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Motivation

Many real-world problems involve a
dynamical system

For many real-world systems the
dynamics are unknown

We would like learn a dynamical
system from observed data

Dynamics of many real-world
systems can be controlled

We would like to use our learned
proxy dynamics to control the
system
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Gaussian processes

Video prediction:

Previous frame

Current frame
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Multi-output Gaussian processes

@ In this lecture we will consider dynamical models in a high dimensional space (d > 1)

@ Consider a multi-output (vector-valued) function f : R? — R? where d > 1, denoted as

fi(x)
fx)=| :
fa(X)

@ We denote that f follows a multi-output Gaussian process prior as
f(x) ~ GP(p(x), K(x,X'|0)),

where p(x) € RY is the mean (which we assume as 0) and K(x, x’|#) is a matrix-valued positive
definite cross-covariance function (CCF)

@ The (i,/) entry of the d-by-d matrix K(x, x’|#) defines the covariance between the output
dimensions (i, j) for any inputs x, x’

[K(x,X|0)];; = cov(fi(x), £;(x")|0)
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Multi-output Gaussian processes: CCFs

@ The CCF can have a number of different structures

o Independent
o Implicit/Linear model of coregionalization
o Full cross-covariance

@ Here we assume multi-output GPs that factorize across the output dimensions, which is equivalent

to diagonal CCF
K(X, X/‘Q) = dlag (k1 (X, xl|9)7 LEEX kd(xv X,|9))

@ The dimension specific scalar-valued covariance functions k;(x, x’|6;) can be any valid kernels and
are often assumed to be shared across output dimensions

K(x,x'|0) = k(x,x'|0) - Iy

@ We assume (unless stated otherwise) the squared exponential (SE) covariance functions with input
dimension specific length-scales (thus, § = (o+, 41, ..., 4q))

1
2

J

=X\

lg
2
4

d 2
K(x,x'|0) = 0% exp

1
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Multi-output Gaussian processes: joint Gaussian

@ Consider a finite collection of inputs X = (x1,...,Xy)

@ By the definition of GPs, the function values evaluated at X have a joint multivariate Gaussian

distribution
f(X1)
f(X) = : eRM and p(f(X)) = N(#(X)[0, Kxx(6))
f(xn)
where
K(X1,X1|9) K(X1,X2|9) K(X1,XN|6‘)
K(x2,x1|0) K(x2,%200) -+ K(x2,%n|0)
Kxx(0) = 2: : . : RNdxNd
K(XN,X1|9) K(XN,X2|9) K(XN7XN|9)

@ For the multi-output GP prior that factorizes across dimensions, we can also write simply as
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Discrete-time dynamical models

@ Consider a discrete-time, stochastic dynamical system with states x; € R?, fort = 0,1,2, ...
Xir1 = f(x,) + W;q,
where f: RY — R9 is an unknown transition function and w; is the i.i.d. system noise w ~ A(0, ¥)

@ Alternatively we can write
P(Xt+1[Xt) = N (Xep1[f(xt), T)

@ The system is first-order Markovian
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Discrete-time dynamical models

@ Consider a discrete-time, stochastic dynamical system with states x; € R?, fort = 0,1,2, ...

Xir1 = f(X[) + W;q,

where f: RY — R9 is an unknown transition function and w; is the i.i.d. system noise w ~ A(0, ¥)

@ Alternatively we can write
P(Xt+1[Xt) = N (Xep1[f(xt), T)

@ The system is first-order Markovian

N

@ Assume a collection of N time-series trajectories of length T +1, D = {xéf’)T}n:1, where the

measurements are the true system states x without any measurement noise

(n) 3 ()

@ The data D can be presented as N - T state transition pairs (x; ~, X,y ) (or input-output pairs)

X = () € RO

) )

T T T nT
y = (xgﬂ 7"'7x(7]) 7~..,XgN) 7..,’)((7_N) ) eRdNTX1
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Discrete-time dynamical GP models

