Computational Algebraic Geometry The Algebra-Geometry Dictionary

Kaie Kubjas

kaie.kubjas@aalto.fi

February 10, 2021

Kaie Kubjas The Algebra-Geometry Dictionary

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Overview

Last time:

- Three ideal operations: Sums, products, intersections
- Generating sets of the ideals obtained by these operations
- Geometric operations corresponding to the algebraic operations
- Zariski closure
- Finished the proof of the Closure Theorem

Today:

- Quotients of ideals
- Irreducible varieties and prime ideals
- Decomposition of a variety into irreducibles

・ 同 ト ・ ヨ ト ・ ヨ ト …

Zariski closure and quotients of ideals

Kaie Kubjas The Algebra-Geometry Dictionary

通 とくほ とくほ とう

3

If $S \subseteq k^n$, the affine variety $\mathbb{V}(\mathbb{I}(S))$ is the smallest variety that contains S.

Definition

The Zariski closure of a subset of affine space is the smallest affine algebraic variety containing the set. If $S \subseteq k^n$, the Zariski closure of *S* is denoted \overline{S} and is equal to $\mathbb{V}(\mathbb{I}(S))$.

ヘロト ヘアト ヘビト ヘビト

If $S \subseteq k^n$, the affine variety $\mathbb{V}(\mathbb{I}(S))$ is the smallest variety that contains S.

Definition

The Zariski closure of a subset of affine space is the smallest affine algebraic variety containing the set. If $S \subseteq k^n$, the Zariski closure of *S* is denoted \overline{S} and is equal to $\mathbb{V}(\mathbb{I}(S))$.

Recall the difference of two varieties need not be a variety:

•
$$K = \langle xz, yz \rangle, I = \langle z \rangle$$

- $\mathbb{V}(K) \mathbb{V}(I)$ is the *z*-axis with the origin moved
- the *z*-axis is the smallest variety containing $\mathbb{V}(\mathcal{K}) \mathbb{V}(\mathcal{I})$

・ロン ・四 と ・ ヨ と ・ ヨ と …

If $S \subseteq k^n$, the affine variety $\mathbb{V}(\mathbb{I}(S))$ is the smallest variety that contains S.

Definition

The Zariski closure of a subset of affine space is the smallest affine algebraic variety containing the set. If $S \subseteq k^n$, the Zariski closure of *S* is denoted \overline{S} and is equal to $\mathbb{V}(\mathbb{I}(S))$.

Recall the difference of two varieties need not be a variety:

•
$$K = \langle xz, yz \rangle, I = \langle z \rangle$$

- $\mathbb{V}(K) \mathbb{V}(I)$ is the *z*-axis with the origin moved
- the *z*-axis is the smallest variety containing $\mathbb{V}(\mathcal{K}) \mathbb{V}(\mathcal{I})$

Proposition

If V and W are varieties with $V \subseteq W$, then $W = V \cup (\overline{W - V})$.

Definition

If I, J are ideals in $k[x_1, \ldots, x_n]$, then I : J is the set

$$\{f \in k[x_1, \ldots, x_n] : fg \in I \text{ for all } g \in J\}$$

and is called the ideal quotient (or colon ideal) of I by J.

ヘロン 人間 とくほ とくほ とう

3

Definition

If I, J are ideals in $k[x_1, \ldots, x_n]$, then I : J is the set

$$\{f \in k[x_1, \ldots, x_n] : fg \in I \text{ for all } g \in J\}$$

and is called the ideal quotient (or colon ideal) of I by J.

Example

イロト 不得 とくほと くほとう

3

Definition

If I, J are ideals in $k[x_1, \ldots, x_n]$, then I : J is the set

$$\{f \in k[x_1, \ldots, x_n] : fg \in I \text{ for all } g \in J\}$$

and is called the ideal quotient (or colon ideal) of I by J.

Example

Proposition

If I, J are ideals in $k[x_1, ..., x_n]$, then I : J is an ideal in $k[x_1, ..., x_n]$ and I : J contains I.

Let I and J be ideals in $k[x_1, \ldots, x_n]$. Then

$$\mathbb{V}(I:J) \supseteq \overline{\mathbb{V}(I) - \mathbb{V}(J)}.$$

If, in addition if k is algebraically closed and I is a radical ideal, then

$$\mathbb{V}(I:J) = \overline{\mathbb{V}(I) - \mathbb{V}(J)}.$$

Example

Let $I = \langle xy^2 \rangle$ and $J = \langle y \rangle$. What is I : J? What is $\overline{\mathbb{V}(I) - \mathbb{V}(J)}$?

