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The Sommerfeld expansion is applied to integrals of the form

I =

∫ ∞
−∞

dεH(ε)f(ε), (1)

where

f(ε) =
1

e(ε−µ)/kBT + 1
(2)

is the Fermi-Dirac distribution, and H(ε) vanishes as ε→ −∞ and diverges no more rapidly than some power of ε as
ε→∞. If one defines

K(ε) =

∫ ε

−∞
H(ε′)dε′ (3)

so that H(ε) = dK(ε)/dε. Then Eq. (1) is

I = K(ε)f(ε)|∞−∞ −
∫ ∞
−∞

dεK(ε)f ′(ε). (4)

The first term vanishes, because K(ε) increases slowly and f(ε) vanishes exponentially at high ε (K(∞)f(∞) → 0)
and we suppose K(−∞) = 0. The ε-derivative is appreciable only within a few kBT around µ. Next, we expand K(ε)
in a Taylor series about ε = µ, with the expectation that only the first few terms will be of importance. We have

I ' −
∫ ∞
−∞

dε

{
K(µ) +K ′(µ)(ε− µ) +

1

2
K ′′(µ)(ε− µ)2

}
f ′(ε). (5)

∫∞
−∞ dεf ′(ε) = −1 and f ′(ε) is an even function, thus the middle term vanishes being an integral of an odd function

and we have

I '
∫ µ

−∞
dεH(ε)− H ′(µ)

2

∫ ∞
−∞

dεε2
d

dε
(

1

1 + eβε
). (6)

By changing the variable in the second term to x = βε and knowing that
∫∞
−∞ dx x2ex

(1+ex)2 = π2

3 , we have

I '
∫ µ

−∞
dεH(ε) +

π2

6
(kBT )2H ′(εf ). (7)

Here we have set H ′(µ) ' H ′(εF ) in the correction term.

A. Example

Now we consider H(ε) = n(ε), where n(ε) is density of states. This means we want to calculate the number of
particles in the Fermi sea N =

∫∞
−∞ dεn(ε)f(ε) and from there we will have the lowest order correction in T for the

chemical potential µ. Based on Eq. (7) we have

N =

∫ µ

−∞
dεn(ε) +

π2

6
(kBT )2n′(εF ). (8)

Assuming the correction of µ with respect to εF is small, the first term is∫ µ

−∞
dεn(ε) '

∫ εF

−∞
dεn(ε) + (µ− εF )n(εF ), (9)
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where
∫ εF
−∞ dεn(ε) = N(T = 0) is the number of particles at T = 0. Then we have

N(T ) = N(T = 0) + (µ− εF )n(εF ) +
π2

6
(kBT )2n′(εF ). (10)

Since the number of particles does not change with temperature, N(T ) = N(T = 0), we need to request

(µ− εF )n(εF ) +
π2

6
(kBT )2n′(εF ) = 0, (11)

i.e.

µ = εF −
π2

6

n′(εF )

n(εF )
(kBT )2. (12)

Because n(ε) ∝
√
ε, n′(εF )

n(εF ) = 1/(2ε), thus we find the promised lowest order correction as

µ = εF [1− π2

12
(
kBT

εF
)]2. (13)

In Problem E, you apply the technique with H(ε) = εn(ε) meaning you will calculate the internal energy and from
there the heat capacity.


