Stellarators and Stellarator Physics

Dr. Timo Kiviniemi and Prof. Dr. Mathias Groth Aalto University School of Science, Department of Applied Physics

Outline

• **What is a stellarator?**

– **Twisted magnetic fields and different types of stellarators**

- **(Performance-limiting) plasma transport in stellarators**
- **Advantages and disadvantages of stellarators over tokamaks ⇒ is one concept going to win the race?**
- **Field-optimized stellarators and the Wendelstein 7-X project**
- **Cost of fusion electricity**

A stellarator is magnetic confinement system based on currents solely driven external coils

- **Conceptual advantages:**
	- Inherently steady-state
	- No current disruptions (or current-driven instabilities)
- **Drawbacks/opportunity:**
	- No guaranteed flux surfaces
	- Due to 3-D geometry, additional losses, complexity, localized heating of wall

Having to deal with a full 3-D magnetic field configuration allows dedicated design of it

- **Magnetic confinement requires:**
	- Nested flux surfaces
	- Finite toroidal transform

High and low magnetic field

In a tokamak toroidal symmetry is preserved, in stellarators imposed

Tokamak Stellarator

- - **Axisymmetry Periodicity φ → φ+2π/P** (P: number of field periods)
		- **Stellarator (flipping) symmetry:** (**φ,θ**) → (-**φ,-θ**)

Tokamaks and stellarators produce two different types of rotational transforms

Tokamak

- transform produced by plasma current
- transform decreases with radius (safety factor increases)
- Axisymmetric

plasma current

- 2-D configuration
- Current-driven instabilities and disruptions
- Pulsed

Stellarator

- transform produced by external coils
- transform increases with radius

no externally driven TOTAL toroidal current

- 3-D configuration by definition \Rightarrow complex, prone to higher radial transport losses
- No disruptions
- Steady-state

Magnetic confinement in a stellarator is toroidally asymmetric

Closed field lines exist at rational values of m toroidal and n poloidal transit ι/2π = m/n

- **Rotational transform: R <B_a> / r_{eff} <B_a>**
	- Local pitch angle may vary strongly on flux surface

The stellarator equilibrium can be derived from the standard MHD equations

• **Equations (as for tokamaks):**

$$
j \times B = \nabla p
$$

$$
\nabla x B = \mu_0 j
$$

$$
\nabla \cdot B = 0
$$

- **Equilibrium determined by:**
	- Radial profiles (e.g., pressure, total toroidal current J=0) ⇒ Outer flux surface can be parameterized (in cylindrical coordinates (R, Z, Φ) with periodic conditions
	- **Boundary conditions: B tangential to surface**
	- ⇒ **Solution of MHD equations inside surface**

Field lines can be visualized using an electron beam in a hydrogen gas

• **Structures of magnetic field: shear, island, ergodic regions ⇒ shortcuts of transport to wall**

There is generally no analytic proof of existence of flux surfaces in helical devices ⇒ field line tracing

Electrons emitted parallel to the calculation calculation B in vacuum field without plasma ⇒ fluorescent projector and interaction with (Ar) background gas

Three basic types of stellarators

All helical confinement concepts revolve around the question of how to build 3D toroidal flux surfaces

- **Three basic types of systems**
	- Heliotrons, "classical" stellarators, heliacs
- **Principle research questions are very similar**
	- Design vacuum field (and coils) w/ good flux surfaces
	- Reduce particle losses (drifts) in 3D geometry (fast particles, neoclassical transport, trapped particles) \Rightarrow similar to tokamaks
	- Operation at maximum density (and pressure)
- ⇒ **For steady-state, additional issues, such as power exhaust and impurity control exist**
- ⇒ **Second-generation stellarators include modular coils**

Twisting the torus and hence magnetic field produced helicity (Princeton Figure-8 stellarator)

A heliotron, or torsatron, is a stellarator with a circular axis and helically twisted coils

• **Vertical field needed to counteract helical field**

The Large Helical Device (LHD) is an example of an heliotron

- **LHD dimensions: R=3.5 to 4.1 m, volume= 28 m³**
- **Primary device and line of stellarator research in Japan**

The previous Wendelstein 7-A stellarator used both helical and toroidal coils (classic stellarator)

• **Wendelstein 7-A dimensions: R=2 m, a=10cm, l=2, m=5, volume << 1 m³**

[Wendelstein family: WEGA, W7-A, W7-AS, W7-X]

In a heliac (TJ-II, CIEMAT, Spain) the plasma is wound around a single central conductor

Islands in the edge can be used for energy and particle exhaust

The island structure was observed with a toroidally viewing camera system

Transport processes in stellarators

Orbit drifts (in an inhomogeneous magnetic field) leads to losses of particles and energy

- **Stellarators have more classes of trapped particles than tokamaks**
- ⇒ **(Diffusive) neoclassical transport of particles = losses**

Stellarators require a strong reduction of radial convective transport to be high-performing