<ロ> (四) (四) (三) (三) (三)

Let I and J be ideals in $k[x_1, \ldots, x_n]$. Then

$$\mathbb{V}(I:J) \supseteq \overline{\mathbb{V}(I) - \mathbb{V}(J)}.$$

If, in addition if k is algebraically closed and I is a radical ideal, then

$$\mathbb{V}(I:J) = \overline{\mathbb{V}(I) - \mathbb{V}(J)}.$$

Example

Let $I = \langle xy^2 \rangle$ and $J = \langle y \rangle$. What is I : J? What is $\overline{\mathbb{V}(I) - \mathbb{V}(J)}$? Then $I : J = \langle xy \rangle$, $\mathbb{V}(I : J)$ is the union of *x*-axis and *y*-axis and $\overline{\mathbb{V}(I) - \mathbb{V}(J)}$ is the *y*-axis.

イロト イポト イヨト イヨト

3

Proof: We will show that $T: S \subseteq I(V(I) - V(J))$. but $f \in I$: J. Let $x \in V(I) - V(J)$. Then fogeI for all geg. Since xeV(I), we have $f(x) \cdot g(x) = 0$ for all ge J. Since $x \notin V(J)$, then $\exists q \in J$ s.t. $q(x) \neq 0$. Hence f(x) = 0. Hence FEI(V(I)-W(S)). Thus $I:J \subseteq I(V(I) - V(J))$ and $V(I:J) \ge$ $\mathbb{V}[\mathbb{I}(\mathbb{V}(\mathbb{I}) - \mathbb{V}(\mathbb{J}))].$

Corollary

Let V and W be varieties in kⁿ. Then

$$\mathbb{I}(V):\mathbb{I}(W)=\mathbb{I}(V-W).$$

Example

- Let *V* be the union of *x*-axis and *y*-axis.
- Let W be the x-axis.
- Then $\mathbb{I}(V) = \langle xy \rangle$, $\mathbb{I}(W) = \langle y \rangle$ and $\mathbb{I}(V) : \mathbb{I}(W) = \langle x \rangle$.
- V W is the y-axis without the point (0, 0).

•
$$\mathbb{I}(V - W) = \langle x \rangle$$

Proposition

Let I, J, and K be ideals in $k[x_1, \ldots, x_n]$. Then:

$$I: k[x_1,\ldots,x_n] = I.$$

3
$$IJ \subseteq K$$
 if and only if $I \subseteq K : J$.

3
$$J \subseteq I$$
 if and only if $I : J = k[x_1, \ldots, x_n]$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proposition

Let I, J, and K be ideals in $k[x_1, \ldots, x_n]$. Then:

$$I: k[x_1,\ldots,x_n] = I.$$

3
$$IJ \subseteq K$$
 if and only if $I \subseteq K : J$.

3
$$J \subseteq I$$
 if and only if $I : J = k[x_1, \ldots, x_n]$.

Proposition

Let I, I_i, J, J_i , and K be ideals in $k[x_1, \ldots, x_n]$ for $1 \le i \le r$. Then

$$(\bigcap_{i=1}^{r} I_{i}) : J = \bigcap_{i=1}^{r} (I_{i} : J),$$

$$I : (\sum_{i=1}^{r} J_{i}) = \bigcap_{i=1}^{r} (I : J_{i}),$$

$$(I : J) : K = I : JK.$$

・ロット (雪) () () () ()

æ

Let I be an ideal and g an element of $k[x_1, ..., x_n]$. If $\{h_1, ..., h_p\}$ is a basis of the ideal $I \cap \langle g \rangle$, then $\{h_1/g, ..., h_p/g\}$ is a basis of $I : \langle g \rangle$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Theorem

Let I be an ideal and g an element of $k[x_1, ..., x_n]$. If $\{h_1, ..., h_p\}$ is a basis of the ideal $I \cap \langle g \rangle$, then $\{h_1/g, ..., h_p/g\}$ is a basis of $I : \langle g \rangle$.

An algorithm for computing a basis of an ideal quotient:

•
$$I = \langle f_1, \dots, f_r \rangle$$
 and $J = \langle g_1, \dots, g_s \rangle = \langle g_1 \rangle + \dots + \langle g_s \rangle$

<ロ> <四> <四> <四> <三</td>

Let I be an ideal and g an element of $k[x_1, ..., x_n]$. If $\{h_1, ..., h_p\}$ is a basis of the ideal $I \cap \langle g \rangle$, then $\{h_1/g, ..., h_p/g\}$ is a basis of $I : \langle g \rangle$.

