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Recap

Last time:

2D nonlinear systems

Conservative systems

Reversible systems
Possibility/impossibility of closed orbits



Limit cycles

A limit cycle is an isolated closed trajectory: neighbouring
trajectories either spiral away from it or towards it.

If neighbouring trajectories tend towards the limit cycle, the
latter is called stable or attracting, otherwise unstable, in
exceptional cases it may be half-stable .
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Limit cycles

Stable limit cycles model systems/phenomena that exhibit

self-sustained oscillations, like:

1) The beating of a heart

2) The periodic firing of a pacemaker neuron

3) Daily rhythms in human body temperature and hormone
secretion

4) Chemical reactions that oscillate spontaneously

5) Dangerous self-excited vibrations in bridges and airplane
wings.

A slight perturbation makes the system return to the cycle.



Limit cycles

Pacemaker Action Potential

10

=

u \ \

=0 Ca++(T) \

60 -

-70

PREPOTENTIAL

See also: Attractor dynamics in local neuronal networks


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960591/pdf/fncir-08-00022.pdf

Limit cycles

Limit cycles are typical features of nonlinear systems: in linear
systems there are periodic orbits, but they are not isolated!

If x(t) is a periodic solution of a linear system, cx(t) is also a
solution, for any value of c.

cx(1)

x(1)

The amplitude of a linear oscillation is set by its initial
condition: any perturbation will persist forever. Limit cycles
are determined by the structure of the system itself.



Example I

In polar coordinates r o= r (1 — T 2) , where r > ().

0 = 1

Radial and angular dynamics are decoupled, they can be
treated separately.

= 0 unstable fixed point, ' =1 stable: all trajectories approach
the unit circle asymptotically.



Phase plane:

Example I

ro= r(1—1?)
g = 1
|~

/

All tra]ectones
except r*
approach
monotomcally the
unit circle r*
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Example II

van der Pol Oscillator

i+ p(z? — )i +x =0, >0

Nonlinear damping term: if |x[> 1 oscillations are damped; if
|x| <1 oscillations are enhanced.

It can be shown that the van der Pol equation has a unique
stable limit cycle for each u. Shown here u=1.5 and

(z,%) = (0.5,0) at t = 0.
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Ruling out closed orbits

Gradient systems
Xx=—VV
V(x) = single-valued scalar function (Note that this really is

potential, since in the above equation friction coefficient can be
thought of as 1, and the Lh.s. of eq. is frictional force.)

Theorem: Closed orbits are impossible for gradient systems.
Proof: Let us assume that there is a closed orbit. A change in V

atter one circuit should be AV = 0 since V is single-valued. On

the other hand, T q T
S AV:/ d—‘t/dt:/ (VV - x)dt
0 0

T T
:—/ X-th:—/ %2 < 0
0 0

Contradiction =2 There can’t be closed orbits in gradient systems.



Ruling out closed orbits

Gradient systems

% =—VV

Usefulness of this theorem is a bit limited, since most two-
dimensional systems are not gradient systems.

However, all vector fields on the line are gradient systems,
which is another explanation for the impossibility of
oscillations in one-dimensional systems.



Example I

No closed orbits for the system, because it is a gradient

system. A Siny
Yy = X COSY
. r = —=-0V/ox
V(z,y) = —xsiny — g = —oV/oy
Note: For a general gradient system
ov. oV ov ov
—VV = ( _ %7 _8—y) — (f(xay)ag(xay)) g _% — f(ilf,y), _6’—y N g(ZC,y)

LA _ PV PV g
oy  Oydxr  Oz0y Oz
Sufficient condition for a system T = f (z,v), v=9g(z,9)
to be gradient: Of(z,y) 0g(z,y)

oy Ox




Example II

Similar techniques as in the Theorem can be used to exclude
closed orbits even in non-gradient systemes.

Nonlinearly damped oscillator & + (£)° + 2 = 0

Energy function E(x,z) = %(CL’Q T $.2)

After one cycle, position and velocity take the same value as at
the starting point, so AE = 0.

E(z, %) =&z + &) = @(—2%) = —i* <0

T. T
AE:/ Edt:—/ (i)*dt < 0
0 0

AE = 0 only when the velocity dx/dt is zero, which means a
fixed point. Contradiction =» no closed orbits.



Lyapunov functions

Energy-like functions that decrease along trajectories

x = f(x)

x is a fixed point. A Lyapunov function is a continuously
differentiable function V(x) such that:

1) V(x) > 0,x#x and V(x") =0 (Vis positive definite).

