Computational Algebraic Geometry

The Algebra-Geometry Dictionary

Kaie Kubjas

kaie.kubjas@aalto.fi
February 10, 2021

Overview

Last time:

- Three ideal operations: Sums, products, intersections
- Generating sets of the ideals obtained by these operations
- Geometric operations corresponding to the algebraic operations
- Zariski closure
- Finished the proof of the Closure Theorem

Today:

- Quotients of ideals
- Irreducible varieties and prime ideals
- Decomposition of a variety into irreducibles

Zariski closure and quotients of ideals

Zariski closure

Proposition

If $S \subseteq k^{n}$, the affine variety $\mathbb{V}(\mathbb{I}(S))$ is the smallest variety that contains S.

Definition

The Zariski closure of a subset of affine space is the smallest affine algebraic variety containing the set. If $S \subseteq k^{n}$, the Zariski closure of S is denoted \bar{S} and is equal to $\mathbb{V}(\mathbb{I}(S))$.

Zariski closure

Proposition

If $S \subseteq k^{n}$, the affine variety $\mathbb{V}(\mathbb{I}(S))$ is the smallest variety that contains S.

Definition

The Zariski closure of a subset of affine space is the smallest affine algebraic variety containing the set. If $S \subseteq k^{n}$, the Zariski closure of S is denoted \bar{S} and is equal to $\mathbb{V}(\mathbb{I}(S))$.

Recall the difference of two varieties need not be a variety:

- $K=\langle x z, y z\rangle, I=\langle z\rangle$
- $\mathbb{V}(K)-\mathbb{V}(I)$ is the z-axis with the origin moved
- the z-axis is the smallest variety containing $\mathbb{V}(K)-\mathbb{V}(I)$

Zariski closure

Proposition

If $S \subseteq k^{n}$, the affine variety $\mathbb{V}(\mathbb{I}(S))$ is the smallest variety that contains S.

Definition

The Zariski closure of a subset of affine space is the smallest affine algebraic variety containing the set. If $S \subseteq k^{n}$, the Zariski closure of S is denoted \bar{S} and is equal to $\mathbb{V}(\mathbb{I}(S))$.

Recall the difference of two varieties need not be a variety:

- $K=\langle x z, y z\rangle, I=\langle z\rangle$
- $\mathbb{V}(K)-\mathbb{V}(I)$ is the z-axis with the origin moved
- the z-axis is the smallest variety containing $\mathbb{V}(K)-\mathbb{V}(I)$

Proposition

If V and W are varieties with $V \subseteq W$, then $W=V \cup(\overline{W-V})$.

Ideal quotient

Definition

If I, J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $I: J$ is the set

$$
\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f g \in I \text { for all } g \in J\right\}
$$

and is called the ideal quotient (or colon ideal) of $/$ by J.

Ideal quotient

Definition

If I, J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $I: J$ is the set

$$
\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f g \in I \text { for all } g \in J\right\}
$$

and is called the ideal quotient (or colon ideal) of $/$ by J .

Example

$$
\begin{aligned}
\langle x z, y z\rangle:\langle z\rangle & =\{f \in k[x, y, z]: f z \in\langle x z, y z\rangle\} \\
& =\{f \in k[x, y, z]: f z=A x z+B y z\} \\
& =\{f \in k[x, y, z]: f=A x+B y\}=\langle x, y\rangle
\end{aligned}
$$

Ideal quotient

Definition

If I, J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $I: J$ is the set

$$
\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f g \in I \text { for all } g \in J\right\}
$$

and is called the ideal quotient (or colon ideal) of $/$ by J .

Example

$$
\begin{aligned}
\langle x z, y z\rangle:\langle z\rangle & =\{f \in k[x, y, z]: f z \in\langle x z, y z\rangle\} \\
& =\{f \in k[x, y, z]: f z=A x z+B y z\} \\
& =\{f \in k[x, y, z]: f=A x+B y\}=\langle x, y\rangle
\end{aligned}
$$

Proposition

If I, J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, then $I: J$ is an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ and $I: J$ contains I.

Ideal quotient

Theorem

Let I and J be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
\mathbb{V}(I: J) \supseteq \overline{\mathbb{V}}(I)-\mathbb{V}(J)
$$

If, in addition if k is algebraically closed and I is a radical ideal, then

$$
\mathbb{V}(I: J)=\overline{\mathbb{V}(I)-\mathbb{V}(J)}
$$

Example

Let $I=\left\langle x y^{2}\right\rangle$ and $J=\langle y\rangle$. What is $I: J$? What is $\overline{\mathbb{V}(I)-\mathbb{V}(J)}$?

