, ..., Xp], then their product,
denoted /- J, is defined to be the ideal generated by all

polynomials f- g where f € land g € J.

Thus, the product /- J of [ and J is the set
I'J:{f1g-|—|—---—|—frgr2f1,...,fr€/,g1,...,gr€J,l'>0}

If I and J are ideals in k[xq, ..., Xxn], then |- J is also an ideal in
K[x1,...,Xxn]. Furthermore, if | = {fy,..., f) and
J=1(91,....9s), then|-J = (figi: 1 <i<r1<j<s).
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Products of Ideals

Definition

If / and J are two ideals in k[xq, ..., Xp], then their product,
denoted /- J, is defined to be the ideal generated by all
polynomials f- g where f € land g € J.

Thus, the product /- J of [ and J is the set
I'J:{f1g-|—|—---—|—frgr2f1,...,fr€/,g1,...,gr€J,l'>0}

If I and J are ideals in k[xq, ..., Xxn], then |- J is also an ideal in
K[x1,...,Xxn]. Furthermore, if | = {fy,..., f) and
J=1(91,....9s), then|-J = (figi: 1 <i<r1<j<s).

If | and J are ideals in k[x1, ..., Xxp], thenV(I-J) = V() U V(J).
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Intersections of ldeals

Definition

The intersection /N J of two ideals / and J in k[x1, ..., Xp] is the
set of polynomials which belong to both / and J.
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Intersections of ldeals

Definition

The intersection /N J of two ideals / and J in k[x1, ..., Xp] is the
set of polynomials which belong to both / and J.

Proposition

If | and J are ideals in k[x1, ..., Xn], then I J is also an ideal.
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Intersections of ldeals

Definition

The intersection /N J of two ideals / and J in k[x1, ..., Xp] is the
set of polynomials which belong to both / and J.

Proposition

If | and J are ideals in k[x1, ..., Xn], then I J is also an ideal.

e UCINJ 1T .Z. Yiai .&;e'i.as;eﬁ

@ Quiz: Let I = J = (x, y). Find generating sets for IJ and
INd.
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Intersections of ldeals

Definition

The intersection /N J of two ideals / and J in k[x1, ..., Xp] is the
set of polynomials which belong to both / and J.

Proposition
If | and J are ideals in k[x1, ..., Xn], then I J is also an ideal.
e UCINJ
@ Quiz: Let I = J = (x, y). Find generating sets for IJ and
INJ.

@ IJ=(x?xy,y?)and INJ = (x,y)
@ How to compute a set of generators for the intersection?
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Intersections of ldeals

@ /| C K[xq,...,Xp] ideal
@ f(t) € k[t] polynomial in a single variable
@ fIl C K[xq,...,Xn, t] ideal generated by {th: he I}
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Intersections of ldeals

@ /| C K[xq,...,Xp] ideal
@ f(t) € k[t] polynomial in a single variable
@ fIl C K[xq,...,Xn, t] ideal generated by {th: he I}

Lemma

@Q /flis generated as an ideal in k[xq, ..., xn] by
p1(x), ..., pr(x), then f(t)l is generated as an ideal in

kX1, ... xn, t] by f(t)p1(X), ..., F(£)pr(X).
@ Ifg(x,t) € f(t)] and a is any element of the field k, then
g(x,a) € l.
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Intersections of ldeals

@ /| C K[xq,...,Xp] ideal
@ f(t) € k[t] polynomial in a single variable
@ fIl C K[xq,...,Xn, t] ideal generated by {th: he I}

Lemma

@Q /flis generated as an ideal in k[xq, ..., xn] by
p1(x), ..., pr(x), then f(t)l is generated as an ideal in

kX1, ... xn, t] by f(t)p1(X), ..., F(£)pr(X).
@ Ifg(x,t) € f(t)] and a is any element of the field k, then
g(x,a) € l.

Let I, J be ideals in k[Xy,...,Xn]. Then

Ind = (t+(1 = J) N K[xi, ..., X,
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Intersections of ldeals

Algorithm for computing intersections of ideals:
o I=(x?y),J = (xy?)

