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I. HAMILTONIAN OF THE QUANTUM CIRCUIT

We start with an LC-oscillator, shown in Fig. 2(a), and write its Hamiltonian. The kinetic and potential energies,
K and V , respectively, read

K =
1

2
CΦ̇2 (1)

V =
Φ2

2L
, (2)

where Φ =
∫ t

0
dt′ v(t′) with v as voltage. The Lagrangian of the circuit is then

L = K − V =
1

2
CΦ̇2 − Φ2

2L
, (3)

From the Lagrangian we can obtain the charge, Q, which is the conjugate momentum of node flux Φ by the Legendre
transformation

Q =
∂L
∂Φ̇

= CΦ̇. (4)

Here Q is the charge on the capacitor. Then we have

H = K + V =
Q2

2C
+

Φ2

2L
, (5)

i.e. a harmonic oscillator. Introducing the creation and annihilation operators such that

[c, c†] = 1, (6)

we have

Φ =

√
~Z0

2
(c+ c†) (7)

Q = −i
√

~
2Z0

(c− c†) (8)
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FIG. 1. Exemplary quantum circuit for analysis. (a) Circuit diagram. On the right side a SQUID (superconducting quantum
interference device) composed of two Josephson junctions. This element is capacitively coupled to a resistive element on the
left. (b) The actual on-chip circuit. The coupling capacitor is the fork-like structure in the middle, and the SQUID is zoomed
out in blue on the right. The resistive element is contacted by four NIS tunnel junctions to control and measure temperature,
on the left.
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FIG. 2. (a) LC circuit. (b) Josephson junction.

H =
~ω0

2
(c†c+ cc†) = ~ω0(c†c+

1

2
), (9)

where ω0 =
√

1
LC , and Z0 =

√
L
C .

For a Josephson tunnel junction, shown in Fig. 2(b), the Josephson relations are

~φ̇ = 2ev (10)

I = Ic sinφ, (11)

where φ is the phase difference across the junction and v is the voltage. The first relation implies that flux and phase
are related by

φ =
2e

~
Φ. (12)

In the second Josephson relation, I is the current through the junction and the r.h.s. applies for a tunnel junction, with
critical current Ic. For different types of weak links, sinusoidal dependence does not necessarily hold. We discussed
earlier that energy stored in the system (=work done by the source) is

E =

∫ t

Iv(t′)dt′ = IΦ. (13)

Thus for a current biased case I = ∂E
∂Φ and

E =

∫ Φ

I dΦ=
~Ic
2e

∫ φ

sinφ′dφ′ (14)

= −~Ic
2e

cosφ ≡ −EJ cosφ. (15)

We call this “Josephson energy” and in quantum mechanics “Josephson Hamiltonian” ĤJ . Now we may expand this
energy for small values of φ, as

E ' −EJ(1− φ2

2
) =

EJ
2
φ2 = (

2e

~
)2Φ2 ≡ Φ2

2LJ
. (16)

Here LJ = ( ~
2e )2 1

EJ
= ~

2eIc
is the Josephson inductance. Therefore, in the “linear regime”:

Ĥ =
Q̂2

2C
+

Φ̂2

2LJ
, (17)

i.e. Josephson junction behaves approximately as a harmonic oscillator.

II. DENSITY MATRIX ρ

Liouville - von Neumann equation follows mechanically from the Schrödinger equation as follows. First, in the
Schrödinger picture we have

i~∂t|ψ(t)〉 = H|ψ(t)〉 (18)
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for a state |ψ(t)〉 and Hamiltonian H. We can write the solution of it formally as

|ψ(t)〉 = U(t, t0)|ψ(t0)〉, (19)

where U(t, t0) is the time evolution operator between the initial time t0 and t. It then obeys

i~∂tU(t, t0) = HU(t, t0). (20)

The density matrix of the whole system can be written as

ρS(t) =
∑
λ

pλ|ψλ(t)〉〈ψλ(t)|, (21)

where pλ are the (positive) weights for the states |ψλ(t)〉 that obey the Schrödinger equation. We then find

ρS(t) = U(t, t0)ρS(t0)U†(t, t0). (22)

Using the chain rule in differentiating, we then find easily that

ρ̇S(t) =
i

~
[ρS(t), H], (23)

which is the Liouville - von Neumann equation.