@ We are interested in learning the underlying dynamical model which is completely unknown
e We do not have a parametric form for f

@ We can assign the multi-output GP prior for f
f(x) ~ GP(u(x), K(x,X'|0))

@ We can learn an estimate of the unknown transition function from D by maximizing the marginal
likelihood w.r.t. GP hyperparameters (and the system noise parameter ¥ if unknown)

NT 1 1 _
Inp(y|0) = 5 T3 In[Ky| — EVTKy ly,

where
Ky = Kxx(0) + I\t ® X
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Discrete-time dynamical GP models

@ We are interested in learning the underlying dynamical model which is completely unknown
e We do not have a parametric form for f

@ We can assign the multi-output GP prior for f
f(x) ~ GP(u(x), K(x,X'|0))

@ We can learn an estimate of the unknown transition function from D by maximizing the marginal
likelihood w.r.t. GP hyperparameters (and the system noise parameter ¥ if unknown)

NT 1

1 _
Inp(y|0) = — 5 o In[Ky| — §VTKy ly,

where
Ky = Kxx(0) + I\t ® X

@ If the output dimensions of the GP are a priori independent, dimensions do not contain any shared
parameters (i.e., K(x,x'|0) = diag (ki (x,x'|01), ..., ka(x,X'|04))), and the covariance of the
system noise is also diagonal, then it can be seen that the learning factorizes across dimensions
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Discrete-time dynamical GP models: illustration

Xz

{£¢1 z ’{Cfg
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Discrete-time dynamical GP models: predictions

@ After learning the dynamics model with (X,y), the standard GP predictive distributions can be used
to compute the transition function prediction for a new input state x*

PUOC)IX, Y, x7) = N(H(X) | p(x7), Z(x)),
where p(x*) and X(x*) are the standard prediction equations

H(X*) = K)(*)(Ky_1 y
T(X*) = Kex — KexKy ' Ky

@ Thus, given a state at time ¢, x;, our estimate of the one time-step prediction p(x;11|X,y, X;) is
obtained by combining the above equations with the system noise w;:

P(Xe11[Xt) = P(Xes 11X, ¥, Xe) = N (X1 a(Xe), Z(X¢) + X)
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Discrete-time dynamical GP models: long-term predictions

@ Given a state distribution at time ¢, p(x;), we are often interested in making long-term predictions
for the state evolution X¢y1, ..., X¢H

@ Given p(x;), the prediction equation for a single time step can be written
p(Xt+1) = /P(Xr+1 |Xe)p(X¢)AXt,

where p(X+1X:) = P(Xi+1|X, ¥, Xt)
@ For long-term predictions p(X;11), - . ., pP(Xt++), we can iteratively make one time-step predictions

@ The above integral cannot be solved analytically but can be approximated by Monte Carlo sampling

o Draw Xi+1 from p(x¢+1), then with x;11 fixed draw p(X¢+2|X, Y, Xi+1), etc.
e This will give a realization from p(Xi+1, Xt42, - - - , Xt+H)
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Discrete-time dynamical GP models: prediction illustration

@ An illustration of long term predictions

@ Uncertainty accumulates

r(s,a)

State space
Figure from (Gadd et al, 2021)
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Discrete-time dynamical GP models: alternative model variants

@ Deterministic dynamic model
X1 = f(X¢)
@ Time differential model
Xep1 = X + (X)) +wy,

where the GP prior for f now has a zero
mean

@ Time differential model with irregular
sampling times (o, t, . . ., ty) (also called
gradient matching)

X(tir1) = x(t) + At - 1(x(8)) + w(t),

where Atf = t,'+1 — 1
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Harri Lahdesmaki

Discrete-time dynamical GP models: alternative model variants

@ Deterministic dynamic model
X1 = f(X¢)
@ Time differential model
Xep1 = X + (X)) +wy,

where the GP prior for f now has a zero
mean

@ Time differential model with irregular
sampling times (o, t, . . ., ty) (also called
gradient matching)