Ideal quotient

Theorem

Let I and J be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
\mathbb{V}(I: J) \supseteq \overline{\mathbb{V}(I)-\mathbb{V}(J)}
$$

If, in addition if k is algebraically closed and I is a radical ideal, then

$$
\mathbb{V}(I: J)=\overline{\mathbb{V}(I)-\mathbb{V}(J)}
$$

Example

Let $I=\left\langle x y^{2}\right\rangle$ and $J=\langle y\rangle$. What is $I: J$? What is $\overline{\mathbb{V}(I)-\mathbb{V}(J)}$? Then $I: J=\langle x y\rangle, \mathbb{V}(I: J)$ is the union of x-axis and y-axis and $\mathbb{V}(I)-\mathbb{V}(J)$ is the y-axis.

Proof: We will show that $I: S \subseteq I(Y(I)-\mathbb{V}(J))$. Let $f \in I: S$. Let $x \in \mathbb{V}(I)-\mathbb{V}(J)$. Then $f \circ g \in I$ for all $g \in S$. Since $x \in V(I)$, we have $f(x) \cdot g(x)=0$ don all $g \in S$. Since $x \notin \mathbb{V}(J)$, then $\exists g \in S$ st. $g(x) \neq 0$. Hence $f(x)=0$. Hence $f \in I(\mathbb{V}(I)-\mathbb{V}(J))$. Thus $I ; \rho \subseteq I(W(I)-V(\rho))$ and $\mathbb{V}(I: J) \supseteq$ $\mathbb{V}(I(\mathbb{V}(I)-V(J)))$.

Ideal quotient

Corollary

Let V and W be varieties in k^{n}. Then

$$
\mathbb{I}(V): \mathbb{I}(W)=\mathbb{I}(V-W)
$$

Example

- Let V be the union of x-axis and y-axis.
- Let W be the x-axis.
- Then $\mathbb{I}(V)=\langle x y\rangle, \mathbb{I}(W)=\langle y\rangle$ and $\mathbb{I}(V): \mathbb{I}(W)=\langle x\rangle$.
- $V-W$ is the y-axis without the point $(0,0)$.
- $\mathbb{I}(V-W)=\langle x\rangle$

Ideal quotient

Proposition

Let I, J, and K be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$. Then:
(1) $I: k\left[x_{1}, \ldots, x_{n}\right]=I$.
(2) $I J \subseteq K$ if and only if $I \subseteq K: J$.
(3) $J \subseteq I$ if and only if $I: J=k\left[x_{1}, \ldots, x_{n}\right]$.

Ideal quotient

Proposition

Let I, J, and K be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$. Then:
(1) $I: k\left[x_{1}, \ldots, x_{n}\right]=I$.
(2) $I J \subseteq K$ if and only if $I \subseteq K: J$.
(3) $J \subseteq I$ if and only if $I: J=k\left[x_{1}, \ldots, x_{n}\right]$.

Proposition

Let I, I_{i}, J, J_{i}, and K be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ for $1 \leq i \leq r$. Then

$$
\begin{aligned}
\left(\cap_{i=1}^{r} I_{i}\right): J & =\cap_{i=1}^{r}\left(I_{i}: J\right) \\
I:\left(\sum_{i=1}^{r} J_{i}\right) & =\cap_{i=1}^{r}\left(I: J_{i}\right) \\
(I: J): K & =I: J K
\end{aligned}
$$

Ideal quotient

Theorem

Let I be an ideal and g an element of $k\left[x_{1}, \ldots, x_{n}\right]$. If $\left\{h_{1}, \ldots, h_{p}\right\}$ is a basis of the ideal $I \cap\langle g\rangle$, then $\left\{h_{1} / g, \ldots, h_{p} / g\right\}$ is a basis of $I:\langle g\rangle$.

Ideal quotient

Theorem

Let I be an ideal and g an element of $k\left[x_{1}, \ldots, x_{n}\right]$. If $\left\{h_{1}, \ldots, h_{p}\right\}$ is a basis of the ideal $I \cap\langle g\rangle$, then $\left\{h_{1} / g, \ldots, h_{p} / g\right\}$ is a basis of $I:\langle g\rangle$.

An algorithm for computing a basis of an ideal quotient:

- $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle=\left\langle g_{1}\right\rangle+\cdots+\left\langle g_{s}\right\rangle$

Ideal quotient

Theorem

Let I be an ideal and g an element of $k\left[x_{1}, \ldots, x_{n}\right]$. If $\left\{h_{1}, \ldots, h_{p}\right\}$ is a basis of the ideal $I \cap\langle g\rangle$, then $\left\{h_{1} / g, \ldots, h_{p} / g\right\}$ is a basis of $I:\langle g\rangle$.

An algorithm for computing a basis of an ideal quotient:

- $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle=\left\langle g_{1}\right\rangle+\cdots+\left\langle g_{s}\right\rangle$
- compute a basis for $I:\left\langle g_{i}\right\rangle$

Ideal quotient

Theorem

Let I be an ideal and g an element of $k\left[x_{1}, \ldots, x_{n}\right]$. If $\left\{h_{1}, \ldots, h_{p}\right\}$ is a basis of the ideal $I \cap\langle g\rangle$, then $\left\{h_{1} / g, \ldots, h_{p} / g\right\}$ is a basis of $I:\langle g\rangle$.

