Computational Algebraic Geometry

Applications of algebraic geometry in robotics

Kaie Kubjas

kaie.kubjas@aalto.fi

February 15, 2021

Geometric description of robotics

Setup

- Robots are constructed from rigid links or segments that are connected by various types of joints
- Segments are connected in series (as in human limbs)
- One end of the robot arm will be usually in a fixed position
- At the other end will be the hand that is sometimes considered the final segment of the robot

Joints

a revolute joint

a prismatic joint

- Since the segments of our robots are rigid, the possible motions are determined by the motions of joints:
- planar revolute joints - permits a rotation of one segment related to another
- prismatic joints - sliding or translation by axis

Joints

a revolute joint

a prismatic joint

- Since the segments of our robots are rigid, the possible motions are determined by the motions of joints:
- planar revolute joints - permits a rotation of one segment related to another
- prismatic joints - sliding or translation by axis
- We will assume that
- the joints all lie in the same plane,
- the axes of rotation of all revolute joints are perpendicular to that plane, and
- the translation axes for the prismatic joints all lie in the plane of joints

rotates

freely in 3D

a ball joint

a screw joint

- Real robots: ball joints, screw joints combining rotation and translation along the axis of rotation, several planar revolute joints with nonparallel axes of rotation
- These other kinds of joints can be considered using similar algebraic methods, but we will not do it today
- Our goal today is to give a general idea how to use affine varieties in the study of robotics

Mathematical setup

- The setting of a revolute joint between the segments i and $i+1$ is determined by the angle between these segments.
- Angles can be identified with the circle S^{1} or the segment $[0,2 \pi]$ with the endpoints identified.
- If the revolute joint cannot rotate full circle, then we consider a subset of S^{1}.

Mathematical setup

- The setting of a revolute joint between the segments i and $i+1$ is determined by the angle between these segments.
- Angles can be identified with the circle S^{1} or the segment $[0,2 \pi]$ with the endpoints identified.
- If the revolute joint cannot rotate full circle, then we consider a subset of S^{1}.
- The setting of a prismatic joint is determined by the length that it is extended.
- All possible settings are given by a finite interval.

Mathematical setup

- The setting of a revolute joint between the segments i and $i+1$ is determined by the angle between these segments.
- Angles can be identified with the circle S^{1} or the segment $[0,2 \pi]$ with the endpoints identified.
- If the revolute joint cannot rotate full circle, then we consider a subset of S^{1}.
- The setting of a prismatic joint is determined by the length that it is extended.
- All possible settings are given by a finite interval.
- The possible settings of all of the joints in a planar robot with r revolute joints and p prismatic joints:

$$
\mathcal{J}=S^{1} \times \cdots \times S^{1} \times I_{1} \times \cdots \times I_{p}
$$

The set \mathcal{J} is called the joint space of the robot.

Mathematical setup

- The possible configurations of the hand are described by
- its position $(a, b) \in U \subseteq \mathbb{R}^{2}$ and
- its orientation $u \in V \subseteq S^{1}$ given by a unit vector aligned with some feature of the hand.
- The configuration space or operation space of the robot's hand:

$$
\mathcal{C}=U \times V \subseteq \mathbb{R}^{2} \times S_{1}
$$

Mathematical setup

- The possible configurations of the hand are described by
- its position $(a, b) \in U \subseteq \mathbb{R}^{2}$ and
- its orientation $u \in V \subseteq S^{1}$ given by a unit vector aligned with some feature of the hand.
- The configuration space or operation space of the robot's hand:

$$
\mathcal{C}=U \times V \subseteq \mathbb{R}^{2} \times S_{1}
$$

- Each setting of joints will place the hand at a uniquely determined position.
- Hence we have a mapping $f: \mathcal{J} \rightarrow \mathcal{C}$ which describes how the different joint settings yield different hand configurations.

Two basic problems

Forward kinematic problem: Can we give an explicit description or formula for f in terms of the joint settings and the dimensions of the segments of the robot arm?

Inverse kinematic problem: Given $c \in \mathcal{C}$, can we determine one or all of $j \in \mathcal{F}$ such that $f(j)=c$?