- **Diffusion in low collisionality regime is large (ripple trapped particles)**
- **Radial electric field leads to de-trapping of via ExB drifts**
- ⇒ **Optimization of B-field** $(\epsilon_{\text{eff}}) \Rightarrow$ **linked mirror concept)**

With increasing radial electric field (de-trapping), crossfield transport can be reduced at low collisionality

W7-AS $\epsilon = 0.35$ Configuration

 $|E|/vB_0 = 3 \times 10^{-3}$ 1×10^{-3} 3×10^{-4} 1×10^{-4} 3×10^{-5} zero

In a drift-optimized stellarator (Wendelstein 7-X), neoclassical diffusion is significantly reduced

W7-X Standard Configuration

 $|E|/vB_0 = 1 \times 10^{-3}$ 3×10^{-4} 1×10^{-4} 3×10^{-5} 1×10^{-5} zero

Superdense core plasmas have been obtained in the LHD stellarator

- **High-density operation is preferable also in stellarators:** fusion yield, confinement, low edge temperatures
- **Stellarators have no disruptive density limit**
- ⇒ **Yet, operation still require density and impurity control**

H-mode confinement and edge localized modes were also observed in stellarators (W7-AS)

Toward future stellarator reactors

To make stellarators successful, one needs to minimize transport losses

- **Steady-state capability without need for current drive ⇒ no current disruption**
- **Maintain confining field and divertor island structures even at high pressure**
- **High-density operation:** no density limit like in tokamaks
- **Collisional losses:** fast particles, neoclassical transport, turbulence and flows

⇒ **Option: design an optimized magnetic configuration**

Modular coils give wider accessible Fourier distribution of currents, and 3-D shaping of axis

The Wendelstein 7-X is the first optimized superconducting stellarator

HELIAS ("pure stellarator") ⇒ drift-optimized

- R=5.5 m, a=0.52 m,
	- V_{plasma} ~30 m⁻³ (vs. JET: 3/1/100 and ITER 6/2/840)

The Wendelstein 7-X is the first optimized superconducting stellarator

- HELIAS ("the pure stellarator") ⇒ drift-optimized
- R=5.5 m, a=0.52 m,

 V_{plasma} ~30 m⁻³

Fully cooled invessel components and island divertor

The projected performance (D-T equivalent) of W7-X is an order of magnitude lower than that of ITER

Conceptually, scientists have already been planning for future stellarator reactors

Various extensions of helical devices toward reactors exist

FFHR: $R=20$ m, $P_{th}=3$ GW

ARIES-CS: $R=8$ m, $P_{th}=4$ GW

- FFHR = force free helical reactor (heliotron), based on LHD [Fus. Eng. Design 1995]
- HSR4/18: Helias reactor with four field periods, based on W7-X [Nucl Fusion 2001]
- ARIES-CS: compact stellarator [Fus. Sci and Tech. 2008]

HSR4: R=18 m, P_{th} =3 GW

Stellarator specific reactor issues

- + **Steady-state ⇒ reduced fatigue effects**
- + **No current drive ⇒ low recirculating power (CD, SC, pulse length, beta → net electricity)**
- **Mechanical forces between coils requiring heavy support structure**
- **Limited space between plasma edge and coil in certain locations for blanket and shielding**

Is a stellarator reactor better than a tokamak reactor? In other words, who's winning the race?

- **Costs are significant why paying twice?**
- \Rightarrow Total investment into W7-X (1997-2014) = 1.1 bn €, EU for ITER until 2022 = 8 bn f .
- \Rightarrow EU fusion strategy for W7-X is not considered relevant for ITER, but for DEMO
- **Will there be more than one DEMO?**
- ⇒ ITER + JT60-SA + (Chinese study) are steps toward DEMO tokamak
- ⇒ Korea, Japan and China have built superconducting tokamaks

Is a stellarator reactor better than a tokamak reactor? In other words, who's winning the race?

- ⇒ US government stopped National Compact Stellarator Experiment (NCSX), a quasi toroidal LN2 cooled device, but also terminated Alcator C-mod \Rightarrow focus on ITER
- \Rightarrow In Japan, there is not yet a decision on a follow-up device to LHD
- **Can we gain from the synergy between tokamaks and stellarators?**
- ⇒ Tokamak research is better organized, focus on ITER
- ⇒ Stellarator research need more devices to cover the many concepts
- ⇒ **Will failure of ITER make way for stellarator?**

Cost of fusion power plant and electricity

W7-X staff and funding profile 1st op phase hardening 2nd op phase

- **W7-X team ~380 people, not including visitors and support personnel**
- **Total investment between 1997-2014 ~1.1 bn € (370 m€ device, 100 m€ buildings, 310 m€ staff)**
- **25% funding from EU, 75% German and regional government**

Project costs: ITER and W7-X vs. Olkiluoto and Länsimetro

a) EU for ITER until 2022 = 8 bn € (or: total constraction costs 20 bn\$ compared to original estimate 5 bn\$ and full power 2027 compared to original estimate 2016)

b) Finland: Olkiluoto EPR fission power plant, "first of a kind": 8.5 billion €, starts 2020 (compare to original estimate 3.2 billion €, starts 2009)

c) Total investment into W7-X (1997-2014) = 1.1 bn€ (0.37 bn€ device, 0.1 bn€ buildings, 0.31 bn€ staff; started 2015, not e.g. 2004)

d) Finland: Länsimetro underground (via Otaniemi): first phase costed 1.2 bn€ (2008 accepted budget 0.7 bn€)

Cost of fusion electricity depends on...