An algorithm for computing a basis of an ideal quotient:

- $I = \langle f_1, \dots, f_r \rangle$ and $J = \langle g_1, \dots, g_s \rangle = \langle g_1 \rangle + \dots + \langle g_s \rangle$
- compute a basis for $I:\langle g_i \rangle$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let I be an ideal and g an element of $k[x_1, ..., x_n]$. If $\{h_1, ..., h_p\}$ is a basis of the ideal $I \cap \langle g \rangle$, then $\{h_1/g, ..., h_p/g\}$ is a basis of $I : \langle g \rangle$.

An algorithm for computing a basis of an ideal quotient:

- $I = \langle f_1, \dots, f_r \rangle$ and $J = \langle g_1, \dots, g_s \rangle = \langle g_1 \rangle + \dots + \langle g_s \rangle$
- compute a basis for $I:\langle g_i \rangle$
- compute a basis for $\langle f_1, \ldots, f_r \rangle \cap \langle g_i \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let I be an ideal and g an element of $k[x_1, ..., x_n]$. If $\{h_1, ..., h_p\}$ is a basis of the ideal $I \cap \langle g \rangle$, then $\{h_1/g, ..., h_p/g\}$ is a basis of $I : \langle g \rangle$.

An algorithm for computing a basis of an ideal quotient:

- $I = \langle f_1, \dots, f_r \rangle$ and $J = \langle g_1, \dots, g_s \rangle = \langle g_1 \rangle + \dots + \langle g_s \rangle$
- compute a basis for $I:\langle g_i \rangle$
- compute a basis for ⟨f₁,..., f_r⟩ ∩ ⟨g_i⟩ by finding a Groebner basis of ⟨tf₁,..., tf_r, (1 − t)g_i⟩ wrt a lex order in which t precedes all the x_i

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Let I be an ideal and g an element of $k[x_1, ..., x_n]$. If $\{h_1, ..., h_p\}$ is a basis of the ideal $I \cap \langle g \rangle$, then $\{h_1/g, ..., h_p/g\}$ is a basis of $I : \langle g \rangle$.

An algorithm for computing a basis of an ideal quotient:

- $I = \langle f_1, \dots, f_r \rangle$ and $J = \langle g_1, \dots, g_s \rangle = \langle g_1 \rangle + \dots + \langle g_s \rangle$
- compute a basis for $I:\langle g_i\rangle$
- compute a basis for ⟨f₁,..., f_r⟩ ∩ ⟨g_i⟩ by finding a Groebner basis of ⟨tf₁,..., tf_r, (1 − t)g_i⟩ wrt a lex order in which t precedes all the x_i
- use the division algorithm to get a basis for $I:\langle g_i\rangle$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Let I be an ideal and g an element of $k[x_1, ..., x_n]$. If $\{h_1, ..., h_p\}$ is a basis of the ideal $I \cap \langle g \rangle$, then $\{h_1/g, ..., h_p/g\}$ is a basis of $I : \langle g \rangle$.

An algorithm for computing a basis of an ideal quotient:

- $I = \langle f_1, \dots, f_r \rangle$ and $J = \langle g_1, \dots, g_s \rangle = \langle g_1 \rangle + \dots + \langle g_s \rangle$
- compute a basis for $I:\langle g_i \rangle$
- compute a basis for ⟨f₁,..., f_r⟩ ∩ ⟨g_i⟩ by finding a Groebner basis of ⟨tf₁,..., tf_r, (1 − t)g_i⟩ wrt a lex order in which t precedes all the x_i
- use the division algorithm to get a basis for $I: \langle g_i \rangle$
- compute a basis of *I* : *J* by applying the intersection algorithm *s* − 1 times, computing first a basis for
 I : ⟨*g*₁, *g*₂⟩ = (*I* : ⟨*g*₁⟩) ∩ (*I* : ⟨*g*₂⟩) etc

Irreducible varieties and prime ideals

Kaie Kubjas The Algebra-Geometry Dictionary

< 回 > < 回 > < 回 > … 回

- Recall that the union of two varieties is a variety
- $\mathbb{V}(xz, yz)$ is the union of a plane and a line
- The line and the plane are more fundamental than $\mathbb{V}(xz, yz)$, since they are indecomposable

通 と く ヨ と く ヨ と

- Recall that the union of two varieties is a variety
- The line and the plane are more fundamental than $\mathbb{V}(xz, yz)$, since they are indecomposable

Definition

An affine variety $V \subseteq k^n$ is irreducible if whenever V is written in the form $V = V_1 \cup V_2$, where V_1 and V_2 are affine varieties, then either $V_1 = V$ or $V_2 = V$.

A (1) > A (2) > A

- Recall that the union of two varieties is a variety
- The line and the plane are more fundamental than $\mathbb{V}(xz, yz)$, since they are indecomposable

Definition

An affine variety $V \subseteq k^n$ is irreducible if whenever V is written in the form $V = V_1 \cup V_2$, where V_1 and V_2 are affine varieties, then either $V_1 = V$ or $V_2 = V$.

