Lecture 9 - part 1

Topic: Newton's method

- Newton's method is a numerical method for solving (systems of) equations.
- Let's first look at one equation in one variable. We want to solve $f(x)=0$. That is, we want to find where the graphs crosses the x-axis. The idea of the method is to guess an initial point $x_{-} 0$ (approximate solution). Approximate $f(x)$ at $x_{-} 0$ by its tangent line $y=f\left(x_{-} 0\right)+f^{\prime}\left(x_{-} 0\right)\left(x_{-} x_{-} 0\right)$. We can find where this tangent line crosses the x -axis. Putting $\mathrm{y}=0$ and solving for x gives $\mathrm{x} _1=\mathrm{x}=\mathrm{x}$ _ $0-f\left(x _0\right) / f^{\prime}\left(x _0\right)$ which we hope is a better approximation to $f(x)=0$. Iterate this procedure, with the general expression $x_{_}\{i+1\}=x_{-} i-f\left(x_{-}\right) / f^{\prime}\left(x_{-} i\right)$.
- For many example this algorithm works efficiently. In general there is a great deal to be said to investigate the subtitles of such numerical methods. Aalto offers many courses related to computational mathematics and numerical analysis.
- Now let us look at the case of n -equations in n unknowns. Let $\mathrm{n}=2$ just for easy of writing, but there is no difference for larger numbers. We want to solve $f(x, y)=0$ and $g(x, y)=0$. Put these together as a column vector. Let $F=$ $[f g]^{\wedge} T$ (where T denoted transpose). Let $z=[x y]^{\wedge} T$. So the system of equations is now written $F(z)=0$. The analogue to the tangent line or plane is $L(z)=F\left(z_{-} 0\right)+J _F\left(z_{-} 0\right)\left(z-z_{-}\right)$. Letting $L=0$ and solving for z gives $z_{-} 1=z=$ $z_{-} 0-J _\{F\}^{\wedge}(-1)\left(z_{-} 0\right) F\left(z_{-} 0\right)$. Here the (-1) means matrix inverse.
- Showed an example of implementing this on Maple. The code and output can be found in "materials".

Where to find this material

- Adams and Essex. 13.7 (see "materials" for a copy of this section.)

Newton's method

This is a numerical method for finding zeros of a function.

STEPS
(1) choose an initial guess x_{0}
(2) draw the tangent line
(3) x_{1} is where this tangent intersects
(4) Repeat. x_{2}, x_{3}, \ldots

Formula:
Tangent line at x_{0} is $y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ Intercept is when $y=0$, so

$$
0=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Solving for x gives as long as $f^{\prime}\left(x_{0}\right) \neq 0$ $x=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$ So the next approximation, x_{1}, is

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Repeating this:

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

The iterative formula is

$$
x_{n+1}=x_{n}-\underbrace{f\left(x_{n}\right)}_{f^{\prime}\left(x_{n}\right)}
$$

Newton's methos - 2 variables
We deal the case of a function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
Let $F(x, y)=\left[\begin{array}{ll}f(x, y) \\ g(x, y)\end{array}\right] \quad \begin{array}{ll}\text { solve } \\ F(x, y)=\left[\begin{array}{l}0 \\ 0\end{array}\right]\end{array}$
Initial guess $\vec{x}_{0}=\left[\begin{array}{c}x_{0} \\ y_{0}\end{array}\right]$
To get the next iterate we solve

$$
\vec{y}-F\left(\vec{x}_{0}\right)=J_{F}\left(\vec{x}_{0}\right)\left(\vec{x}-\vec{x}_{0}\right)
$$

for \vec{x} when $\vec{y}=\overrightarrow{0}$

$$
-F\left(\vec{x}_{0}\right)=J_{F}\left(\vec{x}_{0}\right)\left(\vec{x}-\vec{x}_{0}\right)
$$

In components

$$
-\left[\begin{array}{l}
f\left(x_{0}, y_{0}\right) \\
g\left(x_{0}, y_{0}\right)
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) & \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \\
\frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right) & \frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right)
\end{array}\right]\left[\begin{array}{l}
x-x_{0} \\
y-y_{0}
\end{array}\right]
$$

As long as $J_{F}\left(x_{0}, y_{0}\right)$ is invertible,

$$
\left(\vec{x}-\vec{x}_{0}\right)=-J_{F}^{-1}\left(x_{0}, y_{0}\right) \vec{F}\left(\vec{x}_{0}\right)
$$

$$
\Rightarrow \quad \vec{x}_{1}=\vec{x}_{0}-J_{F}^{-1}\left(x_{0}, y_{0}\right) \vec{F}\left(\overrightarrow{x_{0}}\right)
$$

OR $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]-J_{F}^{-1}\left(x_{0}, y_{0}\right)\left[\begin{array}{l}f\left(x_{0}, y_{0}\right) \\ g\left(x_{0}, y_{0}\right)\end{array}\right]$

This all works in any climension: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\begin{array}{cccc}
x_{n+1}= & x_{n}-J_{F}\left(x_{n}, y_{n}\right) F\left(x_{n}\right) \\
\vdots & 0 & 1 & 1 \\
\mathbb{R}^{n} & \mathbb{R}^{n} & n \times n \text { matrix } & \mathbb{R}^{n}
\end{array}
$$

Newton's method example
(1) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x^{2}-e^{x}+\sin (x)$

Find solutions to $f(x)=0$
(See Maple code and PDF on My Courses)
(2) $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, F(x, y)=\left[\begin{array}{l}x\left(1+y^{2}\right)-1 \\ y\left(1+x^{2}\right)-2\end{array}\right]$

Find solutions to $F(x, y)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
That is, find solutions to

$$
\left\{\begin{array}{l}
x\left(1+y^{2}\right)-1=0 \\
y\left(1+x^{2}-2\right)=0
\end{array}\right.
$$

Think of this as the intersection of 3 surfaces

$$
z=x\left(1+y^{2}\right)-1=y\left(1+x^{2}\right)-2=0
$$

(1)

(2)