An algorithm for computing a basis of an ideal quotient:

- $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle=\left\langle g_{1}\right\rangle+\cdots+\left\langle g_{s}\right\rangle$
- compute a basis for $I:\left\langle g_{i}\right\rangle$
- compute a basis for $\left\langle f_{1}, \ldots, f_{r}\right\rangle \cap\left\langle g_{i}\right\rangle$

Ideal quotient

Theorem

Let I be an ideal and g an element of $k\left[x_{1}, \ldots, x_{n}\right]$. If $\left\{h_{1}, \ldots, h_{p}\right\}$ is a basis of the ideal $I \cap\langle g\rangle$, then $\left\{h_{1} / g, \ldots, h_{p} / g\right\}$ is a basis of $I:\langle g\rangle$.

An algorithm for computing a basis of an ideal quotient:

- $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle=\left\langle g_{1}\right\rangle+\cdots+\left\langle g_{s}\right\rangle$
- compute a basis for $I:\left\langle g_{i}\right\rangle$
- compute a basis for $\left\langle f_{1}, \ldots, f_{r}\right\rangle \cap\left\langle g_{i}\right\rangle$ by finding a Groebner basis of $\left\langle t f_{1}, \ldots, t f_{r},(1-t) g_{i}\right\rangle$ wrt a lex order in which t precedes all the x_{i}

Ideal quotient

Theorem

Let I be an ideal and g an element of $k\left[x_{1}, \ldots, x_{n}\right]$. If $\left\{h_{1}, \ldots, h_{p}\right\}$ is a basis of the ideal $I \cap\langle g\rangle$, then $\left\{h_{1} / g, \ldots, h_{p} / g\right\}$ is a basis of $I:\langle g\rangle$.

An algorithm for computing a basis of an ideal quotient:

- $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle=\left\langle g_{1}\right\rangle+\cdots+\left\langle g_{s}\right\rangle$
- compute a basis for $I:\left\langle g_{i}\right\rangle$
- compute a basis for $\left\langle f_{1}, \ldots, f_{r}\right\rangle \cap\left\langle g_{i}\right\rangle$ by finding a Groebner basis of $\left\langle t f_{1}, \ldots, t f_{r},(1-t) g_{i}\right\rangle$ wrt a lex order in which t precedes all the x_{i}
- use the division algorithm to get a basis for $1:\left\langle g_{i}\right\rangle$

Ideal quotient

Theorem

Let I be an ideal and g an element of $k\left[x_{1}, \ldots, x_{n}\right]$. If $\left\{h_{1}, \ldots, h_{p}\right\}$ is a basis of the ideal $I \cap\langle g\rangle$, then $\left\{h_{1} / g, \ldots, h_{p} / g\right\}$ is a basis of $I:\langle g\rangle$.

An algorithm for computing a basis of an ideal quotient:

- $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle=\left\langle g_{1}\right\rangle+\cdots+\left\langle g_{s}\right\rangle$
- compute a basis for $I:\left\langle g_{i}\right\rangle$
- compute a basis for $\left\langle f_{1}, \ldots, f_{r}\right\rangle \cap\left\langle g_{i}\right\rangle$ by finding a Groebner basis of $\left\langle t f_{1}, \ldots, t f_{r},(1-t) g_{i}\right\rangle$ wrt a lex order in which t precedes all the x_{i}
- use the division algorithm to get a basis for $1:\left\langle g_{i}\right\rangle$
- compute a basis of $I: J$ by applying the intersection algorithm $s-1$ times, computing first a basis for $I:\left\langle g_{1}, g_{2}\right\rangle=\left(I:\left\langle g_{1}\right\rangle\right) \cap\left(I:\left\langle g_{2}\right\rangle\right)$ etc

Irreducible varieties and prime ideals

Irreducible varieties

- Recall that the union of two varieties is a variety
- $\mathbb{V}(x z, y z)$ is the union of a plane and a line
- The line and the plane are more fundamental than $\mathbb{V}(x z, y z)$, since they are indecomposable

Irreducible varieties

- Recall that the union of two varieties is a variety
- $\mathbb{V}(x z, y z)$ is the union of a plane and a line
- The line and the plane are more fundamental than $\mathbb{V}(x z, y z)$, since they are indecomposable

Definition

An affine variety $V \subseteq k^{n}$ is irreducible if whenever V is written in the form $V=V_{1} \cup V_{2}$, where V_{1} and V_{2} are affine varieties, then either $V_{1}=V$ or $V_{2}=V$.

Irreducible varieties

- Recall that the union of two varieties is a variety
- $\mathbb{V}(x z, y z)$ is the union of a plane and a line
- The line and the plane are more fundamental than $\mathbb{V}(x z, y z)$, since they are indecomposable

Definition

An affine variety $V \subseteq k^{n}$ is irreducible if whenever V is written in the form $V=V_{1} \cup V_{2}$, where V_{1} and V_{2} are affine varieties, then either $V_{1}=V$ or $V_{2}=V$.