X(tir1) = x(t) + At - 1(x(8)) + w(t),

where Atf = t,'+1 — 1

Gaussian processes

@ Control model with an external control
variate a; € R¥

Xt11 = Xt —+ f(x[, at) —+ Wi,

where f : R? x R — R¢
@ Deep GP model

Xept =X+ fofq o F (%) + wy
N————

deep GP with L layers

@ Higher-order models

Xep1 = Xe + (X, 0, Xe—p) + Wy,
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Application 1: Model-based reinforcement learning with GPs

@ Reinforcement learning (RL) provides a principled framework for data-driven autonomous learning
for control and sequencial decision making

@ Through trial-and-error, controls are chosen with the goal of completing a task or maximizing a
pre-defined objective

@ An example: learn to control a robot via trial-and-error to make the robot to complete a task
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Application 1: Model-based reinforcement learning with GPs

@ Reinforcement learning (RL) provides a principled framework for data-driven autonomous learning
for control and sequencial decision making

@ Through trial-and-error, controls are chosen with the goal of completing a task or maximizing a
pre-defined objective

@ An example: learn to control a robot via trial-and-error to make the robot to complete a task

@ Standard RL methods are typically implemented with neural networks that require lots of
trial-and-errors to complete a task

@ Model-based reinforcement learning (MBRL) provides a solution to achieve sample efficiency, i.e.,
learn an accurate model / complete a task with little data

— MBRL with GPs
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MBRL with GPs: learning a dynamics model / emulator

@ Assume the control model with an external control variate a; € R¥
Xer1 = X¢ + f(X¢, @) + Wy
and the GP prior for f : R x Rk — R4

@ An estimate of the Markovian transition function f emulates the real-world system and can be used
to predict the outcome / next state given the current state x; and control action a;
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MBRL with GPs: learning a dynamics model / emulator

@ Assume the control model with an external control variate a; € R¥
Xer1 = X¢ + f(X¢, @) + Wy
and the GP prior for f : R x Rk — R4

@ An estimate of the Markovian transition function f emulates the real-world system and can be used
to predict the outcome / next state given the current state x; and control action a;

@ Assume that noise-free data has been collected from the real-world system, which can be
presented as a collection of triplets (or input x;, a; and output X;, 1 pairs)

D = {(x¢,as, Xe11) }o

@ The discrete-time dynamical GP model can be learned again by maximizing the marginal likelihood
as described abnove
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MBRL with GPs: objective function

@ In RL setting we typically have a pre-defined reward function r(x, a)

e Reward is high for that part of the state space where we want the system to end-up, and low elsewhere
e Reward may also penalize large control actions

@ For brevity, denote the H-step ahead control actions as (a;, ary1,. .. ,ar1H) = AnerH

@ The objective function can be defined as the expected reward over a time horizon H

t+H

Alacisn) = > [ r(eis.a:)p0xrss ko)
T=t

where the prediction equation p(x,11|X,,a;) is now augmented with the control a,
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MBRL with GPs: objective function

@ In RL setting we typically have a pre-defined reward function r(x, a)
e Reward is high for that part of the state space where we want the system to end-up, and low elsewhere
e Reward may also penalize large control actions

@ For brevity, denote the H-step ahead control actions as (a;, ary1,. .. ,ar1H) = AnerH

@ The objective function can be defined as the expected reward over a time horizon H

t+H

Alacisn) = > [ r(eis.a:)p0xrss ko)
T=t

where the prediction equation p(x,11|X,,a;) is now augmented with the control a,

@ The integral cannot be solved in closed-form but can be approximated by sampling trajectories
(=long-term predictions) from the dynamics model f with Monte Carlo

@ The goal is to choose control actions a;.;,y so that the objective function over a time horizon H is
maximized
4y 1 = argmax R(az.i11)
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MBRL with GPs: illustration

@ An illustration of MBRL with GPs: maximization of the reward / objective function

p(s3) T(S, a)

/a,
o

Pl T

p(s2)

State space
Figure from (Gadd et al, 2021)
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MBRL with GPs: open-loop control

@ How to find an optimal action sequence &;.;. 4 ?

