CS-E4075 Special course on Gaussian processes: Session #10

Arno Solin

Aalto University

arno.solin@aalto.fi

Thursday February 11, 2021

Roadmap for today

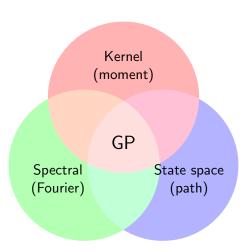
- Motivation: Temporal models
- Three views into GPs
- General likelihoods
- Spatio-temporal GPs
- Further extensions
- Recap

Motivation: Temporal models

- One-dimensional problems

 (the data has a natural ordering)
- Spatio-temproal models
 (something developing over time)
- Long / unbounded data
 (sensor data streams, daily observations, etc.)

Three views into GPs



Kernel (moment) representation

$$f(t) \sim \mathrm{GP}(\mu(t), \kappa(t, t'))$$
 GP prior $\mathbf{y} \mid \mathbf{f} \sim \prod_i p(y_i \mid f(t_i))$ likelihood

- Let's focus on the GP prior only.
- A temporal Gaussian process (GP) is a random function f(t), such that joint distribution of $f(t_1), \ldots, f(t_n)$ is always Gaussian.
- Mean and covariance functions have the form:

$$\mu(t) = \mathbb{E}[f(t)],$$

$$\kappa(t, t') = \mathbb{E}[(f(t) - \mu(t))(f(t') - \mu(t'))^{\mathsf{T}}].$$

• Convenient for model specification, but expanding the kernel to a covariance matrix can be problematic (the notorious $\mathcal{O}(n^3)$ scaling).

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 5/38

Spectral (Fourier) representation

• The Fourier transform of a function $f(t): \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{F}[f](\mathrm{i}\,\omega) = \int_{\mathbb{R}} f(t) \, \exp(-\mathrm{i}\,\omega\,t) \, \mathrm{d}t$$

• For a stationary GP, the covariance function can be written in terms of the difference between two inputs:

$$\kappa(t,t') \triangleq \kappa(t-t')$$

- Wiener-Khinchin: If f(t) is a stationary Gaussian process with covariance function $\kappa(t)$ then its spectral density is $S(\omega) = \mathcal{F}[\kappa]$.
- Spectral representation of a GP in terms of spectral density function

$$S(\omega) = \mathbb{E}[\tilde{f}(\mathrm{i}\,\omega)\,\tilde{f}^{\mathsf{T}}(-\mathrm{i}\,\omega)]$$

GP Course: Lecture #10 Thursday February 11, 2021

State space (path) representation [1/3]

 Path or state space representation as solution to a linear time-invariant (LTI) stochastic differential equation (SDE):

$$d\mathbf{f} = \mathbf{F} \mathbf{f} dt + \mathbf{L} d\boldsymbol{\beta},$$

where $\mathbf{f} = (f, \mathrm{d}f/\mathrm{d}t, \ldots)$ and $\boldsymbol{\beta}(t)$ is a vector of Wiener processes.

Equivalently, but more informally

$$\frac{\mathrm{d}\mathbf{f}(t)}{\mathrm{d}t} = \mathbf{F}\mathbf{f}(t) + \mathbf{L}\mathbf{w}(t),$$

where $\mathbf{w}(t)$ is white noise.

- The model now consists of a drift matrix $\mathbf{F} \in \mathbb{R}^{m \times m}$, a diffusion matrix $\mathbf{L} \in \mathbb{R}^{m \times s}$, and the spectral density matrix of the white noise process $\mathbf{Q}_c \in \mathbb{R}^{s \times s}$.
- The scalar-valued GP can be recovered by $f(t) = \mathbf{H} \mathbf{f}(t)$.

State space (path) representation [2/3]

• The initial state is given by a stationary state $f(0) \sim N(0, P_{\infty})$ which fulfills

$$\mathbf{F}\,\mathbf{P}_{\infty} + \mathbf{P}_{\infty}\,\mathbf{F}^{\mathsf{T}} + \mathbf{L}\,\mathbf{Q}_{\mathrm{c}}\,\mathbf{L}^{\mathsf{T}} = \mathbf{0}$$

• The covariance function at the stationary state can be recovered by

$$\kappa(t, t') = \begin{cases} \mathbf{P}_{\infty} \exp((t' - t)\mathbf{F})^{\mathsf{T}}, & t' \ge t \\ \exp((t' - t)\mathbf{F})\mathbf{P}_{\infty} & t' < t \end{cases}$$

where $exp(\cdot)$ denotes the matrix exponential function.

