Lecture 8

Where to find the material:

Because of the midterm exam this is a short 30min

lecture on Jacobians. e Adams_and_Essex. 12.6. See "materials" for a copy of
these sections.

e See also the change of variables/Jacobian. Guichard
15.7. (see future lectures on changes of variabes in

o We looked at the derivative of functions f: R -> R, f: R->R"2 And the N
double and triple integrals).

gradient vector of functions f : R*2 -> R. These can be though of as linear
transformations (by matrix multiplication). We are talking here about
these derivatives once evaluated at a given point. Instead of thinking of
f'(a) as being a number we can think of it as a linear transformation
(function) from R to R given by L(x) = f'(a)x. Similarly for f : R*2 -> R we
have L(x,y) = [ f _x(a) f_y(b) ] [x, y]*T. Here T denotes transpose. So the
previous expression is just a row times a column. The formulas give the
standard equations for the tangent plane and tangent line if the origin is
shifted to the point in question. eg. L(x) - f(a) = f'(a)(x-a).

e For a function F : R*n -> R*m, the derivative is a linear transformation
from R™n to R*m, and is thus a m x n matrix. This is called the Jacobian
matrix and is denoted by J_F or D(F). There are other common notations.
See for
example https://en.wikipedia.org/wiki/Jacobian matrix and determinant
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https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

What is a derivative?

Goal: Come up with the definition of the derivative of
a function f: R™ — R". In vector calculus this if
usually refered to as the Jacobian

Firect, let's look at the cases we know about with
some new notation

(1) f:R - R
% > £x)

@ FRoR2 ( befory

x> £} = | Tl
['Pg ?‘)]

(3) f:R* > R (bf‘f‘we 'F(X,j) )

F) =< <06 9l )

/A\= (J S 7\] 25 Ma‘!V‘/X

B ! X, +3 2+
/d\ // iz] — [ ! i -2)(3]
ﬁ’(|+o +S_K3
7’/’11;4[{ oF A o a lmer 157
A IR'? ~—3 I@Q

X X
x';{ — A 2 Xa
’rg Yj

( Wu/'fl'/‘//(:a%/aft éj A )

X
Wnte  Xs [xl

X3

Lecture 8 Page 2



Familiar derivatives in terms of matrices.
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The Jacobian V'ﬂ
Answer: The linearization of the function.
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What's next
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