Kaie Kubjas The Algebra-Geometry Dictionary



Intersections of ldeals

Algorithm for computing intersections of ideals:
o I =(x?y),J = (xy°)
o t+(1—1)J=(tx%, (1 —t)xy?) = (tx%y, txy® — xy?)
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Intersections of ldeals

Algorithm for computing intersections of ideals:
o I =(x?y),J = (xy°)
o tI+(1—1t)d=(tx, (1 = t)xy?) = (tx?y, txy® — xy?)
@ {tx?y, txy? — xy?, x°y?} is a Groebner basis of
tI+ (1 — t)J wrt lex order with t > x > y
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Intersections of ldeals

Algorithm for computing intersections of ideals:
o I =(x?y),J = (xy°)
o tI+(1—1t)d=(tx, (1 = t)xy?) = (tx?y, txy® — xy?)
@ {tx?y, txy? — xy?, x°y?} is a Groebner basis of
tI+ (1 — t)J wrt lex order with t > x > y

@ Quiz: What is a generating set of N J?
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Intersections of ldeals

Algorithm for computing intersections of ideals:
o I =(x?y),J = (xy°)
o tI+(1—1t)d=(tx, (1 = t)xy?) = (tx?y, txy® — xy?)
@ {tx?y, txy? — xy?, x°y?} is a Groebner basis of
tI+ (1 — t)J wrt lex order with t > x > y
@ Quiz: What is a generating set of N J?

@ Elimination Theorem: {x?y?} is a Groebner basis of
tH+ (1 —t)d N Q[x, y]
@ INdJd=(x?y?)
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Least Common Multiple

A polynomial h € k[xq, ..., Xp] is called a least common multiple
of f,g € k[xy,...,xn| and denoted h = LCM(f, g) if

@ f divides h and g divides h.
© h divides any polynomial which both f and g divide.
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Least Common Multiple

A polynomial h € k[xq, ..., Xp] is called a least common multiple
of f,g € k[xy,...,xn| and denoted h = LCM(f, g) if

@ f divides h and g divides h.
© h divides any polynomial which both f and g divide.

LCM(x2y, xy?) = x2y?
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Least Common Multiple

A polynomial h € k[xq, ..., Xp] is called a least common multiple
of f,g € k[xy,...,xn| and denoted h = LCM(f, g) if

@ f divides h and g divides h.
© h divides any polynomial which both f and g divide.

LCM(x2y, xy?) = x2y?

@ f,g€ K[x1,...,Xn]

@ f= cff‘1 . fAr g = c’gf1 ---gsbs factorizations into distinct
irreducible polynomials

@ for1 < i <, f;is a constant multiple of g; and for all /,j > I,
fi is not a constant multiple of g;

o LCM(f, g) = (@b grax@blghur. .. g o g
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Least Common Multiple

@ The intersection I N J of two principal ideals
I,J C k[x1,...,Xn] is a principal ideal.

Q Ifl=(f),J=(g) andIndJ = (h), then

h = LCM(f, g).
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Least Common Multiple

@ The intersection I N J of two principal ideals
I,J C k[x1,...,Xn] is a principal ideal.

Q Ifl=(f),J=(g) andIndJ = (h), then

h=LCM(f,g).
Algorithm for computing the least common multiple of two
polynomials:
(* ] f,g 6 k[X‘l,,Xn]

@ compute (f) N (g)
@ any generator of it is LCM(f, g)
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Greatest Common Divisor

Definition
Let f,g € k[x1,...,Xxn]. Then h € k[xq,...,Xp] is called a
greatest common divisor of f and g, and denoted
h = GCD(f, g), if
@ hdivides fand g.
@ If pis any polynomial which divides both f and g, then p
divides h.
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Greatest Common Divisor

Definition
Let f,g € k[x1,...,Xxn]. Then h € k[xq,...,Xp] is called a
greatest common divisor of f and g, and denoted

h = GCD(f, g), if

@ hdivides fand g.