• The spectral density function at the stationary state can be recovered by

$$S(\omega) = (\mathbf{F} + i\,\omega\,\mathbf{I})^{-1}\,\mathbf{L}\,\mathbf{Q}_{c}\,\mathbf{L}^{\mathsf{T}}\,(\mathbf{F} - i\,\omega\,\mathbf{I})^{-\mathsf{T}}$$

State space (path) representation [3/3]

- Similarly as the kernel has to be evaluated into covariance matrix for computations, the SDE can be solved for discrete time points $\{t_i\}_{i=1}^n$.
- The resulting model is a discrete state space model:

$$\mathbf{f}_i = \mathbf{A}_{i-1} \, \mathbf{f}_{i-1} + \mathbf{q}_{i-1}, \quad \mathbf{q}_i \sim \mathrm{N}(\mathbf{0}, \mathbf{Q}_i),$$

where $\mathbf{f}_i = \mathbf{f}(t_i)$.

• The discrete-time model matrices are given by:

$$\mathbf{A}_i = \exp(\mathbf{F} \Delta t_i),$$

$$\mathbf{Q}_i = \int_0^{\Delta t_i} \exp(\mathbf{F} \left(\Delta t_i - au
ight)) \mathbf{L} \, \mathbf{Q}_{\mathrm{c}} \, \mathbf{L}^{\mathsf{T}} \, \exp(\mathbf{F} \left(\Delta t_i - au
ight))^{\mathsf{T}} \, \mathrm{d} au,$$

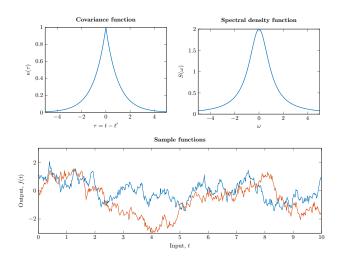
where $\Delta t_i = t_{i+1} - t_i$

• If the model is stationary, \mathbf{Q}_i is given by

$$\mathbf{Q}_i = \mathbf{P}_{\infty} - \mathbf{A}_i \, \mathbf{P}_{\infty} \, \mathbf{A}_i^{\mathsf{T}}$$

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021

Three views into GPs



Example: Exponential covariance function

• Exponential covariance function (Ornstein-Uhlenbeck process):

$$\kappa(t, t') = \exp(-\lambda |t - t'|)$$

Spectral density function:

$$S(\omega) = \frac{2}{\lambda + \omega^2/\lambda}$$

• Path representation: Stochastic differential equation (SDE)

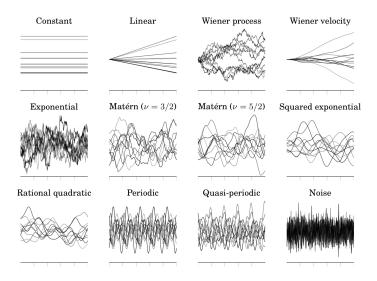
$$\frac{\mathrm{d}f(t)}{\mathrm{d}t} = -\lambda f(t) + w(t),$$

11/38

or using the notation from before:

$$F = -\lambda$$
, $L = 1$, $Q_c = 2$, $H = 1$, and $P_{\infty} = 1$.

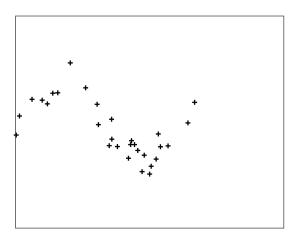
Applicable GP priors



Applicable GP priors

- The covariance function needs to be Markovian (or approximated as such).
- Covers many common stationary and non-stationary models.
- Sums of kernels: $\kappa(t,t') = \kappa_1(t,t') + \kappa_2(t,t')$
 - Stacking of the state spaces
 - State dimension: $m = m_1 + m_2$
- Product of kernels: $\kappa(t, t') = \kappa_1(t, t') \kappa_2(t, t')$
 - Kronecker sum of the models
 - State dimension: $m = m_1 m_2$

Example: GP regression, $\mathcal{O}(n^3)$



Example: GP regression, $\mathcal{O}(n^3)$

• Consider the GP regression problem with input-output training pairs $\{(t_i, y_i)\}_{i=1}^n$:

$$f(t) \sim \mathrm{GP}(0, \kappa(t, t')),$$

 $y_i = f(t_i) + \varepsilon_i, \quad \varepsilon_i \sim \mathrm{N}(0, \sigma_\mathrm{n}^2)$

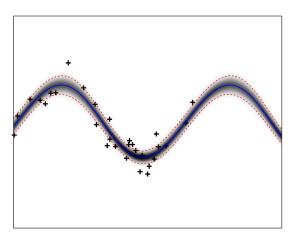
• The posterior mean and variance for an unseen test input t_* is given by (see previous lectures):

$$\mathbb{E}[f_*] = \mathbf{k}_* (\mathbf{K} + \sigma_{\mathrm{n}}^2 \mathbf{I})^{-1} \mathbf{y},$$

$$\mathbb{V}[f_*] = \kappa(t_*, t_*) - \mathbf{k}_* (\mathbf{K} + \sigma_{\mathrm{n}}^2 \mathbf{I})^{-1} \mathbf{k}_*^\mathsf{T}$$

• Note the inversion of the $n \times n$ matrix.