2) V <0, forall x#x". (All trajectories flow towards x.)

If there is such a function, x"is globally asymptotically stable:

for all initial conditions x(t) @ x” when t = o . Consequently,
the system has no closed orbits.

. V(%)
Solutions cannot get stuck anywhere —
else, because if they did, V would x(1) |
stop changing, @ which  would \ j
contradict 2). o

x.



Example I

There is no systematic way of constructing Lyapunov
functions; sometimes sums of squares work.

r = —x+4y
gy = —z—y
Consider Viz,y) = z° + ay?

V = 2z& + 2ayy = 2z(—z + 4y) + 2ay(—z — y3) = —22°% + (8 — 2a)zy — 2ay”

Choosing a = 4,
V=—2z*—-8y*<0

V =0 only at the origin

So V is a Lyapunov function and there are no closed orbits: all
trajectories will approach the origin when t — oo,



Dulac’s criterion

Let x = f(x)be a continuously differentiable vector field on
some simply connected subset R of the plane. If there exists a
continuously differentiable, real-valued function g(x) such that
V - (gx) has one sign throughout R, there are no closed orbits
lying entirely in R.

Proof: Let us assume that there is a closed orbit C lying
entirely in R. A is the area within C.

Green’s theorem

/V gX %gx ndl

Non -Zero Zero, since X | n

7

Contradiction — no closed orbits.



Example I

There is no general procedure to find the function g(x).
Candidates: 1/x%y?, e®*, e .

Show that there are no ,
closed orbitsin x,y > 0 L
for the system Y

x(2 -z —y)
y(4r — x° — 3)

Try g(x) = 1/(xy),

N 0, g, .. 0 (2—z—y 0 (4xr —z% -3 n
V- (g9x) = %(gcha—y(gy)—ax( y >+8y( " )——;

V - (gx) < 0 forx,y > 0. 2 Dulac: No closed orbits in x,y > 0.



Example II

z
Y

y
v —y+z’+y’

Let g(x) = e™?*,

V.- (gx) = —2e *y+e *(=1+2y) = —e ** <0

No closed orbits because of Dulac’s criterion.



Poincare-Bendixson Theorem

A criterion to establish that closed orbits exist.

Theorem: Suppose that:
1) Ris aclosed, bounded subset of the plane;

2) x = f(x)is a continuously differentiable vector field on an
open set containing K;

3) R does not contain any fixed points;
4) There exists a trajectory C that is confined in R, i.e. it starts
in R and stays in R for all future time .

—_—
~—— —

Then either C is a closed orbit or it spirals towards a closed
orbitast — . =» Chaos cannot occur in the phase plane.



Poincare-Bendixson Theorem

Ring-shaped region R because any closed orbit must encircle a
fixed point!

How can we ensure condition 4 that there is a confined
trajectory C?

Standard trick: Construct a trapping region, i.e. a region on
whose boundary the vector field points inwards.
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Example I

,)1.

0

r(1 —r?)+ urcos6
1

For u =0 there’s a limit cycle at » = 1. What happens when u > 0?

Search for a trapping region: annulus between two circles of
radii 7., and r_,, with 7* < ( on the outer circle and 7 > ( on
the inner circle.

No fixed points inside, because angular velocity is always
positive!



Example I

r = r(1—17%) 4+ prcosf
0 = 1

Search for r,;.:
i =1r(l —7r%) + urcosd > 0
cos >—-1,¥0 — r(1—-r*)—ur>0 — " +u—1<0

Any Tmin < v/ 1 — @ would do the job (for u < 1).

To come close to the limit cycle we pick a value close to the
limit, like 75, = 0.999 /1 — 1

Similarly, require 1 < Qto get 7,0 = 1.001 /1 + p



Example I

r = r(1—17%) 4+ prcosf
0 = 1

Poincare-Bendixson theorem: there is a limit cycle in the

annulus
0.999v/1 —pu<r<1.001+/14+ u

True also for p =1




Example II
Glycolysis

Fundamental biochemical process, where living cells obtain
energy by breaking down sugar.

In intact yeast cells as well as in yeast or muscle extracts,
glycolysis proceeds in an oscillatory fashion: concentrations of
intermediate products wax and wane within a few minutes.

Sel’kov model (1968) (in a dimensionless form)

—x+ay+x2y
b—ay — z%y

T
Y
x = concentration of adenosine diphosphate (ADP)

y = concentration of fructose-6-phosphate (F6P)
a,b > 0 are kinetic parameters



Nullclines

Example II

Glycolysis
T = —xz4ay+ %y
y = b—ay—az%y

x b

a+ x?’ J = a + x?

ySb/(a+x2)




Example II

Glycolysis
T = —xz4ay+ Y
gy = b—ay—a7y
Trapping region?