Example

 $\mathbb{V}(xz, yz)$ is not an irreducible variety.

・ロン ・聞 と ・ ヨン ・ ヨン・

- For the definition to be reasonable, a point, a line and a plane should be irreducible (homework).
- The twisted cubic $\mathbb{V}(y x^2, z x^3)$ is irreducible. How to prove this?
- When is an algebraic variety irreducible? The key is to consider the corresponding algebraic notion.

(雪) (ヨ) (ヨ)

- For the definition to be reasonable, a point, a line and a plane should be irreducible (homework).
- The twisted cubic $\mathbb{V}(y x^2, z x^3)$ is irreducible. How to prove this?
- When is an algebraic variety irreducible? The key is to consider the corresponding algebraic notion.

Definition

An ideal $I \subseteq k[x_1, ..., x_n]$ is prime if whenever $f, g \in k[x_1, ..., x_n]$ and $fg \in I$, then either $f \in I$ or $g \in I$.

・ロ・・ (日・・ (日・・)

- For the definition to be reasonable, a point, a line and a plane should be irreducible (homework).
- The twisted cubic $\mathbb{V}(y x^2, z x^3)$ is irreducible. How to prove this?
- When is an algebraic variety irreducible? The key is to consider the corresponding algebraic notion.

Definition

An ideal $I \subseteq k[x_1, ..., x_n]$ is prime if whenever $f, g \in k[x_1, ..., x_n]$ and $fg \in I$, then either $f \in I$ or $g \in I$.

Proposition

Let $V \subseteq k^n$ be an affine variety. Then V is irreducible if and only if $\mathbb{I}(V)$ is a prime ideal.

イロト イポト イヨト イヨト

Proof:
$$\Rightarrow$$
 Assume that V is irreducible and let fig
be such that fige I(V). Defen $V_1 = V \cap V(f)$
and $V_2 = V \cap V(g)$. Then fige I(V) implies that
 $V = V_1 \cup V_2$. Since V is irreducible, either $V = V_1$ or
 $V = V_2$. If $V = V_1 = V \cap V(f)$, which implies that
f vanishes on V and hence $f \in I(V)$. Otherwin if
 $V = V_2$, similarly $g \in I(V)$.

"" Assum that
$$I(V)$$
 is prime and let $V = V_1 \cup V_2$.
Suppose that $V \neq V_1$. We claim that $V = V_2$. Note
 $I(V) \in I(V_1)$ and $I(V) \in I(V_2)$. Fich $f \in I(V_1) - I(V)$.
Let $g \in I(V_2)$. Since $V = V_1 \cup V_2$, then $f \cdot g \in I(V)$.
Since $I(V)$ is prime, then either $f \circ n g$ lies in $I(V)$.
Since $f \notin I(V)$, we must have that $g \in I(V)$. This
powes $I(V_2) = I(V)$. Hence $V_2 = V$. Thus V is
irreducible.

Note that every prime ideal is radical.

Corollary

When k is algebraically closed, then functions I and V induce a one-to-one correspondence between irreducible varieties in k^n and prime ideals in $k[x_1, ..., x_n]$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Note that every prime ideal is radical.

Corollary

When k is algebraically closed, then functions I and V induce a one-to-one correspondence between irreducible varieties in k^n and prime ideals in $k[x_1, ..., x_n]$.

Example

The ideal of the twisted cubic is prime:

- suppose $fg \in \mathbb{I}(V)$
- $f(t, t^2, t^3)g(t, t^2, t^3) = 0$ for all t
- $f(t, t^2, t^3)$ or $g(t, t^2, t^3)$ is the zero polynomial
- *f* or *g* lies in I(*V*)
- $\mathbb{I}(V)$ is a prime ideal
- twisted cubic is an irreducible variety in \mathbb{R}^3

The idea how we showed that the twisted cubic is an irreducible variety can be generalized:

Proposition

If k is an infinite field and $V \subseteq k^n$ is a variety defined parametrically

$$x_1 = f_1(t_1, \ldots, t_m),$$

$$x_n = f_n(t_1,\ldots,t_m),$$

where f_1, \ldots, f_n are polynomials in $k[t_1, \ldots, t_m]$, then V is irreducible.

ヘロト ヘアト ヘビト ヘビト

æ

If k is an infinite field and $V \subseteq k^n$ is a variety defined by the rational parametrization

$$x_1 = \frac{f_1(t_1, \dots, t_m)}{g_1(t_1, \dots, t_m)},$$

$$\vdots$$

$$x_n = \frac{f_n(t_1, \dots, t_m)}{g_n(t_1, \dots, t_m)},$$

where $f_1, \ldots, f_n, g_1, \ldots, g_n \in k[t_1, \ldots, t_m]$, then V is irreducible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Maximal ideals

- the simplest variety $\{(a_1, \ldots, a_n)\}$
- parametrization $f_i(t_1,\ldots,t_m) = a_i$
- hence a point is irreducible
- Quiz: What is the ideal of the point? Is the ideal prime?

