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Motivation: Temporal models

/ One-dimensional problems
(the data has a natural ordering)

/ Spatio-temproal models
(something developing over time)

/ Long / unbounded data
(sensor data streams, daily observations, etc.)

Explaining changes in number of births in the US
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Three views into GPs

GPGP

Kernel
(moment)

Spectral
(Fourier)

State space
(path)
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Kernel (moment) representation

f (t) ∼ GP(µ(t), κ(t, t′)) GP prior

y | f ∼
∏
i

p(yi | f (ti )) likelihood

Let’s focus on the GP prior only.

A temporal Gaussian process (GP) is a random function f (t), such that joint distribution of
f (t1), . . . , f (tn) is always Gaussian.

Mean and covariance functions have the form:

µ(t) = E[f (t)],

κ(t, t′) = E[(f (t)− µ(t))(f (t′)− µ(t′))T].

Convenient for model specification, but expanding the kernel to a covariance matrix can be problematic
(the notorious O(n3) scaling).

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 5 / 38



Spectral (Fourier) representation

The Fourier transform of a function f (t) : R→ R is

F [f ](iω) =

∫
R
f (t) exp(−iω t) dt

For a stationary GP, the covariance function can be written in terms of the difference between two inputs:

κ(t, t′) , κ(t − t′)

Wiener–Khinchin: If f (t) is a stationary Gaussian process with covariance function κ(t) then its spectral
density is S(ω) = F [κ].

Spectral representation of a GP in terms of spectral density function

S(ω) = E[f̃ (iω) f̃ T(−iω)]
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State space (path) representation [1/3]

Path or state space representation as solution to a linear time-invariant (LTI) stochastic differential
equation (SDE):

df = F f dt + Ldβ,

where f = (f , df /dt, . . .) and β(t) is a vector of Wiener processes.

Equivalently, but more informally
df(t)

dt
= F f(t) + Lw(t),

where w(t) is white noise.

The model now consists of a drift matrix F ∈ Rm×m, a diffusion matrix L ∈ Rm×s , and the spectral density
matrix of the white noise process Qc ∈ Rs×s .

The scalar-valued GP can be recovered by f (t) = H f(t).
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State space (path) representation [2/3]

The initial state is given by a stationary state f(0) ∼ N(0,P∞) which fulfills

FP∞ + P∞ FT + LQc L
T = 0

The covariance function at the stationary state can be recovered by

κ(t, t′) =

{
P∞ exp((t′ − t)F)T, t′ ≥ t

exp((t′ − t)F)P∞ t′ < t

where exp(·) denotes the matrix exponential function.

The spectral density function at the stationary state can be recovered by

S(ω) = (F + iω I)−1 LQc L
T (F− iω I)−T
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State space (path) representation [3/3]

Similarly as the kernel has to be evaluated into covariance matrix for computations, the SDE can be
solved for discrete time points {ti}ni=1.

The resulting model is a discrete state space model:

fi = Ai−1 fi−1 + qi−1, qi ∼ N(0,Qi ),

where fi = f(ti ).

The discrete-time model matrices are given by:

Ai = exp(F∆ti ),

Qi =

∫ ∆ti

0

exp(F (∆ti − τ))LQc L
T exp(F (∆ti − τ))T dτ,

where ∆ti = ti+1 − ti

If the model is stationary, Qi is given by

Qi = P∞ − Ai P∞ AT
i
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Three views into GPs
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Example: Exponential covariance function

Exponential covariance function (Ornstein-Uhlenbeck process):

κ(t, t ′) = exp(−λ |t − t ′|)

Spectral density function:

S(ω) =
2

λ+ ω2/λ

Path representation: Stochastic differential equation (SDE)

df (t)

dt
= −λ f (t) + w(t),

or using the notation from before:
F = −λ, L = 1, Qc = 2, H = 1, and P∞ = 1.
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Applicable GP priors

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 12 / 38



Applicable GP priors

The covariance function needs to be Markovian (or approximated as such).

Covers many common stationary and non-stationary models.

Sums of kernels: κ(t, t ′) = κ1(t, t ′) + κ2(t, t ′)
• Stacking of the state spaces
• State dimension: m = m1 + m2

Product of kernels: κ(t, t ′) = κ1(t, t ′)κ2(t, t ′)
• Kronecker sum of the models
• State dimension: m = m1 m2
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Example: GP regression, O(n3)
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Example: GP regression, O(n3)

Consider the GP regression problem with input–output training pairs {(ti , yi )}ni=1:

f (t) ∼ GP(0, κ(t, t ′)),

yi = f (ti ) + εi , εi ∼ N(0, σ2
n)

The posterior mean and variance for an unseen test input t∗ is given by (see previous
lectures):

E[f∗] = k∗ (K + σ2
n I)
−1 y,

V[f∗] = κ(t∗, t∗)− k∗ (K + σ2
n I)
−1 kT

∗

Note the inversion of the n × n matrix.
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Example: GP regression, O(n3)
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Example: GP regression, O(n)

The sequential solution (goes under the name ‘Kalman filter’) considers one data point at a time, hence
the linear time-scaling.