The forward kinematic problem

Coordinate systems

- The first segment is fixed (or anchored).
- The origin of the global coordinate system is placed at joint 1.

Coordinate systems

- There is a local coordinate system at each of the revolute joints.
- At joint i, we introduce $\left(x_{i+1}, y_{i+1}\right)$ coordinate system in the following way:
(1) The origin is placed at joint i.
(2) The positive x_{i+1}-axis lies along the direction of the segment $i+1$.
(3) The positive y_{i+1}-axis forms a normal right handed coordinate system.
(4) For each $i \geq 2$, the $\left(x_{i}, y_{i}\right)$ coordinates of joint i are $\left(l_{i}, 0\right)$, where l_{i} is the length of the segment i.

Coordinate systems

Relate $\left(x_{i+1}, y_{i+1}\right)$-coordinates of a point with the $\left(x_{i}, y_{i}\right)$-coordinates of the point.

Coordinate systems

Relate $\left(x_{i+1}, y_{i+1}\right)$-coordinates of a point with the
$\left(x_{i}, y_{i}\right)$-coordinates of the point.

- Let θ_{i} be the counterclockwise angle from the x_{i}-axis to the x_{i+1}-axis.
- First rotate by θ_{i} and then translate by $\left(l_{i}, 0\right)$.
- The rotation is obtained by multiplying by the rotation matrix

$$
\left(\begin{array}{cc}
\cos \theta_{i} & -\sin \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i}
\end{array}\right) .
$$

Coordinate systems

Relate $\left(x_{i+1}, y_{i+1}\right)$-coordinates of a point with the
$\left(x_{i}, y_{i}\right)$-coordinates of the point.

- Let θ_{i} be the counterclockwise angle from the x_{i}-axis to the x_{i+1}-axis.
- First rotate by θ_{i} and then translate by $\left(l_{i}, 0\right)$.
- The rotation is obtained by multiplying by the rotation matrix

$$
\left(\begin{array}{cc}
\cos \theta_{i} & -\sin \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i}
\end{array}\right) .
$$

- The translation is obtained by adding the vector $\left(I_{i}, 0\right)$.
- Thus

$$
\binom{a_{i}}{b_{i}}=\left(\begin{array}{cc}
\cos \theta_{i} & -\sin \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i}
\end{array}\right)\binom{a_{i+1}}{b_{i+1}}+\binom{l_{i}}{0} .
$$

Coordinate systems

- The last identity can be also written as

$$
\left(\begin{array}{c}
a_{i} \\
b_{i} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} & l_{i} \\
\sin \theta_{i} & \cos \theta_{i} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
a_{i+1} \\
b_{i+1} \\
1
\end{array}\right)=A_{i}\left(\begin{array}{c}
a_{i+1} \\
b_{i+1} \\
1
\end{array}\right) .
$$

Coordinate systems

- The last identity can be also written as

$$
\left(\begin{array}{c}
a_{i} \\
b_{i} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} & l_{i} \\
\sin \theta_{i} & \cos \theta_{i} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
a_{i+1} \\
b_{i+1} \\
1
\end{array}\right)=A_{i}\left(\begin{array}{c}
a_{i+1} \\
b_{i+1} \\
1
\end{array}\right) .
$$

- We have

$$
A_{1}=\left(\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & 0 \\
\sin \theta_{1} & \cos \theta_{1} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

since the origin of the $\left(x_{2}, y_{2}\right)$ coordinate system is also placed at the joint 1.

Coordinate systems

- The last identity can be also written as

$$
\left(\begin{array}{c}
a_{i} \\
b_{i} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} & l_{i} \\
\sin \theta_{i} & \cos \theta_{i} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
a_{i+1} \\
b_{i+1} \\
1
\end{array}\right)=A_{i}\left(\begin{array}{c}
a_{i+1} \\
b_{i+1} \\
1
\end{array}\right) .
$$

- We have

$$
A_{1}=\left(\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & 0 \\
\sin \theta_{1} & \cos \theta_{1} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

since the origin of the $\left(x_{2}, y_{2}\right)$ coordinate system is also placed at the joint 1.