Example

$\mathbb{V}(x z, y z)$ is not an irreducible variety.

Irreducible varieties

- For the definition to be reasonable, a point, a line and a plane should be irreducible (homework).
- The twisted cubic $\mathbb{V}\left(y-x^{2}, z-x^{3}\right)$ is irreducible. How to prove this?
- When is an algebraic variety irreducible? The key is to consider the corresponding algebraic notion.

Irreducible varieties

- For the definition to be reasonable, a point, a line and a plane should be irreducible (homework).
- The twisted cubic $\mathbb{V}\left(y-x^{2}, z-x^{3}\right)$ is irreducible. How to prove this?
- When is an algebraic variety irreducible? The key is to consider the corresponding algebraic notion.

Definition

An ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is prime if whenever $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ and $f g \in I$, then either $f \in I$ or $g \in I$.

Irreducible varieties

- For the definition to be reasonable, a point, a line and a plane should be irreducible (homework).
- The twisted cubic $\mathbb{V}\left(y-x^{2}, z-x^{3}\right)$ is irreducible. How to prove this?
- When is an algebraic variety irreducible? The key is to consider the corresponding algebraic notion.

Definition

An ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is prime if whenever $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ and $f g \in I$, then either $f \in I$ or $g \in I$.

Proposition

Let $V \subseteq k^{n}$ be an affine variety. Then V is irreducible if and only if $\mathbb{I}(V)$ is a prime ideal.

Proof: " \Rightarrow " Assume that V is irreducible and let $f . g$ be such that $f \cdot g \in \mathbb{I}(V)$. Define $V_{1}=V \cap V(f)$ and $V_{2}=V \cap V(g)$. Then $f g \in \mathbb{I}(V)$ implies that $V=V_{1} \cup V_{2}$. Since V is irreducible, either $V=V_{1}$ or $V=V_{2}$. If $V=V_{1}=V \cap Y(f)$, which implies that f ravishes on V and hence $f \in I(V)$. Orluwin if $V=V_{2}$, similarly $g \in I(V)$.
" F " Assume that $I(V)$ is rime and let $V=V_{1} \cup V_{2}$. supper that $V \neq V_{1}$. We claim that $V=V_{2}$. Note $I(v) \subseteq \mathbb{I}\left(V_{1}\right)$ and $\bar{I}(v) \subseteq \mathbb{I}\left(V_{2}\right)$. Rich $f \in \mathbb{I}\left(V_{1}\right)-I(v)$. Let $g \in \mathbb{I}\left(V_{2}\right)$. Since $V=V_{1} \cup V_{2}$, then $f \cdot g \in \mathbb{I}(v)$. since $I(V)$ is pine, then either f on g lies in $I(V)$. since $f \in \mathbb{I}(V)$, we rest have that $g \in \mathbb{I}(V)$. This pores $I\left(V_{2}\right)=I(V)$. Hence $V_{2}=V$. Thun V is irreducible.

Irreducible varieties

Note that every prime ideal is radical.

Corollary

When k is algebraically closed, then functions I and V induce a one-to-one correspondence between irreducible varieties in k^{n} and prime ideals in $k\left[x_{1}, \ldots, x_{n}\right]$.

Irreducible varieties

Note that every prime ideal is radical.

Corollary

When k is algebraically closed, then functions I and V induce a one-to-one correspondence between irreducible varieties in k^{n} and prime ideals in $k\left[x_{1}, \ldots, x_{n}\right]$.

Example

The ideal of the twisted cubic is prime:

- suppose $f g \in \mathbb{I}(V)$
- $f\left(t, t^{2}, t^{3}\right) g\left(t, t^{2}, t^{3}\right)=0$ for all t
- $f\left(t, t^{2}, t^{3}\right)$ or $g\left(t, t^{2}, t^{3}\right)$ is the zero polynomial
- f or g lies in $\mathbb{I}(V)$
- $\mathbb{I}(V)$ is a prime ideal
- twisted cubic is an irreducible variety in \mathbb{R}^{3}

Irreducible varieties

The idea how we showed that the twisted cubic is an irreducible variety can be generalized:

Proposition

If k is an infinite field and $V \subseteq k^{n}$ is a variety defined parametrically

$$
\begin{gathered}
x_{1}=f_{1}\left(t_{1}, \ldots, t_{m}\right), \\
\vdots \\
x_{n}=f_{n}\left(t_{1}, \ldots, t_{m}\right),
\end{gathered}
$$

where f_{1}, \ldots, f_{n} are polynomials in $k\left[t_{1}, \ldots, t_{m}\right]$, then V is irreducible.