(雪) (ヨ) (ヨ)

э.

Maximal ideals

- the simplest variety $\{(a_1, \ldots, a_n)\}$
- parametrization $f_i(t_1,\ldots,t_m) = a_i$
- hence a point is irreducible
- Quiz: What is the ideal of the point? Is the ideal prime?
- $\mathbb{I}(\{a_1,\ldots,a_n\}) = \langle x_1 a_1,\ldots,x_n a_n \rangle$
- the ideal of a point is prime
- it is also maximal: the only ideal that strictly contains it is $k[x_1, \ldots, x_n]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○
Maximal ideals

- the simplest variety $\{(a_1, \ldots, a_n)\}$
- parametrization $f_i(t_1,\ldots,t_m) = a_i$
- hence a point is irreducible
- Quiz: What is the ideal of the point? Is the ideal prime?
- $\mathbb{I}(\{a_1,\ldots,a_n\}) = \langle x_1 a_1,\ldots,x_n a_n \rangle$
- the ideal of a point is prime
- it is also maximal: the only ideal that strictly contains it is $k[x_1, \ldots, x_n]$

Definition

An ideal $I \subseteq k[x_1, ..., x_n]$ is said to be maximal if $I \neq k[x_1, ..., x_n]$ and any ideal *J* containing *I* is such that either J = I or $J = k[x_1, ..., x_n]$.

ヘロン 人間 とくほ とくほ とう

ъ

Maximal ideals

Definition

If k is any field, an ideal $I \subseteq k[x_1, ..., x_n]$ is called proper if I is not equal to $k[x_1, ..., x_n]$.

Kaie Kubjas The Algebra-Geometry Dictionary

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Definition

If k is any field, an ideal $I \subseteq k[x_1, ..., x_n]$ is called proper if I is not equal to $k[x_1, ..., x_n]$.

Proposition

If k is any field, an ideal $I \subseteq k[x_1, \ldots, x_n]$ of the form

$$I=\langle x_1-a_1,\ldots,x_n-a_n\rangle,$$

where $a_1, \ldots, a_n \in k$, is maximal.

イロン 不得 とくほ とくほ とうほ

Proof: Let J be an ideal containing I. Let $J \in J - I$. We can up the division algorithm b write $J = A_n (x_n - a_n) + ... + A_n (x_n - a_n) + b$, where b is a constant.

Definition

If k is any field, an ideal $I \subseteq k[x_1, ..., x_n]$ is called proper if I is not equal to $k[x_1, ..., x_n]$.

Proposition

If k is any field, an ideal $I \subseteq k[x_1, \ldots, x_n]$ of the form

$$I=\langle x_1-a_1,\ldots,x_n-a_n\rangle,$$

where $a_1, \ldots, a_n \in k$, is maximal.

- every point (a₁,..., a_n) ∈ kⁿ corresponds to the maximal ideal (x₁ − a₁,..., x_n − a_n)
- the converse does not hold if k is not algebraically closed

•
$$\langle x^2 + 1 \rangle$$
 is maximal in $\mathbb{R}[x]$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Proposition

If k is any field, a maximal ideal in $k[x_1, \ldots, x_n]$ is prime.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proof: Let I be a nex ideal and fgeI. Assum tool $j \notin I$. Consider the ideal $I + \langle f \rangle$. This ideal strictly contains I and hence it has to be equal to $h[x_{n_1,\dots,n_N}]$. Hence $1 = h + c \cdot f$, where $h \in I$ and $c \in h[x_{n_1,\dots,n_N}]$. Hulliplying both sides by g gives that $g = h \cdot g + c \cdot f \cdot g \in I$. Thus I is prime.

Proposition

If k is any field, a maximal ideal in $k[x_1, \ldots, x_n]$ is prime.

Theorem

If k is an algebraically closed field, then every maximal ideal of $k[x_1, \ldots, x_n]$ is of the form $\langle x_1 - a_1, \ldots, x_n - a_n \rangle$ for some $a_1, \ldots, a_n \in k$.

