## Lecture 9 - part 2

### Topics: Double integrals and polar coordinates

- Defined the double integral using Riemann sums.
- Using intuition from slicing volumes in different ways
   we understood how to compute the double integral in terms of iterated integrals. This was formalized in Fubini's Theorem.
- Learned how to integrate over general (non-rectangular) regions.
- Did examples of switching the order of integration. In one example we saw that one order of integration was impossible to calculate while the other order was easy.
- Introduced polar coordinates. Showed geometrically that dA = r dr d theta. (will cover in the next lecture)

#### Where to find this material

- Adams and Essex 14.1, 14.2, 14.4
- Corral, 3.1, 3.2, 3.5
- Guichard, 15.1, 15.2, 15.7 (check out the beautiful picture in exercise 15.1.30)
- Active Calculus. 11.1 11.3, 11.5



Lecture 9.2 Page 2

| h | eigh | nt c | zbor | 1e ( | χ,υ |  |
|---|------|------|------|------|-----|--|
|   |      |      |      |      |     |  |

of subrectangles goes to inifinity and the size goes to zero.

Double integral (definiton)

| R=vectangle, P=partition of R into N                                                                           | Note that in the textbooks you may see                  |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| c n subrectangles of sizes                                                                                     |                                                         |
| $T: K \rightarrow IK  \Delta Ai, i=1, \dots N$                                                                 | $\Delta x = \frac{b-q}{M},  \Delta y = \frac{d-c}{N}$   |
| Definition of the double integral                                                                              | DA = DXAY                                               |
| N The column                                                                                                   | 59                                                      |
| $\iint f(x,y)  dA = \lim_{\ P\  \to 0} \sum f(x_i, y_i) \Delta A_i$                                            | $\int f(x,y) dA$                                        |
| R $i=1$                                                                                                        | R                                                       |
|                                                                                                                | MN                                                      |
| Theorem: If $f(x, y)$ is continuous on R then the limit                                                        | $= \lim_{x \to \infty} \sum f(x, y) \Delta A$           |
| exists and so the double integral is defined                                                                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$   |
| In fact the integral can be defined for much more general types of functions (we do not discuss these topics). |                                                         |
|                                                                                                                | Both these definitions are only given here at the       |
|                                                                                                                | intuitive level.                                        |
| How to compute?                                                                                                | Since we are not proving things, it does not matter     |
|                                                                                                                | which definition we use. A rigorous treatment of        |
|                                                                                                                | these definitons and theorems can be found in books     |
|                                                                                                                | on real analysis . See also the course on metric spaces |
|                                                                                                                | for foundations needed for such topics.                 |
|                                                                                                                |                                                         |



#### Examples



Lecture 9.2 Page 6

# Calculation from previous example





Lecture 9.2 Page 8