Example: GP regression, $\mathcal{O}(n^3)$



Example: GP regression, O(n)

- The sequential solution (goes under the name 'Kalman filter') considers one data point at a time, hence the linear time-scaling.
- Start from $\mathbf{m}_0 = \mathbf{0}$ and $\mathbf{P}_0 = \mathbf{P}_{\infty}$ and for each data point iterate the following steps.
- Kalman prediction:

$$\mathbf{m}_{i|i-1} = \mathbf{A}_{i-1} \, \mathbf{m}_{i-1|i-1},$$

$$\mathbf{P}_{i|i-1} = \mathbf{A}_{i-1} \, \mathbf{P}_{i-1|i-1} \, \mathbf{A}_{i-1}^{\mathsf{T}} + \mathbf{Q}_{i-1}.$$

• Kalman update:

$$\begin{split} \mathbf{v}_i &= y_i - \mathbf{H} \, \mathbf{m}_{i|i-1}, \\ \mathbf{S}_i &= \mathbf{H}_i \, \mathbf{P}_{i|i-1} \, \mathbf{H}^\mathsf{T} + \sigma_\mathrm{n}^2, \\ \mathbf{K}_i &= \mathbf{P}_{i|i-1} \, \mathbf{H}^\mathsf{T} \, \mathbf{S}_i^{-1}, \\ \mathbf{m}_{i|i} &= \mathbf{m}_{i|i-1} + \mathbf{K}_i \, \mathbf{v}_i, \\ \mathbf{P}_{i|i} &= \mathbf{P}_{i|i-1} - \mathbf{K}_i \, \mathbf{S}_i \, \mathbf{K}_i^\mathsf{T}. \end{split}$$

Example: GP regression, $\mathcal{O}(n)$

To condition all time-marginals on all data, run a backward sweep (Rauch-Tung-Striebel smoother):

$$\begin{split} \mathbf{m}_{i+1|i} &= \mathbf{A}_i \, \mathbf{m}_{i|i}, \\ \mathbf{P}_{i+1|i} &= \mathbf{A}_i \, \mathbf{P}_{i|i} \, \mathbf{A}_i^\mathsf{T} + \mathbf{Q}_i, \\ \mathbf{G}_i &= \mathbf{P}_{i|i} \, \mathbf{A}_i^\mathsf{T} \, \mathbf{P}_{i+1|i}^{-1}, \\ \mathbf{m}_{i|n} &= \mathbf{m}_{i|i} + \mathbf{G}_i \, (\mathbf{m}_{i+1|n} - \mathbf{m}_{i+1|i}), \\ \mathbf{P}_{i|n} &= \mathbf{P}_{i|i} + \mathbf{G}_i \, (\mathbf{P}_{i+1|n} - \mathbf{P}_{i+1|i}) \, \mathbf{G}_i^\mathsf{T}, \end{split}$$

• The marginal mean and variance can be recovered by:

$$\mathbb{E}[f_i] = \mathbf{H} \, \mathbf{m}_{i|n},$$

 $\mathbb{V}[f_i] = \mathbf{H} \, \mathbf{P}_{i|n} \, \mathbf{H}^\mathsf{T}$

• The log marginal likelihood can be evaluated as a by-product of the Kalman update:

$$\log p(\mathbf{y}) = -\frac{1}{2} \sum_{i=1}^n \log |2\pi \, \mathbf{S}_i| + \mathbf{v}_i^\mathsf{T} \, \mathbf{S}_i^{-1} \mathbf{v}_i$$

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021

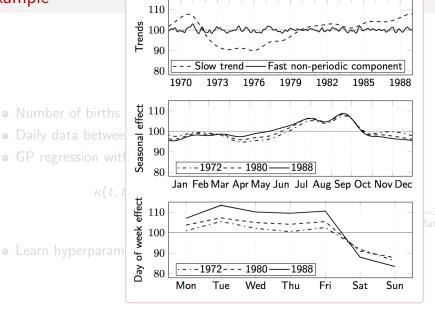
Example: GP regression, $\mathcal{O}(n)$