・ロト ・聞 と ・ ヨ と ・ ヨ と …

3

Proof: Let I be max ideal. Since
$$I \neq h[X_{A_1,...,1} \times n]$$
,
then $V(I) \neq \emptyset$ by the Weak Nullstellensate.
Hence $\exists (a_{A_1,...,1} a_{A_n}) \in V(I)$. Then $I[(a_{A_1,...,1} a_{A_n})] \ge I(V(I)) \ge I$.
 $\langle \chi_{A_1} - a_{A_1,...,1} \times n - a_{A_n} \rangle$.
Thus $I \le \langle \chi_{A_1} - a_{A_1,...,1} \times n - a_{A_n} \rangle$. Since I is max, the
inclusion is in fact an equality.

Proposition

If k is any field, a maximal ideal in $k[x_1, \ldots, x_n]$ is prime.

Theorem

If k is an algebraically closed field, then every maximal ideal of $k[x_1, \ldots, x_n]$ is of the form $\langle x_1 - a_1, \ldots, x_n - a_n \rangle$ for some $a_1, \ldots, a_n \in k$.

Corollary

If k is an algebraically closed field, then there is a one-to-one correspondence between points of k^n and maximal ideals of $k[x_1, \ldots, x_n]$.

イロト イポト イヨト イヨト

Kaie Kubjas The Algebra-Geometry Dictionary

프 > 프

Proposition (The Descending Chain Condition)

Any descending chain of varieties

 $V_1 \supseteq V_2 \supseteq V_3 \supseteq \cdots$

in k^n must stabilize. That is, there exists a positive integer N such that $V_N = V_{N+1} = \cdots$.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Proposition (The Descending Chain Condition)

Any descending chain of varieties

$$V_1 \supseteq V_2 \supseteq V_3 \supseteq \cdots$$

in k^n must stabilize. That is, there exists a positive integer N such that $V_N = V_{N+1} = \cdots$.

Theorem

Let $V \subseteq k^n$ be an affine variety. Then V can be written as a finite union

$$V=V_1\cup\cdots\cup V_m,$$

where each V_i is an irreducible variety.

ヘロト ヘヨト ヘヨト

Proof: Assume that V cannot be written as a finite union of irreducible variaties. Then there exist affine variaties V_4 and V_1' s.t. $V = V_4 \cup V_4'$ and V_4'' cannot be written as a finite union of irreducible variaties. Similarly, we can write $V_4 = V_2' \cup V_2''$ where V_2 cannot be written as a finite union of irreducible star. There we get an infinite squence $V = V_4 = V_2 = ...$

This contradicts the DCC.

Example

$$V = \mathbb{V}(xz - y^2, x^3 - yz)$$

Kaie Kubjas The Algebra-Geometry Dictionary

Example

$$V = \mathbb{V}(xz - y^2, x^3 - yz):$$

Kaie Kubjas The Algebra-Geometry Dictionary

ヘロン ヘロン ヘビン ヘビン

÷

Example

$$V = \mathbb{V}(xz - y^2, x^3 - yz):$$

• *z*-axis $\mathbb{V}(x, y)$ is contained in *V*

Kaie Kubjas The Algebra-Geometry Dictionary

・ しゃ ・ ロ・ ト ・ モ ト ・ モ ト

$$V = \mathbb{V}(xz - y^2, x^3 - yz):$$

- *z*-axis $\mathbb{V}(x, y)$ is contained in *V*
- what about $V \mathbb{V}(x, y)$?

$$V = \mathbb{V}(xz - y^2, x^3 - yz):$$

- *z*-axis $\mathbb{V}(x, y)$ is contained in *V*
- what about $V \mathbb{V}(x, y)$?
- consider $\langle xz y^2, x^3 yz \rangle : \langle x, y \rangle$

$$V = \mathbb{V}(xz - y^2, x^3 - yz):$$

- *z*-axis $\mathbb{V}(x, y)$ is contained in *V*
- what about $V \mathbb{V}(x, y)$?
- consider $\langle xz y^2, x^3 yz \rangle : \langle x, y \rangle$

•
$$(I:x) \cap (I:y)$$

$$V = \mathbb{V}(xz - y^2, x^3 - yz):$$

- *z*-axis $\mathbb{V}(x, y)$ is contained in *V*
- what about $V \mathbb{V}(x, y)$?
- consider $\langle xz y^2, x^3 yz \rangle : \langle x, y \rangle$

•
$$(I:x) \cap (I:y)$$

•
$$I \cap \langle x \rangle = \langle x^2 z - xy^2, x^4 - xyz, x^3y - xz^2, x^5 - xy^3 \rangle$$

$$V = \mathbb{V}(xz - y^2, x^3 - yz):$$

- *z*-axis $\mathbb{V}(x, y)$ is contained in *V*
- what about $V \mathbb{V}(x, y)$?
- consider $\langle xz y^2, x^3 yz \rangle : \langle x, y \rangle$

