Lecture 8

Because of the midterm exam this is a short 30 min lecture on Jacobians.

- We looked at the derivative of functions $f: R->R, f: R->R^{\wedge} 2$ And the gradient vector of functions $f: R^{\wedge} 2>R$. These can be though of as linear transformations (by matrix multiplication). We are talking here about these derivatives once evaluated at a given point. Instead of thinking of $f^{\prime}(a)$ as being a number we can think of it as a linear transformation (function) from R to R given by $L(x)=f^{\prime}(a) x$. Similarly for $f: R^{\wedge} 2->R$ we have $L(x, y)=\left[f_{-} x(a) f_{-} y(b)\right][x, y]^{\wedge} T$. Here T denotes transpose. So the previous expression is just a row times a column. The formulas give the standard equations for the tangent plane and tangent line if the origin is shifted to the point in question. eg. $L(x)-f(a)=f^{\prime}(a)(x-a)$.
- For a function $F: R^{\wedge} n \rightarrow R^{\wedge} m$, the derivative is a linear transformation from $R^{\wedge} n$ to $R^{\wedge} m$, and is thus a $m \times n$ matrix. This is called the Jacobian matrix and is denoted by J_F or D(F). There are other common notations. See for
example https://en.wikipedia.org/wiki/Jacobian_matrix_and determinant

Where to find the material:

- Adams_and_Essex. 12.6. See "materials" for a copy of these sections.
- See also the change of variables/Jacobian. Guichard 15.7. (see future lectures on changes of variabes in double and triple integrals).

What is a derivative?

Goal: Come up with the definition of the derivative of a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. In vector calculus this if usually refered to as the Jacobian

Firect, let's look at the cases we know about with some new notation
(1) $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
x \mapsto f(x)
$$

(2) $f: \mathbb{R} \rightarrow \mathbb{R}^{2} \quad($ before $\vec{r}(t)=\langle x(t), y(t)\rangle)$

$$
x \rightarrow f(x)=\left[\begin{array}{l}
f_{1}(x) \\
f_{2}(x)
\end{array}\right]
$$

(3) $f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad($ before $f(x, y))$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \longmapsto f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)
$$

"
Recall"

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 3 & 2 \\
4 & 0 & 5
\end{array}\right] \quad 2 \times 3 \text { matrix } \\
& A\left[\begin{array}{l}
l_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+3 x_{2}+2 x_{3} \\
4 x_{1}+0+5 x_{3}
\end{array}\right]
\end{aligned}
$$

Think of A as a linear maps

$$
\begin{aligned}
A: \mathbb{R}^{3} & \rightarrow \mathbb{R}^{2} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & \longrightarrow A\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

$$
\text { (multiplication by } A \text {) }
$$

write $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$

Familiar derivatives in terms of matrices.

The Jacobian

Answer: The linearization of the function.

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Then $J_{f}=\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad$ (linear map

Notation $x \in \mathbb{R}^{n}, x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$

$$
\text { write } f(x)=\left[\begin{array}{c}
f_{1}(x) \\
\vdots \\
f_{m}(x)
\end{array}\right]
$$

Think: $f_{1}(x): \mathbb{R}^{m} \rightarrow \mathbb{R}$

$$
\nabla f_{1}(x)=\left[\begin{array}{lll}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}}
\end{array}\right]
$$

Definition: The Jacobian of f at x_{0}

$$
J_{f}\left(x_{0}\right)=\left[\begin{array}{lll}
\frac{\partial f_{1}\left(x_{0}\right)}{\partial x_{1}} \frac{\partial f_{1}}{\partial x_{2}}\left(x_{0}\right) \cdot & \cdots & \frac{\partial f_{1}\left(x_{0}\right)}{\partial x_{n}} \\
\vdots \\
\frac{\partial f_{m}\left(x_{0}\right)}{\partial x_{1}} \frac{\partial f_{m}\left(x_{0}\right)}{\partial x_{2}} & \cdots & \frac{\partial f_{m}\left(x_{0}\right)}{\partial x_{n}}
\end{array}\right]
$$

Note, if $a=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$ Then If($\left(x_{0}\right)$
So $J: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Note the chain rule still works the same way, and in fact is just matrix multi plication (we do not discuss)

Example
Let

$$
\begin{aligned}
& f(x, y)=x\left(1+y^{2}\right)-1 \quad\left(\begin{array}{c}
\text { use } \\
\text { ate pe } \\
\text { also }
\end{array}\right) \\
& g(x, y)=y\left(1+x^{2}\right)-2
\end{aligned}
$$

Let $\vec{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $F(\vec{x})=\left[\begin{array}{l}f(\vec{x}) \\ g(\vec{x})\end{array}\right]$

$$
\begin{aligned}
& F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}=\left[\begin{array}{l}
x\left(1+y^{2}\right)-1 \\
y\left(1+x^{2}\right)-2
\end{array}\right] \\
& J F= {\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right]_{=\nabla g} } \\
&= {\left[\begin{array}{cc}
1+y^{2} & 2 x y \\
2 x y & 1+x^{2}
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } P_{0}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& \begin{aligned}
J_{F}\left(P_{0}\right) & =\left[\begin{array}{ll}
5 & 4 \\
4 & \\
\hline
\end{array}\right] \\
J_{F}\left(P_{0}\right): & \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{ll}
5 & 4 \\
4 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } \\
& {\left[\begin{array}{l}
5 x+4 y \\
4 x+2 y
\end{array}\right] \in \mathbb{R}^{2} }
\end{aligned}
\end{aligned}
$$

What's next
We will see two applications
(1) Newton's method (self-study
(2) Change of variable in soon ing integration