- Global coordinates can be obtained by starting in the last coordinate system and working our way back to the global $\left(x_{1}, y_{1}\right)$ coordinate system one joint at the time.

Example

$$
\left(\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right)=A_{1} A_{2} A_{3}\left(\begin{array}{c}
x_{4} \\
y_{4} \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right) & -\sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right) & l_{3} \cos \left(\theta_{1}+\theta_{2}\right)+l_{2} \cos \theta_{1} \\
\sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right) & \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right) & l_{3} \sin \left(\theta_{1}+\theta_{2}\right)+l_{2} \sin \theta_{1} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{4} \\
y_{4} \\
1
\end{array}\right)
$$

Since the (x_{4}, y_{4}) coordinates of the hand are (0,0), we set $x_{4}=y_{4}=0$:

$$
\left(\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right)=\left(\begin{array}{c}
I_{3} \cos \left(\theta_{1}+\theta_{2}\right)+l_{2} \cos \theta_{1} \\
I_{3} \sin \left(\theta_{1}+\theta_{2}\right)+I_{2} \sin \theta_{1} \\
1
\end{array}\right)
$$

Example

The hand orientation is determined by the x_{4}-axis. The angle between x_{1}-axis and x_{4}-axis is simply $\theta_{1}+\theta_{2}+\theta_{3}$.

Example

The hand orientation is determined by the x_{4}-axis. The angle between x_{1}-axis and x_{4}-axis is simply $\theta_{1}+\theta_{2}+\theta_{3}$.

Combining these two things gives the map $f: \mathcal{J} \rightarrow \mathcal{C}$:

$$
f\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\begin{array}{c}
l_{3} \cos \left(\theta_{1}+\theta_{2}\right)+l_{2} \cos \theta_{1} \\
l_{3} \sin \left(\theta_{1}+\theta_{2}\right)+l_{2} \sin \theta_{1} \\
\theta_{1}+\theta_{2}+\theta_{3}
\end{array}\right)
$$

Example

The hand orientation is determined by the x_{4}-axis. The angle between x_{1}-axis and x_{4}-axis is simply $\theta_{1}+\theta_{2}+\theta_{3}$.

Combining these two things gives the map $f: \mathcal{J} \rightarrow \mathcal{C}$:

$$
f\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\begin{array}{c}
I_{3} \cos \left(\theta_{1}+\theta_{2}\right)+I_{2} \cos \theta_{1} \\
I_{3} \sin \left(\theta_{1}+\theta_{2}\right)+I_{2} \sin \theta_{1} \\
\theta_{1}+\theta_{2}+\theta_{3}
\end{array}\right) .
$$

How to convert such representations to polynomial or rational mappings?

$$
\begin{gathered}
c_{i}=\cos \theta_{i} \\
s_{i}=\sin \theta_{i}
\end{gathered}
$$

subject to $c_{i}^{2}+s_{i}^{2}-1=0$ for $i=1,2,3$. The variety defined by these three equations in \mathbb{R}^{6} is a realization of the joint space \mathcal{J}.

Example

The (x_{1}, y_{1}) coordinates of the hand are:

$$
\binom{l_{3}\left(c_{1} c_{2}-s_{1} s_{2}\right)+l_{2} c_{1}}{l_{3}\left(s_{1} c_{2}+s_{2} c_{1}\right)+l_{2} s_{1}} .
$$

We have defined a polynomial map from

$$
\mathcal{J}=\mathbb{V}\left(x_{1}^{2}+y_{1}^{2}-1, x_{2}^{2}+y_{2}^{2}-1, x_{3}^{2}+y_{3}^{2}-1\right) \text { to } \mathbb{R}^{2} .
$$

Example

The (x_{1}, y_{1}) coordinates of the hand are:

$$
\binom{l_{3}\left(c_{1} c_{2}-s_{1} s_{2}\right)+l_{2} c_{1}}{l_{3}\left(s_{1} c_{2}+s_{2} c_{1}\right)+l_{2} s_{1}} .
$$

We have defined a polynomial map from

$$
\mathcal{J}=\mathbb{V}\left(x_{1}^{2}+y_{1}^{2}-1, x_{2}^{2}+y_{2}^{2}-1, x_{3}^{2}+y_{3}^{2}-1\right) \text { to } \mathbb{R}^{2} .
$$

It is not possible to express the hand orientation as a polynomial in c_{i} and s_{i}, but it can be handled similarly.

