The Sommerfeld expansion and properties of electrons in metals
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The Sommerfeld expansion is applied to integrals of the form
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where
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is the Fermi-Dirac distribution, and H(€) vanishes as ¢ — —oco and diverges no more rapidly than some power of € as
€ — o0o. If one defines

K(e) = [ CH()de 3)
so that H(e) = dK(e)/de. Then Eq. (1) is
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The first term vanishes, because K () increases slowly and f(e) vanishes exponentially at high e (K (o0)f(o0) — 0)
and we suppose K (—o00) = 0. The e-derivative is appreciable only within a few kT around p. Next, we expand K (¢)
in a Taylor series about € = u, with the expectation that only the first few terms will be of importance. We have
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ffooo def'(€) = —1 and f’(€) is an even function, thus the middle term vanishes being an integral of an odd function
and we have
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By changing the variable in the second term to z = fe and knowing that ffooo dz(ffifzy = %2, we have
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z:/ deH(€) + 7= (kpT)*H'(cp). (1)

Here we have set H'(u) ~ H'(er) in the correction term.

A. Example

Now we consider H(e) = n(e), where n(e) is density of states. This means we want to calculate the number of
particles in the Fermi sea N = [*_den(e)f(¢) and from there we will have the lowest order correction in T for the
chemical potential . Based on Eq. (7) we have
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Assuming the correction of p with respect to er is small, the first term is

" den(e) = [ den(e) + (u— exInler), (9)
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where [ den(e) = N(T = 0) is the number of particles at 7 = 0. Then we have

N(T)=N(T=0)+ (u—ep)n(er) + 7%2(14;]3T)2n’(ep).

Since the number of particles does not change with temperature, N(T) = N(T = 0), we need to request
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ie.
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Because n(e) x /e, T:L/((: )) = 1/(2¢), thus we find the promised lowest order correction as
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In Problem E, you apply the technique with H(e) = en(e) meaning you will calculate the internal energy and from

there the heat capacity.