•
$$(I:x) \cap (I:y)$$

• $I \cap \langle x \rangle = \langle x^2 z - xy^2, x^4 - xyz, x^3y - xz^2, x^5 - xy^3 \rangle$
• $I:x = \langle \frac{x^2 z - xy^2}{x}, \frac{x^4 - xyz}{x}, \frac{x^3y - xz^2}{x} \rangle = \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle = I + \langle x^2y - z^2 \rangle$

$$V = \mathbb{V}(xz - y^2, x^3 - yz):$$

- *z*-axis $\mathbb{V}(x, y)$ is contained in *V*
- what about $V \mathbb{V}(x, y)$?
- consider $\langle xz y^2, x^3 yz \rangle : \langle x, y \rangle$

•
$$(I:x) \cap (I:y)$$

• $I \cap \langle x \rangle = \langle x^2 z - xy^2, x^4 - xyz, x^3y - xz^2, x^5 - xy^3 \rangle$
• $I:x = \langle \frac{x^2 z - xy^2}{x}, \frac{x^4 - xyz}{x}, \frac{x^3y - xz^2}{x} \rangle = \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle = I + \langle x^2y - z^2 \rangle$

•
$$I: y = I + \langle x^2 y - z^2 \rangle$$

$$V = \mathbb{V}(xz - y^2, x^3 - yz):$$

- *z*-axis $\mathbb{V}(x, y)$ is contained in *V*
- what about $V \mathbb{V}(x, y)$?
- consider $\langle xz y^2, x^3 yz \rangle : \langle x, y \rangle$

•
$$(I:x) \cap (I:y)$$

• $I \cap \langle x \rangle = \langle x^2 z - xy^2, x^4 - xyz, x^3y - xz^2, x^5 - xy^3 \rangle$
• $I:x = \langle \frac{x^2 z - xy^2}{x}, \frac{x^4 - xyz}{x}, \frac{x^3y - xz^2}{x} \rangle = \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle = I + \langle x^2y - z^2 \rangle$
• $I:y = I + \langle x^2y - z^2 \rangle$

•
$$I: \langle x, y \rangle = \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$$

$$V = \mathbb{V}(xz - y^2, x^3 - yz):$$

- *z*-axis $\mathbb{V}(x, y)$ is contained in *V*
- what about $V \mathbb{V}(x, y)$?
- consider $\langle xz y^2, x^3 yz \rangle : \langle x, y \rangle$
- $(I: x) \cap (I: y)$ • $I \cap \langle x \rangle = \langle x^2 z - xy^2, x^4 - xyz, x^3 y - xz^2, x^5 - xy^3 \rangle$ • $I: x = \langle \frac{x^2 z - xy^2}{x}, \frac{x^4 - xyz}{x}, \frac{x^3 y - xz^2}{x} \rangle = \langle xz - y^2, x^3 - yz, x^2 y - z^2 \rangle = I + \langle x^2 y - z^2 \rangle$ • $I: y = I + \langle x^2 y - z^2 \rangle$
- $I: \langle x, y \rangle = \langle xz y^2, x^3 yz, x^2y z^2 \rangle$
- $\mathbb{V}(xz y^2, x^3 yz, x^2y z^2)$ is an irreducible curve parametrized by (t^3, t^4, t^5)

Definition

Let $V \subseteq k^n$ be an affine variety. A decomposition

$$V=V_1\cup\ldots\cup V_m,$$

where each V_i is an irreducible variety, is called a minimal decomposition if $V_i \not\subset V_j$ for $i \neq j$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

Let $V \subseteq k^n$ be an affine variety. A decomposition

 $V = V_1 \cup \ldots \cup V_m,$

where each V_i is an irreducible variety, is called a minimal decomposition if $V_i \not\subset V_j$ for $i \neq j$.

Theorem

Let $V \subseteq k^n$ be an affine variety. Then V has a minimal decomposition

$$V=V_1\cup\cdots\cup V_m.$$

Furthermore, this decomposition is unique up to the order in which V_1, \ldots, V_m are written.

The uniqueness part is wrong if one does not assume finiteness of the decomposition.

Kaie Kubjas

The Algebra-Geometry Dictionary

Theorem

If k is algebraically closed, then every radical ideal in $k[x_1, ..., x_n]$ can be written uniquely as a finite intersection of prime ideals, $I = P_1 \cap \cdots \cap P_r$, where $P_i \not\subset P_j$ for $i \neq j$. We often call such a presentation of a radical ideal a minimal decomposition.

Theorem

If k is algebraically closed, then every radical ideal in $k[x_1, ..., x_n]$ can be written uniquely as a finite intersection of prime ideals, $I = P_1 \cap \cdots \cap P_r$, where $P_i \not\subset P_j$ for $i \neq j$. We often call such a presentation of a radical ideal a minimal decomposition.