The inverse kinematic problem

Inverse kinematic problem

Given a point $\left(x_{1}, y_{1}\right)=(a, b) \in \mathbb{R}^{2}$ and an orientation, we wish to determine whether it is possible to place the hand of the robot at that point with that orientation. If it is possible, we wish to find all combinations of joint settings that will accomplish this.
(1) Determine the image of $f: \mathcal{J} \rightarrow \mathcal{C}$
(2) Determine the inverse image $f^{-1}(c)$

Inverse kinematic problem

Given a point $\left(x_{1}, y_{1}\right)=(a, b) \in \mathbb{R}^{2}$ and an orientation, we wish to determine whether it is possible to place the hand of the robot at that point with that orientation. If it is possible, we wish to find all combinations of joint settings that will accomplish this.
(1) Determine the image of $f: \mathcal{J} \rightarrow \mathcal{C}$
(2) Determine the inverse image $f^{-1}(c)$

Ignoring the hand orientation, we need to solve

$$
\begin{aligned}
& a=l_{3}\left(c_{1} c_{2}-s_{1} s_{2}\right)+l_{2} c_{1}, \\
& b=l_{3}\left(c_{1} s_{2}+c_{2} s_{1}\right)+l_{2} s_{1}, \\
& 0=c_{1}^{2}+s_{1}^{2}-1, \\
& 0=c_{2}^{2}+s_{2}^{2}-1 .
\end{aligned}
$$

Groebner basis

To solve these equations, we compute a Groebner basis using lex order with the variables ordered $c_{2}>s_{2}>c_{1}>s_{1}$. The Groebner basis will depend on a, b, l_{2}, l_{3} that appear as symbolic parameters.

$$
\begin{aligned}
& c_{2}-\frac{a^{2}+b^{2}-I_{2}^{2}-l_{3}^{2}}{2 l_{2} I_{3}}, \\
& s_{2}+\frac{a^{2}+b^{2}}{a l_{3}} s_{1}-\frac{a^{2} b+b^{3}+b\left(I_{2}^{2}-l_{3}^{2}\right)}{2 a l_{2} I_{3}}, \\
& c_{1}+\frac{b}{a} s_{1}-\frac{a^{2}+b^{2}+l_{2}^{2}-l_{3}^{2}}{2 a l_{2}}, \\
& s_{1}^{2}-\frac{a^{2} b+b^{3}+b\left(l_{2}^{2}-l_{3}^{2}\right)}{I_{2}\left(a^{2}+b^{2}\right)} s_{1} \\
& +\frac{\left(a^{2}+b^{2}\right)^{2}+\left(l_{2}^{2}-l_{3}^{2}\right)^{2}-2 a^{2}\left(l_{2}^{2}+l_{3}^{2}\right)+2 b^{2}\left(l_{2}^{2}-l_{3}^{2}\right)}{4 l_{2}^{2}\left(a^{2}+b^{2}\right)}
\end{aligned}
$$

- In practice, we want to compute the Groebner basis for specific values of parameters a, b, l_{2}, l_{3}.
- Substituting symbolic parameters by specific values is called specialization.
- In practice, we want to compute the Groebner basis for specific values of parameters a, b, l_{2}, l_{3}.
- Substituting symbolic parameters by specific values is called specialization.
- There is a proper subvariety $W \subset \mathbb{R}^{4}$ such that the Groebner basis above specializes to a Groebner basis when a, b, l_{2}, l_{3} take special values in $\mathbb{R}^{4}-W$.
- Vanishing of the denominators is one problem.
- There can be other problems.
- In this particular example, W is the variety that is defined by the vanishing of the denominators. I.e., W is the variety defined by a, l_{2}, l_{3} and $a^{2}+b^{2}$.