Irreducible varieties

Proposition

If k is an infinite field and $V \subseteq k^{n}$ is a variety defined by the rational parametrization

$$
\begin{aligned}
x_{1} & =\frac{f_{1}\left(t_{1}, \ldots, t_{m}\right)}{g_{1}\left(t_{1}, \ldots, t_{m}\right)}, \\
& \vdots \\
x_{n} & =\frac{f_{n}\left(t_{1}, \ldots, t_{m}\right)}{g_{n}\left(t_{1}, \ldots, t_{m}\right)}
\end{aligned}
$$

where $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n} \in k\left[t_{1}, \ldots, t_{m}\right]$, then V is irreducible.

Maximal ideals

- the simplest variety $\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}$
- parametrization $f_{i}\left(t_{1}, \ldots, t_{m}\right)=a_{i}$
- hence a point is irreducible
- Quiz: What is the ideal of the point? Is the ideal prime?

Maximal ideals

- the simplest variety $\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}$
- parametrization $f_{i}\left(t_{1}, \ldots, t_{m}\right)=a_{i}$
- hence a point is irreducible
- Quiz: What is the ideal of the point? Is the ideal prime?
- $\mathbb{I}\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$
- the ideal of a point is prime
- it is also maximal: the only ideal that strictly contains it is $k\left[x_{1}, \ldots, x_{n}\right]$

Maximal ideals

- the simplest variety $\left\{\left(a_{1}, \ldots, a_{n}\right)\right\}$
- parametrization $f_{i}\left(t_{1}, \ldots, t_{m}\right)=a_{i}$
- hence a point is irreducible
- Quiz: What is the ideal of the point? Is the ideal prime?
- $\mathbb{I}\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$
- the ideal of a point is prime
- it is also maximal: the only ideal that strictly contains it is $k\left[x_{1}, \ldots, x_{n}\right]$

Definition

An ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is said to be maximal if $I \neq k\left[x_{1}, \ldots, x_{n}\right]$ and any ideal J containing I is such that either $J=I$ or $J=k\left[x_{1}, \ldots, x_{n}\right]$.

Maximal ideals

Definition

If k is any field, an ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is called proper if I is not equal to $k\left[x_{1}, \ldots, x_{n}\right]$.

Maximal ideals

Definition

If k is any field, an ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is called proper if I is not equal to $k\left[x_{1}, \ldots, x_{n}\right]$.

Proposition

If k is any field, an ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ of the form

$$
I=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle,
$$

where $a_{1}, \ldots, a_{n} \in k$, is maximal.

Proof: Let I be an ideal strictly $f \in \mathcal{J}-I$. We an un the division algonithun b write $f=A_{n}\left(x_{1}-a_{n}\right)+\ldots+A_{n}\left(x_{n}-a_{n}\right)+b_{1}$ where b is a constant.

Since f $\mathcal{S}, x_{i}-a_{i} \in I \subseteq \mathcal{S} \quad \forall i \in\left\{1_{1, \ldots n\}}\right.$, then $b \in S$. Thun $\frac{1}{b} \cdot b=1 \in S$ and hence $S=t\left[x_{\left.n_{1}, \ldots, x_{n}\right] \text {. Thess } I \text { is }}\right.$ maximal.

Maximal ideals

Definition

If k is any field, an ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is called proper if I is not equal to $k\left[x_{1}, \ldots, x_{n}\right]$.

Proposition

If k is any field, an ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ of the form

$$
I=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle
$$

where $a_{1}, \ldots, a_{n} \in k$, is maximal.

- every point $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$ corresponds to the maximal ideal $\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$
- the converse does not hold if k is not algebraically closed
- $\left\langle x^{2}+1\right\rangle$ is maximal in $\mathbb{R}[x]$

Maximal ideals

Proposition

If k is any field, a maximal ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ is prime.

Proof: Let I be a max ideal and $f g \in I$. Assume that $f \notin I$. Consider the ideal $I+\langle f\rangle$. This ideal strictly contains I and hence it has to be equal to $k\left[x_{1}, \ldots, x_{n}\right]$. Hence $1=h+c \cdot f$, where $h \in I$ and $c \in k\left[x_{n 1}, x_{n}\right]$. Multiplying both sicks by g gives that $g=\underset{I}{h} \cdot \underline{\frac{h}{I}}+c \cdot \underbrace{f \cdot g}_{I} \in I$. Thus I is pine.

Maximal ideals

Proposition

If k is any field, a maximal ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ is prime.

Theorem

If k is an algebraically closed field, then every maximal ideal of $k\left[x_{1}, \ldots, x_{n}\right]$ is of the form $\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$ for some $a_{1}, \ldots, a_{n} \in k$.

Proof: Let I be wax ideal. Since $I \neq k\left[x_{11, \ldots}, x_{n}\right]$, then $V(I) \neq \varnothing$ by the Weak Nullstellensatz.

$$
\left\langle x_{n}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle
$$

Thus $I \subseteq\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$. Since I is max, the inclusion is in fact an equality.

Maximal ideals

Proposition

If k is any field, a maximal ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ is prime.

Theorem

If k is an algebraically closed field, then every maximal ideal of $k\left[x_{1}, \ldots, x_{n}\right]$ is of the form $\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$ for some $a_{1}, \ldots, a_{n} \in k$.

