AGENDA FOR TODAY

- 1. quality evaluation of information retrieval (last part of the vsm notebook)
- 2. introduction to the POS-tagging notebook
- 3. your questions

QUALITY EVALUATION OF

INFORMATION RETRIEVAL

- 1. the task of IR
- 2. definition of similarity
- 3. metrics
- 4. notebook functions
 - 4.1. closest_n_documents()
 - 4.2. compute_average_results()

THE TASK OF IR

Information Retrieval (IR) - the task of finding the document d from the D documents in some collection that best matches a query q

IN THE NOTEBOOK

IDEALLY: find N songs from the collection that belong to the same artist as *q d* - a song represented as a vector *q* - a new song

we're testing if it makes sense to try and build a recommendation system based on lyrics only. we test if it works for finding songs by the same artist because these are easy to obtain 'true labels'. but other 'true labels' could be similar artists according to some listeners.

this approach might also be used for attributing anonymous or pseudonymous works to an author (who might have written this song?)

DEFINITION OF SIMILARITY 1

song.

our premise is that similar songs use similar vocabulary.

to test how similar the values across those dimensions are we use cosine. it is dot advantage)

song1 = [3,0,5]	(8 words)
song2 = [3,7,5]	(15 words)
song3 = [5,1,4]	(10 words)

dot(s1,s2) = 3*3+0*7+5*5=34dot(s1,s3) = 3*5+0*1+5*4=35

cosine(s1,s2) = 34/(5.83*9.11)=0.64cosine(s1,s2) = 35/(5.83*6.48)=0.93

- we represent songs as vectors where dimensions are related to words used in these
- product normalised by vector lengths (so that songs with lots of words don't get the

```
|s1| = sqrt(3^{*}3 + 0^{*}0 + 5^{*}5) = sqrt(34) = 5.83
|s2| = sqrt(3*3+7*7+5*5) = sqrt(83) = 9.11
|s3| = sqrt(5*5+1*1+4*4) = sqrt(42) = 6.48
```

to find N most similar songs to a query q:

- 1. compare q to every song
- 2. sort the songs by their similarity
- **3. choose N most similar**

collection [s1,s2,s3], query q

cosine(q,s1)=0.05cosine(q,s2)=0.5cosine(q,s3)=0.09

sorted_collection [s2,s3,s1]

top_2 [s2,s3]

DEFINITION OF SIMILARITY 2

we have N most similar songs for every song in a test set of T songs how do we know if a system is good?

STEP1 for every song count:

True Positives (TP) - were chosen and right True Negatives (TN) - were not chosen and are not relevant False Positives (FP) - were chosen, but are not relevant **False Negatives (FN) - were not chosen, but relevant**

thanks god oh no

METRICS 1

METRICS 2

system is good?

STEP2 for every song compute:

we have N most similar songs for every song in a test set of T songs. how do we know if a

METRICS 3

we have N most similar songs for every song in a test set of T songs how do we know if a system is good?

STEP3 get an average performance according to every metric:

 $acc_1 + acc_2 + acc_3 + \dots + acc_T$ average_accuracy = T $average_recall = \frac{rec_1 + rec_2 + rec_3 + \ldots + rec_T}{T}$

and so on ...

NOTEBOOK FUNCTIONS closest_n_documents()

def closest_n_documents(matrix_collection, matrix_queries, n):
 """Finds N closest documents from a training collection to every song in a test collection

this function takes in original document collection, new document collection, computes cosine similarity between documents in old and new collection, and outputs the list of n-closest documents to each new song when a vector in a query has only zeros, the closeness to it should be determined by index of a song from a matrix_collection: the closest document for a zero vector has index 0 the second closest document for a zero vector has index 1 and so on

Parameters

matrix_collection : numpy array
 a term-document matrix of songs in training collection
 songs are columns
matrix_queries : numpy array
 a term-document matrix of query songs
 songs are columns
n : int
 a number of closest documents to return

Returns

closest_docs : a list of lists
 a list of length equal to the number of songs in a query matrix
 each element is, in turn, a list of n imdices of documents in matrix_collection that were closest to the query
 for n=2 and query matrix with 3 songs, the out put should look like so [[1,2],[1,2],[1,2]]

matrix_collection 3x5 matrix_query 3x3 n 2

closest_docs [[1,2],[1,2],[1,2]] a list of 3 lists with 2 indices

NOTEBOOK FUNCTIONS compute_average_results()

closest_songs [[1,2],[1,2],[1,2]] a list of 3 lists with 2 indices comes from closest_n_documents()

train_index

```
artist1:[0,1,2]
artist2:[3,4]
```

tells what songs from matrix_collection are by who

test_index

```
artist1:[0,1,2]
  artist2:[]
tells what songs from matrix_query are by who
```

def compute_average_results(closest_songs, train_index, test_index): """Computes average metrics for a model based on n closest songs for a test set Parameters _____ closest_songs : a list of lists a list of length equal to the number of songs in a query matrix each element contain n closest songs from a training collection to that song train_index : dict {atrist:lits of song indices} indices of songs in training collection assigned to artists test_index : dict {atrist:lits of song indices} indices of songs in test collection assigned to artists Returns _____ average precision: float average precision based on all test songs average_recall: float average recall based on all test songs average_accuracy: float average accuracy based on all test songs average_error: float average error based on all test songs average_f_measure: float average f_measure based on all test songs