- Number of births in the US
- Daily data between 1969-1988 (n = 7305)
- GP regression with a prior covariance function:

$$\begin{split} \kappa(t,t') &= \kappa_{\text{Mat.}}^{\nu=5/2}(t,t') + \kappa_{\text{Mat.}}^{\nu=3/2}(t,t') \\ &+ \kappa_{\text{Per.}}^{\text{year}}(t,t') \, \kappa_{\text{Mat.}}^{\nu=3/2}(t,t') + \kappa_{\text{Per.}}^{\text{week}}(t,t') \, \kappa_{\text{Mat.}}^{\nu=3/2}(t,t') \end{split}$$

• Learn hyperparameters by optimizing the marginal likelihood

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 20 / 38



Explaining changes in number of births in the US

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 20 / 38

General likelihoods

Non-Gaussian likelihoods

• The observation model might not be Gaussian

$$f(t) \sim \operatorname{GP}(0, \kappa(t, t'))$$

 $\mathbf{y} \mid \mathbf{f} \sim \prod_{i} p(y_i \mid f(t_i))$

• There exists a multitude of great methods to tackle general likelihoods with approximations of the form

$$\mathbb{Q}(\mathbf{f}\mid\mathcal{D}) = \mathrm{N}(\mathbf{f}\mid\mathbf{m} + \mathbf{K}\alpha, (\mathbf{K}^{-1} + \mathbf{W})^{-1})$$

• Use those methods, but deal with the latent using state space models

Inference

- Laplace approximation (both inner-loop and outer-loop)
- Variational Bayes
- Direct KI minimization
- Assumed denisty filtering / Single-sweep EP (only requires one-pass through the data)
- Can be evaluated in terms of a (Kalman) filter forward and backward pass, or by iterating them

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 23 / 38

- Commercial aircraft accidents 1919–2017
- Log-Gaussian Cox process (Poisson likelihood) by ADF/EP
- Daily binning, n = 35,959
- GP prior with a covariance function:

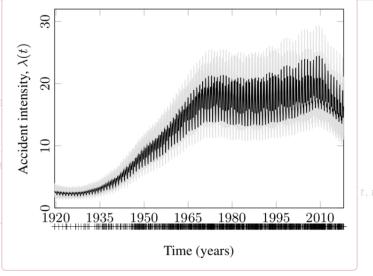
$$\kappa(t,t') = \kappa_{\mathrm{Mat.}}^{\nu=3/2}(t,t') + \kappa_{\mathrm{Per.}}^{\mathrm{year}}(t,t') \, \kappa_{\mathrm{Mat.}}^{\nu=3/2}(t,t') + \kappa_{\mathrm{Per.}}^{\mathrm{week}}(t,t') \, \kappa_{\mathrm{Mat.}}^{\nu=3/2}(t,t')$$

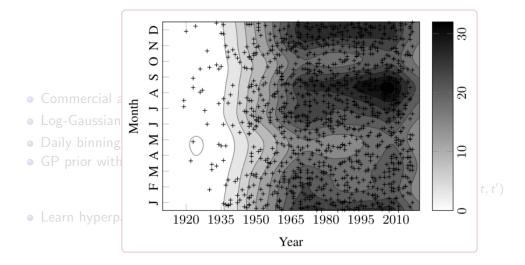
Learn hyperparameters by optimizing the marginal likelihood

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 24/38

- Log-Gaussian
- Daily binning
- GP prior with

Learn hyperp:





Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 24/38

Spatio-temporal Gaussian processes

Spatio-temporal GPs

$$f(\mathbf{x}) \sim \mathrm{GP}(0, \kappa(\mathbf{x}, \mathbf{x}'))$$

 $\mathbf{y} \mid \mathbf{f} \sim \prod_{i} p(y_i \mid f(\mathbf{x}_i))$

$$f(\mathbf{r}, t) \sim \mathrm{GP}(0, \kappa(\mathbf{r}, t; \mathbf{r}', t'))$$

 $\mathbf{y} \mid \mathbf{f} \sim \prod_{i} p(y_i \mid f(\mathbf{r}_i, t_i))$

Spatio-temporal Gaussian processes

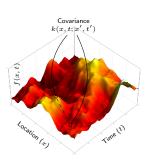
GPs under the kernel formalism

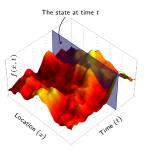
$$f(\mathbf{x}, t) \sim \text{GP}(0, k(\mathbf{x}, t; \mathbf{x}', t'))$$