@ Cross-entropy method
@ Initialize mand v
© Sample k = 1,..., K action sequences

tt+H ~ N(m,diag v)
@ For each action sequence aE:kt)#, sample p=1,..., P trajectories xR x(k’p using the GP

t+1 t+H+1
surrogate of the dynamics model f
@ For each action sequence approximate the expected long term reward over horizon H as

tHH P
*) <) o
R@n) = E , E r(Gi a
T=t p:1

© Return the current best action sequence, or update m and v using the mean and variance of the top
performing action sequences and go back to step 2
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MBRL with GPs: model predictive control with feedback

@ MBRL with GPs is typically implemented as a model predictive control (MPC) method with
feedback (closed-loop) control

@ Once the optimal control sequence at time t is found &;.;. 4, only the first control action &; is applied
to the real-world system

@ The system transitions from the current state x; to a state x;1

@ After a single step ahead we update the data D < D U {(x, a;, X¢+1)} and re-train the GP
dynamics model

@ The MPC then re-optimizes the actions a;,1.;+ 41 and this closed-loop MPC continues by
iteratively learning dynamics and re-optimizing the action sequence
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MBRL with GPs: CartPole example

@ CartPole example (with a wall on right)

@ Measurements of the system state
include

o Position and velocity of the cart
o Angle and angular velocity of the pole

@ Desired states are on right with the pole
at up-right position

@ Visualizations of the GPs based learning
at an early and a later learning stage

?

Figure from (Gadd et al, 2021)
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MBRL with GPs: CartPole example (2)

@ Comparison of shallow and deep GP model variants with L = 1, ... 3 on the (modified) CartPole
example

Xep1 =X +frof_q...f (Xt, a,) +W;

150
2
5 100
=
[}
[
50

1

deep GP with L layers

— L=3

7 9 11 13 15 1 3 5 7
Episode

Figure from (Gadd et al, 2021)

3 5 7 9 11 13 15 1 3 5
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Dynamical GP models with explicit basis functions
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Application 2: Gene regulatory network inference with GPs

Harri Lahdesmaki Gaussian processes Monday 15.02.2021 23/45



Discrete-time dynamical GP models: noisy data

@ Previous models / methods assumed noise-free data

@ If the states x; cannot be measured exactly, then our model should account for measurement
uncertainty: e.g. y: = X; + n;, where n; denotes additive measurement noise, e.g. n; ~ N (0, a?ld)
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Discrete-time dynamical GP models: noisy data

@ Previous models / methods assumed noise-free data

@ If the states x; cannot be measured exactly, then our model should account for measurement
uncertainty: e.g. y: = X; + n;, where n; denotes additive measurement noise, e.g. n; ~ N (0, a?ld)

@ More generally, we can consider a model where the dynamics x; are embedded in a
low-dimensional latent space and possibly high-dimensional observations y; are conditional on x;

Xp = f(xi—1) +w;
Yi g(x) +ny,

where g : R — R” and n; ~ N(0,07/p)
@ Traditional auto-regressive methods assume linear mappings for f and g

@ If the underlying model is non-linear but unknown, we can assign multi-output GP prior for both f
and g

— We retrieve a model that is called Gaussian process dynamical model (GPDM) (Wang et al., 2005)
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Gaussian process dynamical model: inference

@ Gaussian process dynamical model (GPDM) can be understood as a GPLVM model where the
latent variables evolve according to discrete-time dynamical GP model

@ Fitting the GPDM involves simultaneously solving the GPLVM as well as inferring smooth
dynamical GP model for the latent GPLVM embeddings
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Gaussian process dynamical model: inference