@ If pis any polynomial which divides both f and g, then p
divides h.

Proposition

Letf,g € K[xq,...,Xn]. Then
LCM(f,g) - GCD(f, g) = fg.
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Greatest Common Divisor

f
GCD(f. ) = LCM?f 9)
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Greatest Common Divisor

f
GCD(f. ) = LCM?f 9)

Algorithm for computing the greatest common divisor:
@ compute LCM(f, g)
@ divide it into fg by using the division algorithm
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Greatest Common Divisor

f
GCD(f,g) = ¢ CM? g

Algorithm for computing the greatest common divisor:
@ compute LCM(f, g)
@ divide it into fg by using the division algorithm

Recall that f4 is the polynomial that satisfies (feq) = /().
Last time we stated:
y f
red — .
GCD(f,ax e ,8‘9—);

Now we have an algorithm for computing f.o4.
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Intersections of ldeals

If | and J are ideals in k[xq, ..., xn], thenV(INJ) =V () UV(J).
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Intersections of ldeals

If | and J are ideals in k[xq, ..., xn], thenV(INJ) =V () UV(J).

@ the intersection of two ideals corresponds to the same
variety as the product

@ why bother with the intersection?
@ the product of radical ideals need not be a radical ideal
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Intersections of ldeals

If | and J are ideals in k[xq, ..., xn], thenV(INJ) =V () UV(J).

@ the intersection of two ideals corresponds to the same
variety as the product

@ why bother with the intersection?
@ the product of radical ideals need not be a radical ideal

Proposition

If I, J are any ideals, then

Vind =VInvJ.
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Zariski closure and
guotients of ideals




Zariski closure

For S C k", define
I(S)={f e Kk[xq,...,xn] : f(a) =0forall ae S}.

This set is an ideal.
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Zariski closure

For S C k", define

I(S) = {f € k[x1,...,xn] : f(a) = Oforall ac S}.

This set is an ideal.

Proposition

If S C k", the affine variety V(I(S)) is the smallest variety that
contains S.
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Zariski closure

For S C k", define
I(S)={f e Kk[xq,...,xn] : f(a) =0forall ae S}.

This set is an ideal.

Proposition

If S C k", the affine variety V(I(S)) is the smallest variety that
contains S.

Definition
The Zariski closure of a subset of affine space is the smallest

affine algebraic variety containing the set. If S C k", the Zariski
closure of Sis denoted S and is equal to V(I(S)).
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Zariski closure

For S C k", define
I(S)={f e Kk[xq,...,xn] : f(a) =0forall ae S}.

This set is an ideal.

Proposition

If S C k", the affine variety V(I(S)) is the smallest variety that
contains S.

Definition
The Zariski closure of a subset of affine space is the smallest

affine algebraic variety containing the set. If S C k", the Zariski
closure of Sis denoted S and is equal to V(I(S)).

Quiz: Let S be the x-axis without the point (0, 0) inside R?.
What is the Zariski closure of S?
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Zariski closure

Claim: I(S) = I(S)
@ SCS = I(S) CI(S)
o fcI(S)implies S C V(f). Since S is the smallest variety
containing S, we have S C S C V(7). Finally

f € I(V(f)) C I(S).
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Zariski closure

Theorem
Let k be an algebraically closed field. Suppose
V =V(f,...,fs) C k" and let 7, : k" — k"' be projection onto

the last n — | components. If I, is the Ith elimination ideal
= (fi,...,fs) NK[X;11,...,Xn], then V() is the Zariski closure
of m(V).
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Conclusion

Today:
@ Three ideal operations: Sums, products, intersections
@ Generating sets of the ideals obtained by these operations

@ Geometric operations corresponding to the algebraic
operations

@ Zariski closure

@ Finished the proof of the Closure Theorem
Next time:

@ Quotients of ideals

@ Irreducible varieties and prime ideals

@ Decomposition of a variety into irreducibles
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