 $y_i = f(\mathbf{x}_i, t_i) + \varepsilon_i$

Stochastic partial differential equations

$$\frac{\partial \mathbf{f}(\mathbf{x}, t)}{\partial t} = \mathcal{F} \mathbf{f}(\mathbf{x}, t) + \mathcal{L} w(\mathbf{x}, t)$$
$$y_i = \mathcal{H}_i \mathbf{f}(\mathbf{x}, t) + \varepsilon_i$$





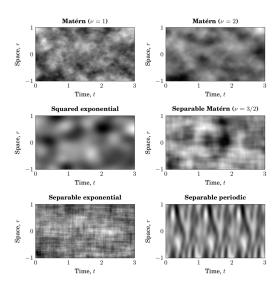
27/38

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021

Spatio-temporal GP regression

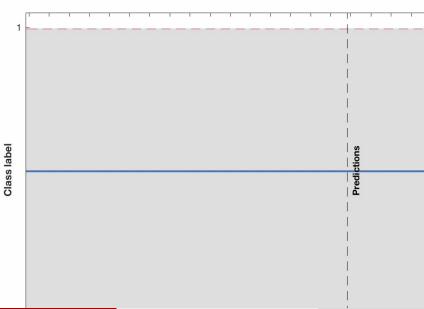
Spatio-temporal GP regression

Spatio-temporal GP priors



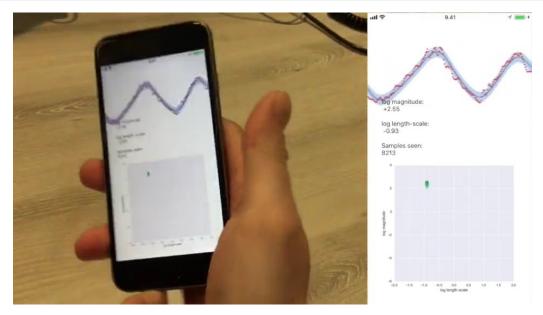
Further extensions

What if the data really is infinite?



Arno Solin

Adapting the hyperparameters online



https://youtu.be/myCvUT3XGPc

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021

Recap

GPs under the kernel formalism

$$f(t) \sim GP(0, \kappa(t, t'))$$

 $\mathbf{y} \mid \mathbf{f} \sim \prod p(y_i \mid f(t_i))$

Flexible model specification

Stochastic differential equations

$$\mathrm{d}\mathbf{f}(t) = \mathbf{F}\,\mathbf{f}(t) + \mathbf{L}\,\mathrm{d}oldsymbol{eta}(t)$$

 $y_i \sim p(y_i \mid \mathbf{h}^\mathsf{T}\mathbf{f}(t_i))$

Inference / First-principles

Recap

- Gaussian processes have different representations:
 - Covariance function
 Spectral density
 State space
- Temporal (single-input) Gaussian processes
 stochastic differential equations (SDEs)
- Conversions between the representations can make model building easier
- (Exact) inference of the latent functions, can be done in $\mathcal{O}(n)$ time and memory complexity by Kalman filtering

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 36 / 38

Bibliography

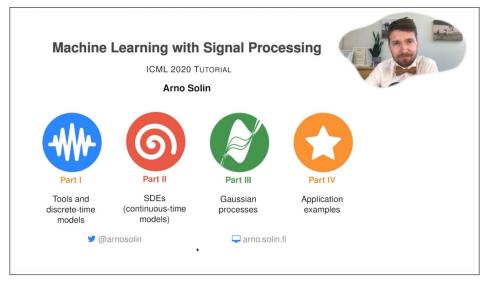
The examples and methods presented on this lecture are presented in greater detail in the following works:

- Särkkä, S., Solin, A., and Hartikainen, J. (2013). Spatio-temporal learning via infinite-dimensional Bayesian filtering and smoothing.

 IEEE Signal Processing Magazine, 30(4):51–61.
- Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press. Cambridge, UK.
- Solin, A. (2016). Stochastic Differential Equation Methods for Spatio-Temporal Gaussian Process Regression. Doctoral dissertation, Aalto University.
- Solin, A., Hensman, J., and Turner, R.E. (2018). Infinite-horizon Gaussian processes. Advances in Neural Information Processing Systems (NeurIPS), pages 3490–3499. Montréal, Canada.
- Särkkä, S., and Solin, A. (2019). Applied Stochastic Differential Equations. Cambridge University Press. Cambridge, UK.

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 37 / 38

ICML 2020 tutorial on Machine Learning with Signal Processing



https://youtu.be/vTRD03_yReI

Arno Solin GP Course: Lecture #10 Thursday February 11, 2021 38/38