$$
\begin{aligned}
& c_{2}-\frac{a^{2}+b^{2}-l_{2}^{2}-l_{3}^{2}}{2 l_{2} I_{3}}, \\
& s_{2}+\frac{a^{2}+b^{2}}{a l_{3}} s_{1}-\frac{a^{2} b+b^{3}+b\left(l_{2}^{2}-l_{3}^{2}\right)}{2 a l_{2} l_{3}}, \\
& c_{1}+\frac{b}{a} s_{1}-\frac{a^{2}+b^{2}+l_{2}^{2}-l_{3}^{2}}{2 a l_{2}}, \\
& s_{1}^{2}-\frac{a^{2} b+b^{3}+b\left(l_{2}^{2}-l_{3}^{2}\right)}{l_{2}\left(a^{2}+b^{2}\right)} s_{1} \\
& +\frac{\left(a^{2}+b^{2}\right)^{2}+\left(l_{2}^{2}-l_{3}^{2}\right)^{2}-2 a^{2}\left(l_{2}^{2}+l_{3}^{2}\right)+2 b^{2}\left(l_{2}^{2}-l_{3}^{2}\right)}{4 l_{2}^{2}\left(a^{2}+b^{2}\right)}
\end{aligned}
$$

- Any zero of s_{1} can be extended uniquely to a full solution of the system.
- Since the last polynomial is quadratic in s_{1}, then s_{1} can have at most two solutions.
- One has to study which solutions are real.

Quiz: Assume $I_{2}=I_{3}=1$. What are the positions that the hand can reach?

Example $I_{2}=I_{3}=1$

We will study the specialization $I_{2}=I_{3}=1$. The Groebner basis in $\mathbb{R}(a, b)\left[s_{1}, c_{1}, s_{2}, c_{2}\right]$ is

$$
\begin{aligned}
& c_{2}-\frac{a^{2}+b^{2}-2}{2} \\
& s_{2}+\frac{a^{2}+b^{2}}{a} s_{1}-\frac{a^{2} b+b^{3}}{2 a} \\
& c_{1}+\frac{b}{a} s_{1}-\frac{a^{2}+b^{2}}{2 a} \\
& s_{1}^{2}-b s_{1}+\frac{\left(a^{2}+b^{2}\right)^{2}-4 a^{2}}{4\left(a^{2}+b^{2}\right)}
\end{aligned}
$$

This Groebner basis gives a Groebner basis for specializations satisfying $a \neq 0$ and $a^{2}+b^{2} \neq 0$.

Example $a \neq 0$

- If $a \neq 0$, then this implies $a^{2}+b^{2} \neq 0$, since $a, b \in \mathbb{R}$.
- We can find the solutions for s_{1} by using the quadratic formula for the last equation:

$$
s_{1}=\frac{b}{2} \pm \frac{|a| \sqrt{4-\left(a^{2}+b^{2}\right)}}{2 \sqrt{a^{2}+b^{2}}}
$$

Example $a \neq 0$

- If $a \neq 0$, then this implies $a^{2}+b^{2} \neq 0$, since $a, b \in \mathbb{R}$.
- We can find the solutions for s_{1} by using the quadratic formula for the last equation:

$$
s_{1}=\frac{b}{2} \pm \frac{|a| \sqrt{4-\left(a^{2}+b^{2}\right)}}{2 \sqrt{a^{2}+b^{2}}}
$$

- These solutions are real if and only if $0<a^{2}+b^{2} \leq 4$. When $a^{2}+b^{2}=4$, then we have a double root.
- The distance from joint 1 to 3 is at most $l_{2}+l_{3}=2$ and position of distance 2 can be reached only in one way, by setting $\theta_{2}=0$.