In the limit of very large x

' d
i~ xty; = —xty — g:—y%—l
r dx

Vector field at large x is roughly parallel to the line y = —x.

t—(—y)=—ax+ay+a’y+(b—ay—az’y)=b—u

—y>x it x>0



Example II

Glycolysis
—y >x if x> 0b :thevector field points inwards on the
diagonal line because % < -1

Dashed contour encloses
a trapping region!

Problem: There is a
fixed point inside at the
intersection of the
nullclines.




Example II

Glycolysis

Solution: if the fixed point is a

repeller then the theorem still
holds.

y

The repeller drives all .
neighboring trajectories into
the shaded region. / \

Question: So, is the fixed
point a repeller?




Example II

Glycolysis T —Z t+ay + %y
gy = b—ay—zy
Jacobian
< —14+22y a4+ 2? )
A — 2
—2xy —a —
Fixed point b
x*=b, y =
’ a + b2

b* + (2a — 1)b* + (a + a?)

i 2 : _
A=a+b">0; 7T=— P

The tixed point is stable for T <0 and unstable for 7 > 0.



Example II
Glycolysis
Dividing line 7 = 0 occurs when

bQZ%(l—Qa:I:\/l—Sa)

Computer-generated phase

T > 0: FP is a repeller :
| p portrait; a = 0.08,b = 0.6.
1.2 T T T T T T y
] \ — +
08 | \/ : ¥
0.6 } stable N |
limit cycle
0.4 T — 1
stable
02 fixed point
0 1 1 1 1 1 1 M
0 002 004 006 008 0.1 012 0.4 3
a




No chaos in the phase plane

Poincare-Bendixson theorem is valid only in two dimensions,
not in three and higher dimensions!

It states that if a trajectory is confined in a closed region
without fixed points it must approach a closed orbit.

So, in two dimensions, a trajectory can either approach a fixed
point, diverge to infinity, or approach and follow a closed
orbit. Poincare-Bendixson theorem: no chaos in 2D phase
plane.

In dimensions three and higher, instead, a particle might
wander around forever in a bounded region without settling

down to a fixed point or a closed orbit. In some cases trajectories
are attracted to a complex geometric (fractal) object — chaos!



Lienard Systems

Many oscillating circuits & systems can be modelled by
4+ f(x)z 4+ g(x) =0
This the Liénard’s equation.

Van der Pol oscillator

i+ p(z? — 1)z +x =0, p>0
is a special case of the Lienard’s equation.

Equivalent form for Liénard: o — Y

y=—g(z) — f(z)y.



Lienard Systems
T+ f(x)t+g(x) =0

Lienard’s theorem

Suppose:

(1) f(x) and g(x) are continuously ditferentiable for all x;
(2) g(—x) = — g(x) for all x;

(3) g(x) > 0forx > 0;

4) f(—x) = f(x) for all x

(5) The odd function / f(u)du hag exactly one

positive zero at x = a, 1S negatwe for 0 < x < a, is positive
and non-decreasing for x > a, and F(x) — oo as x — oo.

I =
Then the system Y has a unique, stable

y=—g(z) — f(z).

limit cycle surrounding the origin in the phase plane.



Lienard Systems
T+ f(z)x 4+ g(x) =0

g(x): the restoring force acts like an ordinary spring
f (x): damping is negative at small |x| and positive at large |x|.

— Small oscillations are pumped up and large oscillations
are damped: the system tends to settle into a self-sustained

oscillation at an intermediate amplitude.

van der Pol equation

i+ p(z? — Dz +x =0, >0
Here, f(z) = p(a?— 1), g(x) =z
Conditions (1)-(4) are satisfied. F(z) = ,u(%x?’ P — %/m(xz -3) =

Condition (5) is satisfied for g = V3. vdP equation has a
unique, stable limit cycle.



Relaxation Oscillations

These oscillations are characterised by repetitious slow build
up and sudden discharge.

Example: van der Pol in the strongly nonlinear limit
P+ p(z? =D +z=0, p>>1.

Note: Standard trick leads to a system that’s hard to interpret.
=
. L,
y=——(x"—-1)—2x
v

— introduce different variables.



Relaxation Oscillations
vdP: £E—|—/L(£82—1)$—|—£E‘:O, u>> 1.

d 1
Notice that & + ud(z® — 1) = = {:1: — ,u(gaz?’ — x)}
1

So,let F(x) = §x3 —x, w=1+ puF(x).