Corollary

If k is an algebraically closed field, then there is a one-to-one correspondence between points of k^{n} and maximal ideals of $k\left[x_{1}, \ldots, x_{n}\right]$.

Decomposition of a variety into irreducibles

Decomposition of a variety into irreducibles

Proposition (The Descending Chain Condition)

Any descending chain of varieties

$$
V_{1} \supseteq V_{2} \supseteq V_{3} \supseteq \cdots
$$

in k^{n} must stabilize. That is, there exists a positive integer N such that $V_{N}=V_{N+1}=\cdots$.

Decomposition of a variety into irreducibles

Proposition (The Descending Chain Condition)

Any descending chain of varieties

$$
V_{1} \supseteq V_{2} \supseteq V_{3} \supseteq \cdots
$$

in k^{n} must stabilize. That is, there exists a positive integer N such that $V_{N}=V_{N+1}=\cdots$.

Theorem

Let $V \subseteq k^{n}$ be an affine variety. Then V can be written as a finite union

$$
V=V_{1} \cup \cdots \cup V_{m},
$$

where each V_{i} is an irreducible variety.

Proof: Assume that V caver be written as a finite union of irreducible varieties. Then there exist affere varieties V_{1} and V_{1}^{\prime} s.t. $V=V_{1} \cup V_{1}^{\prime}$ and V_{1}^{*} cannot be written as a finite union of irreducible varietis. Similarly, we can write $V_{1}=V_{2}^{*} \cup V_{2}^{\prime}$ when V_{2} cannot be written as a feme union of ir varieties etc. There we get an infinite sequence

$$
V \supset V_{1}^{\prime} \supset V_{2} \supset \ldots
$$

This contradicts the DCC.

Decomposition of a variety into irreducibles

Example

$$
V=\mathbb{V}\left(x z-y^{2}, x^{3}-y z\right)
$$

Decomposition of a variety into irreducibles

Example

$$
V=\mathbb{V}\left(x z-y^{2}, x^{3}-y z\right)
$$

Decomposition of a variety into irreducibles

Example

$$
V=\mathbb{V}\left(x z-y^{2}, x^{3}-y z\right)
$$

- z-axis $\mathbb{V}(x, y)$ is contained in V

Decomposition of a variety into irreducibles

Example

$$
V=\mathbb{V}\left(x z-y^{2}, x^{3}-y z\right)
$$

- z-axis $\mathbb{V}(x, y)$ is contained in V
- what about $V-\mathbb{V}(x, y)$?

Decomposition of a variety into irreducibles

Example

$$
V=\mathbb{V}\left(x z-y^{2}, x^{3}-y z\right)
$$

- z-axis $\mathbb{V}(x, y)$ is contained in V
- what about $V-\mathbb{V}(x, y)$?
- consider $\left\langle x z-y^{2}, x^{3}-y z\right\rangle:\langle x, y\rangle$

Decomposition of a variety into irreducibles

Example

$$
V=\mathbb{V}\left(x z-y^{2}, x^{3}-y z\right)
$$

- z-axis $\mathbb{V}(x, y)$ is contained in V
- what about $V-\mathbb{V}(x, y)$?
- consider $\left\langle x z-y^{2}, x^{3}-y z\right\rangle:\langle x, y\rangle$
- $(I: x) \cap(I: y)$

Decomposition of a variety into irreducibles

Example

$$
V=\mathbb{V}\left(x z-y^{2}, x^{3}-y z\right)
$$

- z-axis $\mathbb{V}(x, y)$ is contained in V
- what about $V-\mathbb{V}(x, y)$?
- consider $\left\langle x z-y^{2}, x^{3}-y z\right\rangle:\langle x, y\rangle$
- $(I: x) \cap(I: y)$
- $I \cap\langle x\rangle=\left\langle x^{2} z-x y^{2}, x^{4}-x y z, x^{3} y-x z^{2}, x^{5}-x y^{3}\right\rangle$

Decomposition of a variety into irreducibles

Example

$$
V=\mathbb{V}\left(x z-y^{2}, x^{3}-y z\right)
$$

- z-axis $\mathbb{V}(x, y)$ is contained in V
- what about $V-\mathbb{V}(x, y)$?
- consider $\left\langle x z-y^{2}, x^{3}-y z\right\rangle:\langle x, y\rangle$
- $(I: x) \cap(I: y)$
- $I \cap\langle x\rangle=\left\langle x^{2} z-x y^{2}, x^{4}-x y z, x^{3} y-x z^{2}, x^{5}-x y^{3}\right\rangle$
- $1: x=\left\langle\frac{x^{2} z-x y^{2}}{x}, \frac{x^{4}-x y z}{x}, \frac{x^{3} y-x z^{2}}{x}\right\rangle=$

$$
\left\langle x z-y^{2}, x^{\frac{x}{3}}-y z, x^{2} y-z^{2}\right\rangle=I+\left\langle x^{2} y-z^{2}\right\rangle
$$