Example $a \neq 0$

- If $a \neq 0$, then this implies $a^{2}+b^{2} \neq 0$, since $a, b \in \mathbb{R}$.
- We can find the solutions for s_{1} by using the quadratic formula for the last equation:

$$
s_{1}=\frac{b}{2} \pm \frac{|a| \sqrt{4-\left(a^{2}+b^{2}\right)}}{2 \sqrt{a^{2}+b^{2}}}
$$

- These solutions are real if and only if $0<a^{2}+b^{2} \leq 4$. When $a^{2}+b^{2}=4$, then we have a double root.
- The distance from joint 1 to 3 is at most $l_{2}+l_{3}=2$ and position of distance 2 can be reached only in one way, by setting $\theta_{2}=0$.
- Given s_{1}, we can solve for c_{1}, s_{2}, c_{2}.
- The values for $s_{1}, c_{1}, s_{2}, c_{2}$ uniquely determine the angles θ_{1} and θ_{2}.

Example $a=b=0$

- Let $a=b=0$.
- Then most polynomials in the Groebner basis are not defined.
- Geometrically this means that the joint 3 is placed at the origin of $\left(x_{1}, y_{1}\right)$.
- There are infinitely many ways to do it: First choose θ_{1} arbitrarily and then take $\theta_{2}=\pi$.
- These are in fact the only possibilities for setting $(a, b)=(0,0)$.

Example $a=0, b \neq 0$

- Let $a=0, b \neq 0$.
- There is no problem with the system. For example, one could find the solutions by rotating the $\left(x_{1}, y_{1}\right)$-coordinate system.

Example $a=0, b \neq 0$

- Let $a=0, b \neq 0$.
- There is no problem with the system. For example, one could find the solutions by rotating the $\left(x_{1}, y_{1}\right)$-coordinate system.
- The problem is algebraic. One has to consider the original system of polynomial equations

$$
a=l_{3}\left(c_{1} c_{2}-s_{1} s_{2}\right)+I_{2} c_{1}, b=l_{3}\left(c_{1} s_{2}+c_{2} s_{1}\right)+l_{2} s_{1}, 0=c_{1}^{2}+s_{1}^{2}-1,0=c_{2}^{2}+s_{2}^{2}-1 .
$$

to compute the Groebner basis.

- The Groebner basis is

$$
c_{2}-\frac{b^{2}-2}{2}, s_{2}-b c_{1}, c_{1}^{2}+\frac{b^{2}-4}{4}, s_{1}-\frac{b}{2}
$$

Example $a=0, b \neq 0$

- Let $a=0, b \neq 0$.
- There is no problem with the system. For example, one could find the solutions by rotating the $\left(x_{1}, y_{1}\right)$-coordinate system.
- The problem is algebraic. One has to consider the original system of polynomial equations

$$
a=l_{3}\left(c_{1} c_{2}-s_{1} s_{2}\right)+l_{2} c_{1}, b=l_{3}\left(c_{1} s_{2}+c_{2} s_{1}\right)+l_{2} s_{1}, 0=c_{1}^{2}+s_{1}^{2}-1,0=c_{2}^{2}+s_{2}^{2}-1 .
$$

to compute the Groebner basis.

- The Groebner basis is

$$
c_{2}-\frac{b^{2}-2}{2}, s_{2}-b c_{1}, c_{1}^{2}+\frac{b^{2}-4}{4}, s_{1}-\frac{b}{2} .
$$

- The form of the Groebner basis is different under this specialization: the equation for c_{1} instead of the equation for s_{1} has degree 2.
- The system has two solutions when $|b|<2$, one solution when $|b|=2$ and no solutions when $|b|>2$.

Example conclusion

The system has:

- infinitely many solutions when $a^{2}+b^{2}=0$;
- two solutions when $0<a^{2}+b^{2}<4$;
- one solution when $a^{2}+b^{2}=4$;
- no solutions when $a^{2}+b^{2}>4$.

The cases $a^{2}+b^{2}=0,4$ are known as kinematic singularities of the robot.