Theorem

If k is algebraically closed and I is a proper radical ideal such that

$$I = \cap_{i=1}^r P_i$$

is its minimal decomposition as an intersection of prime ideals, then the P_i 's are precisely the proper prime ideals that occur in the set $\{I : f : f \in k[x_1, ..., x_n]\}$.

ヘロト 人間 ト ヘヨト ヘヨト

э

•
$$I = \langle xz - y^2, x^3 - yz \rangle$$

- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?

•
$$I = \langle xz - y^2, x^3 - yz \rangle$$

- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?

•
$$\mathbb{V}(I) = \mathbb{V}(x, y) \cup \mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$$

•
$$I = \langle xz - y^2, x^3 - yz \rangle$$

- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?

•
$$\mathbb{V}(I) = \mathbb{V}(x, y) \cup \mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$$

•
$$I = \langle x, y \rangle \cap \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$$

•
$$I = \langle xz - y^2, x^3 - yz \rangle$$

- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?

•
$$\mathbb{V}(I) = \mathbb{V}(x, y) \cup \mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$$

•
$$I = \langle x, y \rangle \cap \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$$

• we know
$$I: x = \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$$

Example

•
$$I = \langle xz - y^2, x^3 - yz \rangle$$

- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?

•
$$\mathbb{V}(I) = \mathbb{V}(x, y) \cup \mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$$

•
$$I = \langle x, y \rangle \cap \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$$

• we know $I: x = \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$

•
$$I = \langle x, y \rangle \cap (I : x)$$

Example

•
$$I = \langle xz - y^2, x^3 - yz \rangle$$

- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?

•
$$\mathbb{V}(I) = \mathbb{V}(x, y) \cup \mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$$

•
$$I = \langle x, y \rangle \cap \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$$

• we know $I: x = \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$

•
$$I = \langle x, y \rangle \cap (I : x)$$

• want to remove $\mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$

Example

•
$$I = \langle xz - y^2, x^3 - yz \rangle$$

- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?

•
$$\mathbb{V}(I) = \mathbb{V}(x, y) \cup \mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$$

•
$$I = \langle x, y \rangle \cap \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$$

• we know $I: x = \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$

•
$$I = \langle x, y \rangle \cap (I : x)$$

• want to remove $\mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$

•
$$I: (x^2y - z^2) = \langle x, y \rangle$$
Minimal decomposition

Example

•
$$I = \langle xz - y^2, x^3 - yz \rangle$$

- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?

•
$$\mathbb{V}(I) = \mathbb{V}(x, y) \cup \mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$$

•
$$I = \langle x, y \rangle \cap \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$$

• we know $I: x = \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$

•
$$I = \langle x, y \rangle \cap (I : x)$$

• want to remove $\mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$

•
$$I: (x^2y - z^2) = \langle x, y \rangle$$

•
$$I = (I : (x^2y - z^2)) \cap (I : x)$$

Minimal decomposition

Example

•
$$I = \langle xz - y^2, x^3 - yz \rangle$$

- Assume that I is a radical ideal
- Can we write I as an intersection of prime ideals?

•
$$\mathbb{V}(I) = \mathbb{V}(x, y) \cup \mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$$

•
$$I = \langle x, y \rangle \cap \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$$

• we know $I: x = \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$

•
$$I = \langle x, y \rangle \cap (I : x)$$

• want to remove $\mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$

•
$$I: (x^2y - z^2) = \langle x, y \rangle$$

•
$$I = (I : (x^2y - z^2)) \cap (I : x)$$

• it remains to show that $I: (x^2y - z^2)$ and (I: x) are prime

Minimal decomposition

Example

•
$$I = \langle xz - y^2, x^3 - yz \rangle$$

- Assume that *I* is a radical ideal
- Can we write *I* as an intersection of prime ideals?

•
$$\mathbb{V}(I) = \mathbb{V}(x, y) \cup \mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$$

•
$$I = \langle x, y \rangle \cap \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$$

• we know $I: x = \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$

•
$$I = \langle x, y \rangle \cap (I : x)$$

• want to remove $\mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2)$

•
$$I: (x^2y - z^2) = \langle x, y \rangle$$

•
$$I = (I : (x^2y - z^2)) \cap (I : x)$$

• it remains to show that $I: (x^2y - z^2)$ and (I: x) are prime

•
$$I: x = \mathbb{I}(\mathbb{V}(xz - y^2, x^3 - yz, x^2y - z^2))$$

Today:

- Quotients of ideals
- Irreducible varieties and prime ideals
- Decomposition of a variety into irreducibles

Next time: Applications in robotics

(雪) (ヨ) (ヨ)

ъ