Decomposition of a variety into irreducibles

Example

$$
V=\mathbb{V}\left(x z-y^{2}, x^{3}-y z\right)
$$

- z-axis $\mathbb{V}(x, y)$ is contained in V
- what about $V-\mathbb{V}(x, y)$?
- consider $\left\langle x z-y^{2}, x^{3}-y z\right\rangle:\langle x, y\rangle$
- $(I: x) \cap(I: y)$
- $I \cap\langle x\rangle=\left\langle x^{2} z-x y^{2}, x^{4}-x y z, x^{3} y-x z^{2}, x^{5}-x y^{3}\right\rangle$
- $I: x=\left\langle\frac{x^{2} z-x y^{2}}{x}, \frac{x^{4}-x y z}{x}, \frac{x^{3} y-x z^{2}}{x}\right\rangle=$
$\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle=I+\left\langle x^{2} y-z^{2}\right\rangle$
- I: $y=I+\left\langle x^{2} y-z^{2}\right\rangle$

Decomposition of a variety into irreducibles

Example

$$
V=\mathbb{V}\left(x z-y^{2}, x^{3}-y z\right)
$$

- z-axis $\mathbb{V}(x, y)$ is contained in V
- what about $V-\mathbb{V}(x, y)$?
- consider $\left\langle x z-y^{2}, x^{3}-y z\right\rangle:\langle x, y\rangle$
- $(I: x) \cap(I: y)$
- $I \cap\langle x\rangle=\left\langle x^{2} z-x y^{2}, x^{4}-x y z, x^{3} y-x z^{2}, x^{5}-x y^{3}\right\rangle$
- $I: x=\left\langle\frac{x^{2} z-x y^{2}}{x}, \frac{x^{4}-x y z}{x}, \frac{x^{3} y-x z^{2}}{x}\right\rangle=$
$\left\langle x z-y^{2}, x^{\frac{x}{x}}-y z, x^{2} y-z^{2}\right\rangle=I+\left\langle x^{2} y-z^{2}\right\rangle$
- $I: y=I+\left\langle x^{2} y-z^{2}\right\rangle$
- I: $\langle x, y\rangle=\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$

Decomposition of a variety into irreducibles

Example

$$
V=\mathbb{V}\left(x z-y^{2}, x^{3}-y z\right)
$$

- z-axis $\mathbb{V}(x, y)$ is contained in V
- what about $V-\mathbb{V}(x, y)$?
- consider $\left\langle x z-y^{2}, x^{3}-y z\right\rangle:\langle x, y\rangle$
- $(I: x) \cap(I: y)$
- $I \cap\langle x\rangle=\left\langle x^{2} z-x y^{2}, x^{4}-x y z, x^{3} y-x z^{2}, x^{5}-x y^{3}\right\rangle$
- $1: x=\left\langle\frac{x^{2} z-x y^{2}}{x}, \frac{x^{4}-x y z}{x}, \frac{x^{3} y-x z^{2}}{x}\right\rangle=$
$\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle=I+\left\langle x^{2} y-z^{2}\right\rangle$
- $I: y=I+\left\langle x^{2} y-z^{2}\right\rangle$
- $I:\langle x, y\rangle=\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- $\mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$ is an irreducible curve parametrized by $\left(t^{3}, t^{4}, t^{5}\right)$

Decomposition of a variety into irreducibles

Definition

Let $V \subseteq k^{n}$ be an affine variety. A decomposition

$$
V=V_{1} \cup \ldots \cup V_{m},
$$

where each V_{i} is an irreducible variety, is called a minimal decomposition if $V_{i} \not \subset V_{j}$ for $i \neq j$.

Decomposition of a variety into irreducibles

Definition

Let $V \subseteq k^{n}$ be an affine variety. A decomposition

$$
V=V_{1} \cup \ldots \cup V_{m},
$$

where each V_{i} is an irreducible variety, is called a minimal decomposition if $V_{i} \not \subset V_{j}$ for $i \neq j$.

Theorem

Let $V \subseteq k^{n}$ be an affine variety. Then V has a minimal decomposition

$$
V=V_{1} \cup \cdots \cup V_{m} .
$$

Furthermore, this decomposition is unique up to the order in which V_{1}, \ldots, V_{m} are written.

The uniqueness part is wrong if one does not assume finiteness of the decomposition.

Minimal decomposition

Theorem

If k is algebraically closed, then every radical ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ can be written uniquely as a finite intersection of prime ideals, $I=P_{1} \cap \cdots \cap P_{r}$, where $P_{i} \not \subset P_{j}$ for $i \neq j$. We often call such a presentation of a radical ideal a minimal decomposition.

Minimal decomposition

Theorem

If k is algebraically closed, then every radical ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ can be written uniquely as a finite intersection of prime ideals, $I=P_{1} \cap \cdots \cap P_{r}$, where $P_{i} \not \subset P_{j}$ for $i \neq j$. We often call such a presentation of a radical ideal a minimal decomposition.

