Outline

Gaussian processes - integration and model selection

- Background
- Rasmussen \& Williams Chapter 5
- Point estimate vs. integration
- motorcycle crash g-forces
- Using GPs as components
- motorcycle crash g-forces
- birthdays
- Model selection

How I started working on GPs

GPs as priors for model components

GPs as priors for model components

Monotonic maturation effect

Aki.Vehtari@aalto.fi - @avehtari

Igpr - longitudinal Gaussian process regression

R package for Longitudinal Gaussian Process Regression.

Aki.Vehtari@aalto.fi - @avehtari

"Model selection"

- Lecture 3
- Rasmussen \& Williams Chapter 5

Hyperparameters \& model selection (I)

- Almost all covariance functions have hyperparameters
- How do we choose values for them?
- Ideally, we would like to put prior distributions on the hyperparameters and compute the posterior
- Let $\boldsymbol{\theta}$ be the hyperparameters of interest, then

$$
\begin{equation*}
p(\boldsymbol{\theta} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\boldsymbol{y})} \tag{38}
\end{equation*}
$$

but in this case the marginal likelihood is almost always intractable

$$
\begin{equation*}
p(\boldsymbol{y})=\int p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta} \tag{39}
\end{equation*}
$$

Hyperparameters \& model selection (II)

- Approximation: We will use the MAP (Maximum a posterior estimate)
- $p(\boldsymbol{y})$ is constant wrt. $\boldsymbol{\theta}$

$$
\begin{equation*}
p(\boldsymbol{\theta} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\boldsymbol{y})} \propto p(\boldsymbol{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \tag{40}
\end{equation*}
$$

- The MAP estimate is defined as

$$
\begin{equation*}
\hat{\theta}_{\mathrm{MAP}}=\arg \max _{\boldsymbol{\theta}} \ln p(\boldsymbol{\theta} \mid \boldsymbol{y})=\arg \max _{\boldsymbol{\theta}} \ln p(\boldsymbol{y} \mid \boldsymbol{\theta})+\ln p(\boldsymbol{\theta}) \tag{41}
\end{equation*}
$$

- If the prior $p(\boldsymbol{\theta}) \propto 1$ is uniform

$$
\begin{equation*}
\hat{\theta}_{\mathrm{MAP}}=\arg \max _{\boldsymbol{\theta}} \ln p(\boldsymbol{y} \mid \boldsymbol{\theta})+\ln k=\arg \max _{\boldsymbol{\theta}} \ln p(\boldsymbol{y} \mid \boldsymbol{\theta})=\hat{\theta}_{\mathrm{ML}} \tag{42}
\end{equation*}
$$

- This is also sometimes called the maximum likelihood type II estimate

The marginal likelihood computation (I)

- Marginal likelihood for Gaussian likelihood

$$
\begin{align*}
p(\boldsymbol{y} \mid \boldsymbol{\theta}) & =\int p(\boldsymbol{y} \mid \boldsymbol{f}) p(\boldsymbol{f} \mid \boldsymbol{\theta}) \mathrm{d} \boldsymbol{f} \tag{43}\\
& =\int \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{f}, \sigma_{o b s}^{2} \boldsymbol{I}\right) \mathcal{N}(\boldsymbol{f} \mid 0, \boldsymbol{K}) \mathrm{d} \boldsymbol{f} \tag{44}\\
& =\mathcal{N}\left(\boldsymbol{y} \mid 0, \sigma_{o b s}^{2} \boldsymbol{I}+\boldsymbol{K}\right) \tag{45}
\end{align*}
$$

- Then

$$
\begin{align*}
\ln p(\boldsymbol{y} \mid \boldsymbol{\theta}) & =\ln \mathcal{N}\left(\boldsymbol{y} \mid 0, \sigma_{o b s}^{2} \boldsymbol{I}+\boldsymbol{K}\right) \tag{46}\\
& =\ln \left[(2 \pi)^{-\frac{N}{2}}\left|\sigma_{o b s}^{2} \boldsymbol{I}+\boldsymbol{K}\right|^{-\frac{1}{2}} \exp \left(-\frac{1}{2} \boldsymbol{y}^{T}\left(\sigma_{o b s}^{2} \boldsymbol{I}+\boldsymbol{K}\right)^{-1} \boldsymbol{y}\right)\right] \tag{47}\\
& =-\frac{N}{2} \ln (2 \pi)-\frac{1}{2} \ln \left|\sigma_{o b s}^{2} \boldsymbol{I}+\boldsymbol{K}\right|-\frac{1}{2} \boldsymbol{y}^{T}\left(\sigma_{o b s}^{2} \boldsymbol{I}+\boldsymbol{K}\right)^{-1} \boldsymbol{y} \tag{48}
\end{align*}
$$