@ Gaussian process dynamical model (GPDM) can be understood as a GPLVM model where the
latent variables evolve according to discrete-time dynamical GP model

@ Fitting the GPDM involves simultaneously solving the GPLVM as well as inferring smooth
dynamical GP model for the latent GPLVM embeddings

@ Lets denote data Y = [yy,...,yr]’, latent embedding X = [x4,...,x7]”, and hyperparameters of
the latent GP (f) and embedding GP (g) as ¢; and 4

@ The learning involves maximizing

P(X, 61,04|Y) o< p(Y|X,6g) p(X|6F) p(6r)p(6g)

latent embedding dynamics

@ Derivation of the exact expression for p(X, 6, 04| Y) is similar with the derivation of the GPLVM (see
(Wang et al., 2005) for details)
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Gaussian process dynamical model: comparison to other methods

@ An illustration of the GPDM and comparison against other methods

X true X PCA X GPLVM X GPDM
” Lot oS .o N . o
10 & -.'::: ': 2 -. 3 %t. . ': b o
os ’ o.‘.‘\"“?::". sl o .‘-:-c.J .:0\ : ’\0 * -
oo SSemne ome 0 ...{IP 2 '0-.:'. e .0: :“...g';}' ; . .f. .’o"s' got°
. s e 4 L5 AR '
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X1
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Figure from http://gregorygundersen.com/blog/2020/07/24/gpdm/
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Gaussian process dynamical model: illustration on CMU mocap data

@ An illustration of the GPDM on the high-dimensional CMU mocap walking data

Figure from (Wang et al., 2005)
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Updated motivation

Many real-world problems involve a
continuous-time dynamical system

For many real-world systems the
dynamics are unknown

We would like learn a
continuous-time dynamical system
from observed data

Dynamics of many real-world
systems can be controlled

We would like to use our learned
continuous-time proxy dynamics to
control the system

Harri Lahdesmaki

Robotics:

Gaussian processes

Video prediction:

Previous frame

Current frame
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Updated motivation

Some ODE models
can be built from first
principles (e.g. Leibniz
at 1690)

ys) = 2

dy2 = 4y(dx2 + dy2)

dx V1 — 4y
dy 2y
https://en.wikipedia.org/

wiki/File:Tautochrone_curve.gif
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Updated motivation

Some ODE models Gene regulatory
can be built from first network models
principles (e.g. Leibniz  Feacback Con

at 1690) [ Genes H mRNA ]—{ Pr;teins]

dr/dt = f(p) — Vr
dp/dt = Lr — Up
af(

p)
f(p) = f(po) + Tp|po(P — Po)

ys) = 2

dy2 = 4y(dx2 + dy2)

dx VT —4dy
dy 2vy
https://en.wikipedia.org/

wiki/File:Tautochrone_curve.gif

Motion capture (100’s
of joints)

Gaussian processes

Video prediction (1M
pixels over 100K
frames)

Previous frame

Current frame
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Ordinary differential equations (ODEs)

@ An ordinary differential equation (ODE) system defined by differential field / drift function

ax :
7; =X = f(xt)

where
X;, X; € RP, f:RP 5 RP
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Ordinary differential equations (ODEs)

@ An ordinary differential equation (ODE) system defined by differential field / drift function

ax :
7; =X = f(xt)

where
X;, X; € RP, f:RP 5 RP

@ Given an initial state xo and (possible) parameters 6, ODE solution x; := x(t, 8, Xo) indexed by
te T = R+ is

t t
xt:xo+/ deT:X0+/ f(x,)dr
0 0

@ Interested in cases where f is completely unknown and is to be estimated from noisy data
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Black-box ODEs

@ We are interested in cases
where f is completely
unknown and we are given
only noisy observations at

T:(t1,...,tN)Z
Vi = Xi+é&t
gt N(O,Q)
Q = diag(w?,...,w?)
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Black-box ODEs