Kinematic singularities

Let J_{f} denote the Jacobian matrix of the map $f: \mathcal{J} \rightarrow \mathcal{C}$.

$$
\begin{gathered}
f\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\begin{array}{c}
I_{3} \cos \left(\theta_{1}+\theta_{2}\right)+I_{2} \cos \theta_{1} \\
I_{3} \sin \left(\theta_{1}+\theta_{2}\right)+I_{2} \sin \theta_{1} \\
1
\end{array}\right) \\
J_{f}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\begin{array}{ccc}
-I_{3} \sin \left(\theta_{1}+\theta_{2}\right)-I_{2} \sin \theta_{1} & -I_{3} \sin \left(\theta_{1}+\theta_{2}\right) & 0 \\
I_{3} \cos \left(\theta_{1}+\theta_{2}\right)+I_{2} \cos \theta_{1} & I_{3} \cos \left(\theta_{1}+\theta_{2}\right) & 0 \\
1 & 1 & 1
\end{array}\right)
\end{gathered}
$$

$J_{f}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ defines a linear map that is the best linear approximation of f at $\left(\theta_{1}, \theta_{2}, \theta_{2}\right) \in \mathcal{J}$.

Kinematic singularities

- The dimensions $\operatorname{dim}(\mathcal{J})$ and $\operatorname{dim}(\mathcal{C})$ are the independent degrees of freedom of setting joints and the configuration.
- $\operatorname{dim}(\mathcal{J})=3$, since each planar joint contributes one degree of freedom
- $\operatorname{dim}(\mathcal{C})=3$

Kinematic singularities

- The dimensions $\operatorname{dim}(\mathcal{J})$ and $\operatorname{dim}(\mathcal{C})$ are the independent degrees of freedom of setting joints and the configuration.
- $\operatorname{dim}(\mathcal{J})=3$, since each planar joint contributes one degree of freedom
- $\operatorname{dim}(\mathcal{C})=3$
- In general $\operatorname{dim}(\mathcal{J})=m, \operatorname{dim}(\mathcal{C})=n$ and $\operatorname{rank}\left(J_{f}(j)\right) \leq \min (m, n)$.
- $J_{f}(j)$ has maximal rank if it is equal to $\min (m, n)$ and otherwise it has deficient rank.
- In the latter case, the image is smaller than one would expect.

Kinematic singularities

- The dimensions $\operatorname{dim}(\mathcal{J})$ and $\operatorname{dim}(\mathcal{C})$ are the independent degrees of freedom of setting joints and the configuration.
- $\operatorname{dim}(\mathcal{J})=3$, since each planar joint contributes one degree of freedom
- $\operatorname{dim}(\mathcal{C})=3$
- In general $\operatorname{dim}(\mathcal{J})=m, \operatorname{dim}(\mathcal{C})=n$ and $\operatorname{rank}\left(J_{f}(j)\right) \leq \min (m, n)$.
- $J_{f}(j)$ has maximal rank if it is equal to $\min (m, n)$ and otherwise it has deficient rank.
- In the latter case, the image is smaller than one would expect.

Definition

A kinematic singularity for a robot is a point $j \in \mathcal{J}$ such that $J_{f}(j)$ has rank strictly less than $\min (m, n)$.

Kinematic singularities

In our example, we have a kinematic singularity if and only if when the determinant of
$J_{f}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\begin{array}{ccc}-I_{3} \sin \left(\theta_{1}+\theta_{2}\right)-I_{2} \sin \theta_{1} & -I_{3} \sin \left(\theta_{1}+\theta_{2}\right) & 0 \\ I_{3} \cos \left(\theta_{1}+\theta_{2}\right)+I_{2} \cos \theta_{1} & I_{3} \cos \left(\theta_{1}+\theta_{2}\right) & 0 \\ 1 & 1 & 1\end{array}\right)$
is zero. This gives $\sin \theta_{2}=0$ or equivalently $\theta_{2}=0$ or $\theta_{2}=\pi$.

Kinematic singularities

In our example, we have a kinematic singularity if and only if when the determinant of

$$
J_{f}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\begin{array}{ccc}
-I_{3} \sin \left(\theta_{1}+\theta_{2}\right)-I_{2} \sin \theta_{1} & -I_{3} \sin \left(\theta_{1}+\theta_{2}\right) & 0 \\
I_{3} \cos \left(\theta_{1}+\theta_{2}\right)+I_{2} \cos \theta_{1} & I_{3} \cos \left(\theta_{1}+\theta_{2}\right) & 0 \\
1 & 1 & 1
\end{array}\right)
$$

is zero. This gives $\sin \theta_{2}=0$ or equivalently $\theta_{2}=0$ or $\theta_{2}=\pi$.