- Motorcycle crash g-forces
- Birthdays
- Traffic deaths

Leave-one-out cross-validation

True mean $y=a+b x$

Leave-one-out cross-validation

True mean and sigma

Leave-one-out cross-validation

Data

Leave-one-out cross-validation

Posterior mean

Leave-one-out cross-validation

Posterior draws

Leave-one-out cross-validation

Posterior predictive distribution

Leave-one-out cross-validation

New data

Leave-one-out cross-validation

Posterior predictive distribution

Leave-one-out cross-validation

Leave-one-out mean

Leave-one-out cross-validation - log score

Leave-one-out cross-validation - log score

Posterior predictive density

$$
p\left(\tilde{y}=y_{18} \mid \tilde{x}=18, x, y\right) \approx 0.07
$$

Leave-one-out cross-validation - log score

Leave-one-out predictive density

$$
\begin{aligned}
& p\left(\tilde{y}=y_{18} \mid \tilde{x}=18, x, y\right) \approx 0.07 \\
& p\left(\tilde{y}=y_{18} \mid \tilde{x}=18, x_{-18}, y_{-18}\right) \approx 0.03
\end{aligned}
$$

Leave-one-out cross-validation - log score

Leave-one-out predictive densities

Leave-one-out cross-validation - log score

Leave-one-out cross-validation - log score

Leave-one-out cross-validation - log score

Leave-one-out log predictive densities

$\widehat{\mathrm{elpd}}_{\mathrm{Loo}}=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
almost unbiased estimate of elpd for new data

Leave-one-out cross-validation - log score

Leave-one-out log predictive densities

$\widehat{\operatorname{elpd}}_{\mathrm{LOO}}=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
$\operatorname{lpd}=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x, y\right) \approx-26.8$

Leave-one-out cross-validation - log score

Leave-one-out log predictive densities

$\widehat{\operatorname{elpd}}_{\mathrm{Loo}}=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
$\mathrm{SE}=\operatorname{sd}\left(\log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)\right) \cdot \sqrt{20} \approx 3.3$

Arsenic well example - Model comparison

- Logistic regression for predicting probability of switching well with high arsenic level in rural Bangladesh
- Model 1: log(arsenic) + distance
- Model 2: log(arsenic) + distance + education level

Arsenic well example - Model comparison

Model 1 vs Model 2

Model 1: $\widehat{\operatorname{elpd}}_{\text {Loo }}\left(\mathrm{M}_{a} \mid y^{\mathrm{obs}}\right) \approx-1952$, SE=16
Model 2: $\widehat{\operatorname{elpd}}_{\mathrm{Loo}}\left(\mathrm{M}_{b} \mid y^{\mathrm{obs}}\right) \approx-1938$, SE=17

Arsenic well example - Model comparison
Model 1 vs Model 2

Difference: $\widehat{\operatorname{elpd}}_{\text {Loo }}\left(\mathrm{M}_{a}, \mathrm{M}_{b} \mid y^{\mathrm{obs}}\right) \approx-14.4, \mathrm{SE}=6.1$

Arsenic well example - Model comparison

Difference: $\widehat{\operatorname{elpd}}_{\text {Loo }}\left(\mathrm{M}_{a}, \mathrm{M}_{b} \mid y^{\mathrm{obs}}\right) \approx-14.4, \mathrm{SE}=6.1$

Arsenic well example - Model comparison

Difference: $\widehat{\operatorname{elpd}}_{\text {Loo }}\left(\mathrm{M}_{a}, \mathrm{M}_{b} \mid y^{\mathrm{obs}}\right) \approx-14.4, \mathrm{SE}=6.1$

Arsenic well example - Model comparison

Difference: $\widehat{\operatorname{elpd}}_{\text {Loo }}\left(\mathrm{M}_{a}, \mathrm{M}_{b} \mid y^{\mathrm{obs}}\right) \approx-14.4, \mathrm{SE}=6.1$

Cross-validation variants

- leave-group-out
- leave-future-out
- K-fold

References

- Vehtari, Mononen, Tolvanen, Sivula and Winther (2016). Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models. Journal of Machine Learning Research, 17(103):1-38.
- Riutort-Mayol, Bürkner, Andersen, Solin, and Vehtari (2020). Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming. arXiv:2004.11408.
- Siivola, Weber, and Vehtari (2021). Qualifying drug dosing regimens in pediatrics using Gaussian processes. Statistics in Medicine, 10.1002/sim.8907, in press.
- Timonen, Mannerström, Vehtari, and Lähdesmäki (2021). Igpr: An interpretable nonparametric method for inferring covariate effects from longitudinal data. Bioinformatics, accepted for publication. arXiv:1912.03549.
- Järvenpää, Gutmann, Vehtari, and Marttinen (2021). Parallel Gaussian process surrogate Bayesian inference with noisy likelihood evaluations. Bayesian Analysis, 16(1):147-148.
- Koistinen, Ásgeirsson, Vehtari, and Jónsson (2019). Nudged elastic band calculations accelerated with Gaussian process regression based on inverse inter-atomic distances. Journal of Chemical Theory and Computation, 15:6738-6751,