@ We are interested in cases @ Input data
where f is completely
unknown and we are given
only noisy observations at

T= (t1,...,tN)Z
Vi = Xi+é&t
gt N(O,Q)
Q = diag(w?,...,w?)
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Black-box ODEs

@ We are interested in cases @ Input data @ Inference / The true system
where f is completely
unknown and we are given (a) eetor el
only noisy observations at
T= (t1,...,tN)Z

Yi = Xi+te&;
N(0,Q)

diag(w?,...,w3)

2

€t
Q
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Nonparametric ODE (npODE) Model (Heinonen et al., 2018)

@ As before, we set a vector-valued Gaussian process (GP) prior over the D-dimensional vector field

/ / 2 1 2 (XJ - Xj/)2
f(x) ~ GP(0, Ko(x, x")), Ko(x,X') = o% exp — ; T Ip
with kernel parameters 8 = (o, ¢4, ..., ¢p) that defines prior mean and covariance
E[ff(x)] = 0
cov[f(x),f(x')] = Ko(x,X)
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Nonparametric ODE (npODE) Model (Heinonen et al., 2018)

@ As before, we set a vector-valued Gaussian process (GP) prior over the D-dimensional vector field

£(x) ~ GP(0, Ko (X, X' Ko(X,X') = 02 Bl RN
(X)N ( ) Q(X,X)), Q(X,X)—Jf exp _EZ;T 1D
with kernel parameters 8 = (o, ¢4, ..., ¢p) that defines prior mean and covariance
E[ff(x)] = 0
cov[f(x),f(x')] = Ko(x,X)
@ By GP definition
X=(x,...,x))7 e R™P
f(X) =(f(X) (x,)7)T e RTX
p(f(X)) = (f(X)\O,Ke(X,X))
Ko(X, X) = (K(xi, %))} =1 € R
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Inducing points, kernel interpolation, integration

Vector field
T T T

©

SN
IR
L SN

(o]

AN,

Harri Lahdesmaki

Introduce:
@ Inducing points and vectors

Z= (Z1,...7ZM)T ERMXD
U= (U1,...,UM)T = (f(z1)7"'7f(zM))T € RMXD
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Inducing points, kernel interpolation, integration

Vector field
T T T

<]

©

Y ]
O\\Xf

e Ay
MileE/7

(o]

N7

Harri Lahdesmaki

Introduce:
@ Inducing points and vectors

Z= (Z1,...7ZM)T€RMXD

U= (U1,. . 'auM)T = (f(z1)7 cee 7f(zM))T € RMXD

@ For any x € RP, we obtain vector field by GP
“posterior” predictions

x = f(x|Z, U) £ Ko(x, Z)Ko(Z, Z)'vec(U)
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Inducing points, kernel interpolation, integration

Vector field
T T T

Introduce:
@ Inducing points and vectors

/7=
Z:(Z1,...7ZM)T€RMXD
U:(u1a"'auM)T:(f(z1)7"'7f(zM))TGRMXD

g °f '& ] @ For any x € RP, we obtain vector field by GP
At © “posterior” predictions
’l I x =1(x|Z, U) £ Ko(x, 2)Ko(Z, Z)'vec(U)
3 \3 /} ©
af ] @ We can integrate x; = X + fot f(x.|Z, U)dr
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Changing an inducing vector

@ Inducing vectors and kernel hyperparameters completely specify the vector field / initial value

problem
T/ TN
(o=
Bl A=
SN N7

Harri Lahdesmaki

£

Gaussian processes

Vector field Vector field
s Y ‘
N Nk

x2

! @
(B\N
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Posterior

@ The posterior is then

p(Ua Xo, 07 Q|Y7 Z) 8 p(Y|U7 27 Xo, 07 Q) p(U|Z’ 0) p(o)p(Q) = £7
—_——

likelihood GP prior
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Posterior

