Lecture 9 - part 1

. Where to find this material
Topic: Newton's method

e Adams and Essex. 13.7 (see "materials" for a copy of this section.)

¢ Newton's method is a numerical method for solving (systems of) equations.

e Let's first look at one equation in one variable. We want to solve f(x) = 0. That
is, we want to find where the graphs crosses the x-axis. The idea of the
method is to guess an initial point x_0 (approximate solution). Approximate
f(x) at x_O by its tangent line y = f(x_0) + f'(x_0)(x-x_0). We can find where this
tangent line crosses the x-axis. Putting y =0 and solving for x gives x_1 =x=x_
0 - f(x_0)/f'(x_0) which we hope is a better approximation to f(x) = 0. lterate
this procedure, with the general expression x_{i+1} = x_i - f(x_i)/f'(x_i).

¢ For many example this algorithm works efficiently. In general there is a great
deal to be said to investigate the subtitles of such numerical methods. Aalto
offers many courses related to computational mathematics and numerical
analysis.

* Now let us look at the case of n-equations in n unknowns. Let n =2 just for
easy of writing, but there is no difference for larger numbers. We want to
solve f(x,y) = 0 and g(x,y) = 0. Put these together as a column vector. Let F =
[f g]*T (where T denoted transpose). Let z = [x y]*T. So the system of
equations is now written F(z) = 0. The analogue to the tangent line or plane is
L(z) =F(z_0) +J_F(z_0) (z - z_0). Letting L= 0 and solving for zgivesz 1=z =
z_0-J_{F}*(-1)(z_0) F(z_0). Here the (-1) means matrix inverse.

¢ Showed an example of implementing this on Maple. The code and output can
be found in "materials".
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Newton's method

This is a numerical method for finding zeros of a function.

Selve { Y=o

v

STEPS

@) choose an initil 9(/&:5 X

@ clraw 1’,’1’2 'fﬂvljeml ]Mﬁ
@ X, s where Hus Favaeut (ntessects
the X X (0U/‘ VIQWGV’ffOXIMa'f‘/OV))

@ Repeat - Xa, X3, -

FO/Mu/a v

Ta""?cw{‘ lve ot Xy w J = F{XJ),{_‘PI(XD)(X')%)
fM{e/‘Cef'{' I L/A@'tﬂ:oz 3o /

o =10(>(a)+1(\ (Xo)(x')(a)
X = Xog = ﬂﬁl}

aj'/owj a5 ) #0 w-{”h’o)
5\-0 ‘f’{'le VlEx'I' G/IIA/DX/MG'{'/OVI , Xy, I§

Solumg Br « 9 1ves

Xl: ><o -~ 'p{K“B

'F\'(Vo)

‘{‘ T X = X, - "O{KIB
ereq g +his =X ey

r

The i teratwr Formyla 15

NEWTON'S METHOD

F(Xn)

~——

£/ (xn)

Xne = Xy =

Lecture 9.1 Page 2



Newton's methos - 2 variables

We deal the case of a function F: R? — R?
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Newton's method example
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