- **Investment cost depends on machine size expecially for large reactors**
- **for <r> ≈ plasma coil spacing further reduce of size** does not help much (for a given P_{output})
	- **a) higher loads on components**
	- **b) tighter spaces for maintenance**
	- **c) other engineering constraints**
		- **→ a larger extrapolation from current technology required**
- **Cost of electricity also depends on the availability of power plant (→ replacement of components), learning factor, cost of materials and technological development**

Cost of fusion electricity depends on...

In fusion ~ 70 % cost of capital, 3% O&M, 25% blanket and divertor replacement, \sim 1% Fuel, \leq 1% Decommissioning

Bustreo, ETSAP meeting 2013

Example: ARIES-CS Power-Plant Investment Cost

Najmapadi et al, Fusion Science and Technology / Volume 54 / Number 3 / October 2008 / Pages 655-672

The Wendelstein 7-X project

The Wendelstein 7-X project at the Institute for Plasma Physics in Greifswald, Germany

Video: [Construction W7-X \(1.21 s\)](https://www.youtube.com/watch?v=u-fbBRAxJNk)

The Wendelstein 7-X project at the Institute for Plasma Physics in Greifswald, Germany

Long-pulse operation requires actively cooled wall elements in the divertor

The vacuum vessel follows the twist the desired plasma

Design, fabrication and testing of modular superconducting coils was a major challenge

Integration of the coil / vessel system into a cryostat is a significant engineering challenge

The Wendelstein 7-X hall in 2006

First magnetic assembly in cryostat of the W-7X stellarator started in October 2009

The Wendelstein 7-X hall in early 2013

The Wendelstein 7-X hall in August 2013

Assembly of Wendelstein 7-X completed in June 2014 ⇒ start of extensive commissioning

The first (He) plasma in Wendelstein 7-X was obtained on December 10, 2015 (100 ms long)

Angela Merkel switches on Wendelstein 7-X fusion device (first hydrogen plasma in Feb 2016)

W7-X is hosted by the Institute for Plasma Physics in Greifswald, Germany (project since 1994)

The 1st operation phase of W7-X is to verify the stellarator optimization and develop integrated high-density scenario

- **Commissioning of vacuum vessel, magnetic field, field line tracing, plasma startup ⇒ first plasma Dec-2015**
- **1st operation phase with inertially cooled divertor, some in-vessel components cooled**
- **No provision for D-T operation**

New world record in stellarator fusion product in W7-X (press release 25.6.2018)

Compare to LHD result (Takeiri, IEEE Trans. Plasma Science, 2018)

• Fusion product 6 x 10^{26} Celsius m⁻³ s ≈ 0.5 x 10^{20} keV m⁻³ s was received with at Ti = 40000000 K (> 3 keV) and $n = 0.8 \times 10^{-10}$ 10^{20} m⁻³

Summary

- **The equilibrium in a stellarator is established by external coils only (3D)** \Rightarrow **can naturally be operated in steady-state and no current-driven disruptions**
- **Good nested flux surfaces with small islands can be obtained, even at high plasma pressure ⇒ island divertor for heat exhaust**
- **Loss of axisymmetry results in additional loss mechanism for particles and energy (fast particles, alphas)**

⇒ potentially be reduced by field optimization

- **Stellarators can be operated at high-density without impurity accumulation**
- **Wendelstein-7X started plasma operation in Dec-2015**

Reserve material

Parameterize magnetic geometry in a straightenout stellarator of pitch k

- **Assume helical symmetry:** \rightarrow \rightarrow $B = B(r, \vartheta - kz)$
- **Vacuum field only: (pressure = 0)** 1∞ k ^{$l=1$} $\Phi = B_0 z + \frac{1}{z} \sum b_i I_i$ (*kr*) sin *l* (*9 - kz*) Mod. Bessel

function I_I(Ikr)

$$
\Rightarrow
$$
 Flux surfaces: $\Psi = B_0 \frac{kr^2}{2} - r \sum_{l=1}^{\infty} b_l I_l^r(lkr) \cos l(\theta - kz) = const.$

The Bessel function parameter l determines the dominant helical harmonic

- **l=1 systems: shifted circles**
- **l=2 systems: elliptical with the center on-axis**
- **l=3 systems: triangular shape**

