Lecture 9 - part 2

Topics: Double integrals and polar coordinates

- Defined the double integral using Riemann sums.
- Using intuition from slicing volumes in different ways we understood how to compute the double integral in terms of iterated integrals. This was formalized in Fubini's Theorem.
- Learned how to integrate over general (nonrectangular) regions.
- Did examples of switching the order of integration. In one example we saw that one order of integration was impossible to calculate while the other order was easy.
- Introduced polar coordinates. Showed geometrically that $d \Lambda=r d r d$ theta. (will cover in the next lecture)

Where to find this material

- Adams and Essex 14.1, 14.2, 14.4
- Corral, 3.1, 3.2, 3.5
- Guichard, 15.1, 15.2, 15.7 (check out the beautiful picture in exercise 15.1.30)
- Active Calculus. 11.1-11.3, 11.5

height above (x, y)
of subrectangles goes to inifinity and the size goes to zero.

Double integral (definition)

Theorem: If $f(x, y)$ is continuous on R then the limit exists and so the double integral is defined

In fact the integral can be defined for much more general types of functions (we do not discuss these topics).

How to compute?

Note that in the textbooks you may see

$$
\begin{aligned}
& \Delta x=\frac{b-a}{M}, \Delta y=\frac{d-c}{N} \\
& \Delta A=\Delta x \Delta y \\
& \iint_{R} f(x, y) d A \\
&=\lim _{\substack{N \rightarrow \infty \\
M \rightarrow \infty}} \sum_{i=1}^{M} \sum_{j=1}^{N} f\left(x_{i}, y_{j}\right) \Delta A
\end{aligned}
$$

Both these definitions are only given here at the intuitive level.

Since we are not proving things, it does not matter which definition we use. A rigorous treatment of these definitons and theorems can be found in books on real analysis. See also the course on metric spaces for foundations needed for such topics.

Let $A(x)$ be the cross-sectional area at position x.
Then $A_{i}=A\left(x_{i}\right)$
Volump of the i^{+4} slice $\approx A\left(x_{i}\right) \Delta x_{i}$

$$
\begin{aligned}
\text { Volume } & =\lim _{\text {\#sices } \rightarrow \infty} \sum_{i=1}^{\text {\#slices }} A\left(x_{i}\right) \Delta x_{i} \\
& =\int_{a}^{b} A(x) d x
\end{aligned}
$$

$$
\text { Volume }=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x
$$

Fubini's Theorem: If $f(x, y)$ is continuous on R then

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{a}^{b_{1}^{\prime}} \int_{c}^{d} f(x, y) d y d x \\
& =\int_{c}^{d} \int_{a}^{d} f(y, x) d x d y
\end{aligned}
$$

Examples
(1) Compute the double integral of $f(x, y)=x^{2} y$ over $[1,2] \times[-1,3]$

$$
\begin{aligned}
& \iint_{R} x^{2} y d A=\int_{1}^{2}!\int_{-1}^{3} x^{2} y d y_{!}^{!} d x \\
&=\int_{1}^{2}\left(x^{2} \frac{y^{2}}{2} \left\lvert\, \begin{array}{l}
y=3 \\
y=-1
\end{array}\right.\right) d x \\
&=\int_{1}^{2} x^{2}\left(\frac{9}{2}-\frac{1}{2}\right) d x \\
& \text { Hw } \\
& \text { Same answer }=\int_{1}^{2} \frac{4 x^{2} d x=\left.\frac{4}{3} x^{3}\right|_{1} ^{2}}{11}(x)=\frac{28}{3}
\end{aligned}
$$

(2) Find the volume of the prism bounded by the 3 coodinate planes and the plane $z=1-x-y$.
${ }^{\star} x y$-plane, $x z$-plane, $y z$-plane

Calculate

$$
\begin{aligned}
R: & 0 \leqslant x \leqslant 1 \quad \text { line } \\
& 0 \leqslant y \leqslant(1-x) \\
\text { Volume }= & \iint_{R}(1-x-y) d A \\
= & \int_{0}^{1} \int_{0}^{1-x}(1-x-y) d y d x
\end{aligned}
$$

Rus a Region that is not a

Calculation from previous example

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1-x} 1-x-y d y d x & =\int_{0}^{1}(1-x) y-\left.\frac{1}{2} y^{2}\right|_{y=0} ^{y=1-x} d x \\
& =\int_{0}^{1} \frac{\left[(1-x)(1-x)-\frac{1}{2}(1-x)^{2}\right]-[0]}{}=\frac{1}{2} \int_{0}^{1}(1-x)^{2} d x \\
& =\left.\frac{1}{2}\left(-\frac{1}{3}\right)(1-x)^{3}\right|_{0} ^{1} \\
& =\frac{-1}{6}(0-1) \\
& =\frac{1}{6}
\end{aligned}
$$

Non-rectanglular regions in general

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) d y d x
$$

Example of switching the order of integration:
Let R be the triangle formed by the y-axis, the line $y=1$ and the line $\mathrm{y}=\mathrm{x}$. Evaluate $\iint_{R} \frac{\sin (y)}{y} \mathrm{~d} A$

Note: $\int \frac{\sin (y)}{y} d y$ can not be expressed in terms of elementary functions
(A) slice vertically: $\iint_{R} f d A=\int_{0}^{1} \int_{x}^{1} \frac{\sin (y)}{y} d y d x$
(B) slice horizontally: R : $0 \leqslant y \leqslant 1$ $0 \leqslant x \leqslant y$
$\int_{0}^{1} \int_{0}^{y} \frac{\sin (y)}{y} d x d y$ line $y=x$ $\Leftrightarrow x=y$
$=\left.\int_{0}^{1} \frac{\sin y}{y} x\right|_{x=0} ^{x=y} d y=\int_{0}^{1} \frac{\sin (y)}{x} \cdot y d y$ $=-\cos (1)+1 \longleftrightarrow=\int_{n}^{1} \sin (y) d y \underset{\text { ears }}{\ddot{\ddot{~}}}$

$$
=-\cos (1)+1 \quad=\int_{0}^{1} \sin (y) d y \underset{\text { eary }}{\ddot{\circ}}
$$

Lecture 9.2 Page 9

