
AGENDA FOR TODAY

1. quality evaluation of information retrieval (last part of the vsm notebook)

2. introduction to the POS-tagging notebook

3. your questions

QUALITY EVALUATION  
OF 

INFORMATION RETRIEVAL

1. the task of IR

2. definition of similarity

3. metrics

4. notebook functions

4.1. closest_n_documents()

4.2. compute_average_results()

THE TASK OF IR

Information Retrieval (IR) - the task of finding the document d from the D documents in some
collection that best matches a query q

IN THE NOTEBOOK

IDEALLY: find N songs from the collection that belong to the same artist as q  
d - a song represented as a vector 
q - a new song

we’re testing if it makes sense to try and build a recommendation system based on lyrics only.
we test if it works for finding songs by the same artist because these are easy to obtain 'true
labels'. but other 'true labels' could be similar artists according to some listeners.

this approach might also be used for attributing anonymous or pseudonymous works to an
author (who might have written this song?)

DEFINITION OF SIMILARITY 1

we represent songs as vectors where dimensions are related to words used in these
song.  
our premise is that similar songs use similar vocabulary.

to test how similar the values across those dimensions are we use cosine. it is dot
product normalised by vector lengths (so that songs with lots of words don’t get the
advantage)

song1 = [3,0,5] (8 words) |s1|= sqrt(3*3+0*0+5*5) = sqrt(34) = 5.83 
song2 = [3,7,5] (15 words) |s2|= sqrt(3*3+7*7+5*5) = sqrt(83) = 9.11 
song3 = [5,1,4] (10 words) |s3|= sqrt(5*5+1*1+4*4) = sqrt(42) = 6.48

dot(s1,s2) = 3*3+0*7+5*5=34 
dot(s1,s3) = 3*5+0*1+5*4=35

cosine(s1,s2) = 34/(5.83*9.11)=0.64 
cosine(s1,s2) = 35/(5.83*6.48)=0.93

DEFINITION OF SIMILARITY 2

to find N most similar songs to a query q: 
1. compare q to every song 
2. sort the songs by their similarity 
3. choose N most similar

collection [s1,s2,s3], query q

cosine(q,s1)=0.05 
cosine(q,s2)=0.5 
cosine(q,s3)=0.09

sorted_collection [s2,s3,s1]

top_2 [s2,s3]

METRICS 1

we have N most similar songs for every song  
in a test set of T songs 
how do we know if a system is good?

STEP1 for every song count:

True Positives (TP) - were chosen and right 
True Negatives (TN) - were not chosen and are not relevant 
False Positives (FP) - were chosen, but are not relevant 
False Negatives (FN) - were not chosen, but relevant

thanks god oh no

METRICS 2

we have N most similar songs for every song in a test set of T songs. how do we know if a
system is good?

STEP2 for every song compute:

Precision =  
 
Recall =  

 
Accuracy =  
 
Error =  
 

F-measure =

TP
TP + FP

=
TP
N

TP
TP + FN

=
TP

numofartistsongs
TP + TN

collectionlen
FP = FN

collectionlen
= 1 − Accuracy

1

α 1
Precision + (1 − α) 1

Recall

METRICS 3

we have N most similar songs for every song  
in a test set of T songs 
how do we know if a system is good?

STEP3 get an average performance according to every metric:

average_accuracy =

average_recall =

and so on …

acc1 + acc2 + acc3 + … + accT

T
rec1 + rec2 + rec3 + . . . + recT

T

NOTEBOOK FUNCTIONS 
closest_n_documents()

matrix_collection 3x5 
matrix_query 3x3 
n 2

closest_docs [[1,2],[1,2],[1,2]] 
a list of 3 lists with 2 indices

NOTEBOOK FUNCTIONS 
compute_average_results()

closest_songs [[1,2],[1,2],[1,2]] 
a list of 3 lists with 2 indices 
comes from closest_n_documents()

train_index 
 { 
 artist1:[0,1,2] 
 artist2:[3,4] 
 } 
tells what songs from matrix_collection are by who

test_index 
 { 
 artist1:[0,1,2] 
 artist2:[] 
 } 
tells what songs from matrix_query are by who