Theorem

If k is algebraically closed and I is a proper radical ideal such that

$$
I=\cap_{i=1}^{r} P_{i}
$$

is its minimal decomposition as an intersection of prime ideals, then the P_{i} 's are precisely the proper prime ideals that occur in the set $\left\{I: f: f \in k\left[x_{1}, \ldots, x_{n}\right]\right\}$.

Minimal decomposition

Example

- $I=\left\langle x z-y^{2}, x^{3}-y z\right\rangle$
- Assume that l is a radical ideal
- Can we write I as an intersection of prime ideals?

Minimal decomposition

Example

- $I=\left\langle x z-y^{2}, x^{3}-y z\right\rangle$
- Assume that l is a radical ideal
- Can we write $/$ as an intersection of prime ideals?
- $\mathbb{V}(I)=\mathbb{V}(x, y) \cup \mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$

Minimal decomposition

Example

- $I=\left\langle x z-y^{2}, x^{3}-y z\right\rangle$
- Assume that l is a radical ideal
- Can we write I as an intersection of prime ideals?
- $\mathbb{V}(I)=\mathbb{V}(x, y) \cup \mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$
- $I=\langle x, y\rangle \cap\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$

Minimal decomposition

Example

- $I=\left\langle x z-y^{2}, x^{3}-y z\right\rangle$
- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?
- $\mathbb{V}(I)=\mathbb{V}(x, y) \cup \mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$
- $I=\langle x, y\rangle \cap\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- we know I: $x=\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$

Minimal decomposition

Example

- $I=\left\langle x z-y^{2}, x^{3}-y z\right\rangle$
- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?
- $\mathbb{V}(I)=\mathbb{V}(x, y) \cup \mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$
- $I=\langle x, y\rangle \cap\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- we know $I: x=\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- $I=\langle x, y\rangle \cap(I: x)$

Minimal decomposition

Example

- $I=\left\langle x z-y^{2}, x^{3}-y z\right\rangle$
- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?
- $\mathbb{V}(I)=\mathbb{V}(x, y) \cup \mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$
- $I=\langle x, y\rangle \cap\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- we know $I: x=\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- $I=\langle x, y\rangle \cap(I: x)$
- want to remove $\mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$

Minimal decomposition

Example

- $I=\left\langle x z-y^{2}, x^{3}-y z\right\rangle$
- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?
- $\mathbb{V}(I)=\mathbb{V}(x, y) \cup \mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$
- $I=\langle x, y\rangle \cap\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- we know $I: x=\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- $I=\langle x, y\rangle \cap(I: x)$
- want to remove $\mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$
- $I:\left(x^{2} y-z^{2}\right)=\langle x, y\rangle$

Minimal decomposition

Example

- $I=\left\langle x z-y^{2}, x^{3}-y z\right\rangle$
- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?
- $\mathbb{V}(I)=\mathbb{V}(x, y) \cup \mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$
- $I=\langle x, y\rangle \cap\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- we know $I: x=\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- $I=\langle x, y\rangle \cap(I: x)$
- want to remove $\mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$
- $1:\left(x^{2} y-z^{2}\right)=\langle x, y\rangle$
- $I=\left(I:\left(x^{2} y-z^{2}\right)\right) \cap(I: x)$

Minimal decomposition

Example

- $I=\left\langle x z-y^{2}, x^{3}-y z\right\rangle$
- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?
- $\mathbb{V}(I)=\mathbb{V}(x, y) \cup \mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$
- $I=\langle x, y\rangle \cap\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- we know I: $x=\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- $I=\langle x, y\rangle \cap(I: x)$
- want to remove $\mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$
- $1:\left(x^{2} y-z^{2}\right)=\langle x, y\rangle$
- $I=\left(I:\left(x^{2} y-z^{2}\right)\right) \cap(I: x)$
- it remains to show that $I:\left(x^{2} y-z^{2}\right)$ and $(I: x)$ are prime

Minimal decomposition

Example

- $I=\left\langle x z-y^{2}, x^{3}-y z\right\rangle$
- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?
- $\mathbb{V}(I)=\mathbb{V}(x, y) \cup \mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$
- $I=\langle x, y\rangle \cap\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- we know $I: x=\left\langle x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right\rangle$
- $I=\langle x, y\rangle \cap(I: x)$
- want to remove $\mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)$
- $1:\left(x^{2} y-z^{2}\right)=\langle x, y\rangle$
- $I=\left(I:\left(x^{2} y-z^{2}\right)\right) \cap(I: x)$
- it remains to show that $I:\left(x^{2} y-z^{2}\right)$ and $(I: x)$ are prime
- $I: x=\mathbb{I}\left(\mathbb{V}\left(x z-y^{2}, x^{3}-y z, x^{2} y-z^{2}\right)\right)$

Conclusion

Today:

- Quotients of ideals
- Irreducible varieties and prime ideals
- Decomposition of a variety into irreducibles

Next time: Applications in robotics