- The first case means that segment 3 extends segment 2.
- The second case means that segment 3 folds back.
- These are the two cases from earlier when we have one or infinitely many ways to get a solution (a, b).

Kinematic singularities

In our example, we have a kinematic singularity if and only if when the determinant of

$$
J_{f}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\begin{array}{ccc}
-I_{3} \sin \left(\theta_{1}+\theta_{2}\right)-I_{2} \sin \theta_{1} & -I_{3} \sin \left(\theta_{1}+\theta_{2}\right) & 0 \\
I_{3} \cos \left(\theta_{1}+\theta_{2}\right)+I_{2} \cos \theta_{1} & I_{3} \cos \left(\theta_{1}+\theta_{2}\right) & 0 \\
1 & 1 & 1
\end{array}\right)
$$

is zero. This gives $\sin \theta_{2}=0$ or equivalently $\theta_{2}=0$ or $\theta_{2}=\pi$.

- The first case means that segment 3 extends segment 2.
- The second case means that segment 3 folds back.
- These are the two cases from earlier when we have one or infinitely many ways to get a solution (a, b).

Proposition

Let $f: \mathcal{J} \rightarrow \mathcal{C}$ for a robot with at least three revolute joints. Then there exist kinematic singularities $j \in \mathcal{J}$.

Planning the motions of a robot

The methods that we have described can be used for planning the motions of robots:
(1) The first problem is to find a parametrized path $c(t) \in \mathcal{C}$ starting at the initial hand configuration and ending at the desired hand configuration.
(2) The second problem is to find a corresponding path $j(t) \in \mathcal{J}$ such that $f(j(t))=c(t)$ for all t.

Planning the motions of a robot

The methods that we have described can be used for planning the motions of robots:
(1) The first problem is to find a parametrized path $c(t) \in \mathcal{C}$ starting at the initial hand configuration and ending at the desired hand configuration.
(2) The second problem is to find a corresponding path $j(t) \in \mathcal{J}$ such that $f(j(t))=c(t)$ for all t.
There might be further restrictions:

- If $c(t)$ starts and ends at the same point, then $j(t)$ should start and end at the same point. This is important for repetitive tasks, so that the same motion can be repeated.
- One would like to limit the joint speeds. Fast and rough movements can damage the mechanisms.
- One would like to do as little joint movement as possible.

Planning the motions of a robot

Kinematic singularities are important for motion planning. Assume we have a path $c(t)$ in the configuration space and the corresponding path $j(t)$ in the joint space, i.e. $f(j(t))=c(t)$. The multivariable chain rule gives

$$
c^{\prime}(t)=J_{f}(j(t)) \cdot j^{\prime}(t)
$$

Then $c^{\prime}(t)$ can be interpreted as the velocity of the configuration space path and $j^{\prime}(t)$ as the corresponding joint space velocity.

Planning the motions of a robot

Kinematic singularities are important for motion planning. Assume we have a path $c(t)$ in the configuration space and the corresponding path $j(t)$ in the joint space, i.e. $f(j(t))=c(t)$. The multivariable chain rule gives

$$
c^{\prime}(t)=J_{f}(j(t)) \cdot j^{\prime}(t) .
$$

Then $c^{\prime}(t)$ can be interpreted as the velocity of the configuration space path and $j^{\prime}(t)$ as the corresponding joint space velocity.
(1) At a kinematic singularity, $c^{\prime}(t)=J_{f}(j(t)) \cdot j^{\prime}(t)$ might not have a smooth solution.
(2) Near a kinematic singularity, very large joint space velocity might be needed.

Conclusion

Today:

- Applications of algebraic geometry in robotics
- Forward kinematic problem
- Inverse kinematic problem
- Kinematic singularities
- Motion planning

Next time: Numerical algebraic geometry and homotopy continuation