=W =i+ ue(z® — 1) = —x.
= T =W — ,uF(ZU) Finally, let y = E
W= —x
& = ply — F(z)]
1

y = ——.
L4

We obtain



Relaxation Oscillations
vdP: £E—|—/L(£82—1)$—|—£E‘:O, u>> 1.

: y

&= ply — F(z)] o

, 1

= ——x. D fast N

:u slow

Cubic nullcline Jslow ¥
: C
r=0: y:F(.CU) fast+ B
is the slow direction. |
x is the fast direction.

To see this, suppose y — F(x) ~ O(1).

So, what makes
Then |&| ~ O(p) >> 1, || ~O(p™1) << 1.

the trajectory

If y— F(x) ~ O(,u_Q) : \x| ~ |y\ ~ O(,u_l). jump at
"knees”?



Relaxation Oscillations
vdP: izi'+u(x2—1):i;‘+:v:(), ©w>>1.

4 ow) ou™ The period of vdP
] oscillator, when u > 1:
I T W A I
\/ ? u ® \/ T ~ 2/ dt
ta
On slow branches y = F(x): % ~ F’(g;)cé_f = (2? — 1)%
iz’u[ﬁ_F(ﬁ)] :>dy_—:c:>daf_ —x
Y= s dt dt  p(x?—-1)
On slow branches: dt =~ — de

X
The positive branch: x,=2, xg=1:

$2

2
1_
T%Q/ 'u(x21)dx2,u[1nx] = u[3 — 21In 2]

9 T 2 :



Weakly Nonlinear Oscillators

In the strongly nonlinear oscillators two time scales operated
sequentially.

In weakly nonlinear oscillators time scales operate concurrently.

General form: 7 4+ ¢ + eh(x’ .CE) — () ,where 0 <e<<1

Two fundamental cases:

1. Vander Pol I €T E(.CEQ — 1)33 =0

2. Duffing T+ x4+ egjg — ()



Weakly Nonlinear Oscillators

van der Pol, e = 0.1; initial condition close to (0, 0)

We’ve seen this before!



Weakly Nonlinear Oscillators
Example & + 2ex +x =0, z(0) = 0,z(0) = 1.

T =
. 4 A= ( 0 ! ) stable spiral
y —— —2€y — —1 —2€

Eigen equation: M +2A+1=0
A= —€=+ \/62—1:—€::i\/1—62

2(t) = crel = VIl = e cos(V/ 1 — €2t) — isin(v/1 — €2t)]

2(0) =0, #(0) =1: 4 (p) = ﬂl_eze—etsmm_ezt)




Weakly Nonlinear Oscillators

Two concurrent time
et
7€ Sm(\/l —€t) scales; slowly

1 — €2
\/ decaying oscillations.

Generally, it’s hard to solve this way completely, so...
Perturbation technique, that is, looking for a solution in the form

r(t,€) = zo(t) + ex1(t) + 22 (1)...

By substituting x(t,¢) for x(t) in the original differential
equation, solving for terms of O(1) and O(¢) separately gives a
good approximation for x(¢) up to t << 1/e.

[io i ZU()] - E[fl -+ 2517() -+ xl] -+ 0(62) =0
O(l): .fIfQ—I—ZBo =0
O(E)I CE‘1—|—2CBO—|-CC1:O

z(t) =

z(t,€) = sint — etsint + O(€?)



Weakly Nonlinear Oscillators

T | T
| VI
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Weakly Nonlinear Oscillators

The book introduces a method called two-timing, where an

ansatz of the form gp(t7 e) = T (7-, T) + €xq (7-, T) L 0(62)
is made. Here, T = ¢t (slow time) and 7 = t (fast time).

Then, time derivatives are taken as:

, da:_@xlaxﬁT_(?azl ox
¥ | ~or or

—dt  or  oT ot O

This is technical, we won’t go into more details. Suffice it to
say that two-timing works incredibly well.



Weakly Nonlinear Oscillators

Two-timing solution: z = e~ sin7 + O(e) = e~ sint + O(e)

1 | i I |

/\ N
0.5 ¥ —%— (w0 timing _
x 0 r
-0.5 B
-1 1 | 1 |

0 10 20 30 40 50
¢



Strongly & Weakly
Nonlinear Oscillators

Sequentially and concurrently operating different time scales.

Even approximate solutions are hard.

Dump that! The important thing is to have a qualitative
understanding of fast and slow modes in oscillating
solutions.

Next time: Bifurcations in the phase plane.