Start from m0 = 0 and P0 = P∞ and for each data point iterate the following steps.

Kalman prediction:

mi|i−1 = Ai−1 mi−1|i−1,

Pi|i−1 = Ai−1 Pi−1|i−1 A
T
i−1 + Qi−1.

Kalman update:

vi = yi −Hmi|i−1,

Si = Hi Pi|i−1 H
T + σ2

n,

Ki = Pi|i−1 H
T S−1

i ,

mi|i = mi|i−1 + Ki vi ,

Pi|i = Pi|i−1 −Ki Si K
T
i .
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Example: GP regression, O(n)

To condition all time-marginals on all data, run a backward sweep (Rauch–Tung–Striebel smoother):

mi+1|i = Ai mi|i ,

Pi+1|i = Ai Pi|i A
T
i + Qi ,

Gi = Pi|i A
T
i P−1

i+1|i ,

mi|n = mi|i + Gi (mi+1|n −mi+1|i ),

Pi|n = Pi|i + Gi (Pi+1|n − Pi+1|i )G
T
i ,

The marginal mean and variance can be recovered by:

E[fi ] = Hmi|n,

V[fi ] = HPi|n H
T

The log marginal likelihood can be evaluated as a by-product of the Kalman update:

log p(y) = −1

2

n∑
i=1

log |2π Si |+ vT
i S−1

i vi
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Example: GP regression, O(n)
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Example

Number of births in the US

Daily data between 1969–1988 (n = 7305)

GP regression with a prior covariance function:

κ(t, t ′) = κ
ν=5/2
Mat. (t, t ′) + κ

ν=3/2
Mat. (t, t ′)

+ κyear
Per.(t, t

′)κ
ν=3/2
Mat. (t, t ′) + κweek

Per. (t, t ′)κ
ν=3/2
Mat. (t, t ′)

Learn hyperparameters by optimizing the marginal likelihood

Explaining changes in number of births in the US
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General likelihoods
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Non-Gaussian likelihoods

The observation model might not be Gaussian

f (t) ∼ GP(0, κ(t, t′))

y | f ∼
∏
i

p(yi | f (ti ))

There exists a multitude of great methods to tackle general likelihoods with approximations of the form

Q(f | D) = N(f | m + Kα, (K−1 + W)−1)

Use those methods, but deal with the latent using state space models
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Inference

Laplace approximation
(both inner-loop and outer-loop)

Variational Bayes

Direct KL minimization

Assumed denisty filtering / Single-sweep EP
(only requires one-pass through the data)

Can be evaluated in terms of a (Kalman) filter forward and backward pass, or by iterating
them
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Example

Commercial aircraft accidents 1919–2017

Log-Gaussian Cox process (Poisson likelihood) by ADF/EP

Daily binning, n = 35,959

GP prior with a covariance function:

κ(t, t′) = κ
ν=3/2
Mat. (t, t′) + κyear

Per.(t, t
′)κ

ν=3/2
Mat. (t, t′) + κweek

Per. (t, t′)κ
ν=3/2
Mat. (t, t′)

Learn hyperparameters by optimizing the marginal likelihood
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Spatio-temporal
Gaussian processes
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Spatio-temporal GPs

f (x) ∼ GP(0, κ(x, x′))

y | f ∼
∏
i

p(yi | f (xi ))

f (r, t) ∼ GP(0, κ(r, t; r′, t ′))

y | f ∼
∏
i

p(yi | f (ri , ti ))
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Spatio-temporal Gaussian processes

GPs under the kernel formalism

f (x, t) ∼ GP(0, k(x, t; x′, t′))

yi = f (xi , ti ) + εi

Stochastic partial differential equations

∂f(x, t)

∂t
= F f(x, t) + Lw(x, t)

yi = Hi f(x, t) + εi

Location
(x) Ti

m
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)

f
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,
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Covariance
k(x, t; x′, t′)
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The state at time t
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Spatio-temporal GP regression
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Spatio-temporal GP regression
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Spatio-temporal GP priors
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Further extensions

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 31 / 38



What if the data really is infinite?

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 32 / 38



Adapting the hyperparameters online

https://youtu.be/myCvUT3XGPc
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Recap
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Gaussian processes ♥ SDEs

GPs under the kernel formalism

f (t) ∼ GP(0, κ(t, t′))

y | f ∼
∏
i

p(yi | f (ti ))

Stochastic differential equations

df(t) = F f(t) + Ldβ(t)

yi ∼ p(yi | hTf(ti ))

Flexible model
specification

Inference /
First-principles
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Recap

Gaussian processes have different representations:
• Covariance function • Spectral density • State space

Temporal (single-input) Gaussian processes
⇐⇒ stochastic differential equations (SDEs)

Conversions between the representations can
make model building easier

(Exact) inference of the latent functions, can be done in O(n) time and memory
complexity by Kalman filtering
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� Särkkä, S., and Solin, A. (2019). Applied Stochastic Differential Equations. Cambridge University Press.
Cambridge, UK.

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 37 / 38



ICML 2020 tutorial on Machine Learning with Signal Processing

https://youtu.be/vTRD03_yReI
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