@ The posterior is then

p(Ua Xo, 07 Q|Y7 Z) 8 p( Y|U7 27 Xo, 07 Q) p(U|Z’ 0) p(o)p(Q) = £7
—_——

likelihood GP prior

where

p(Y|U327X07979): N(.Vi|xth)

=

1

1]
xo+/ fu(X.,-)dT,Q)
0

xu(ti)
p(U|Z,6) = N(vec(U)|0,Kq(Z, Z))

Il
=

N (Vi

1

Remark: Q = diag(w?...,w?3)
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Model estimation with gradients

@ We can seek the MAP solution

Umap, Xo MaP, OMap, 2map = argmaxlog £
U,XD,O,Q

or aim sampling the posterior
@ Gradient descent or HMC sampling both need computing the gradients of the likelihood

dp(yilxo, U,Q2)  dN(yilxu(t), Q) dxy(t)

du dxy(t) du
easy hard

which requires computing sensitivities

d);ﬁf) - diU (xo + /Otfu(x(r))d7> = 5(1)
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Sensitivities

@ Lets consider the time derivative of S(t)

x=f
5y = 9 @xult) _ d dxu(t) _ di(xu(0). U)
S dt dU dU  dt du

"Recall that the derivative of a composite function f(g(x)) is f'(g(x))g’ (x)
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5y = 9 @xult) _ d dxu(t) _ di(xu(0). U)
S dt dU dU  dt du

@ Total derivative of the right hand side'
5(t) J(t) S(1) R(t)

—_—~ "
d dxult) _ DHxu(0).0) dxu(t) | DHxu(D). U)

dt du ox du ou

@ Sensitivities form another ODE system!

"Recall that the derivative of a composite function f(g(x)) is f'(g(x))g’ (x)
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Sensitivities

@ Lets consider the time derivative of S(t)

X2t
/—x/\ﬁ
sy ) _ d Bl _ di(xu(t). V)
dt dU  dU dt au

@ Total derivative of the right hand side'
(1) J(1) S(t) R(t)

—_—~ "
d dxult) _ DHxu(0).0) dxu(t) | DHxu(D). U)

dt du ox du ou

@ Sensitivities form another ODE system!
@ Analytical forms for J(t) and R(t) are available (recall: f(x) = Ko(x, Z)Kg(Z, Z) " 'vec(U))

J(t) _ aKga(:((,Z)

Ko(Z,2) "vec(V) R(t) = Ke(x,2)Ke(Z,2)™"

"Recall that the derivative of a composite function f(g(x)) is f'(g(x))g’ (x)
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Efficient integration in parallel

. Sensitivity vs Time @ We solve two ODE systems efficiently in parallel
05 k t
~ S(t) = So + / (U7)S(r) + R(7)) dr
= , °
05 t
X; = Xo +/ f(x.)dr
-1F ‘ ‘ I I l ‘ 1 O
0 1 2 3 4 5 6 7 R
t where S(0) = 0 and Xo = Xo.
4 State vs Time 5 m)
T T T [} ata Y,
00 State 21 (t)
2 o ° ]
= goev80° ° o
\1%: 0 < ®oo 0o ]
2Fo o ©
o
r- 4]
-4 L
0 1 2 3 4 5 6 7
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Efficient integration in parallel

. _ Sensitivity vs Time ‘ @ We solve two ODE systems efficiently in parallel
05 t
. S(t) = So + / (U7)S(r) + R(7)) dr
c 0
05 t
’ X; = Xo —|—/ f(x.)dr
Al ) o
0 1 2 3 4 5 6 7 R
t where S(0) = 0 and Xo = Xo.
4 ‘ ‘ o Daau) @ Partial derivative wrt. oy (finite diff.) and Q2 (easy);
s State 2 (t) .
5 e s . (¢1,...,2¢p) as part of model selection
-2
n .
0 1 2 3 4 5 6 7
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Noncentral Parameterisation

@ Latent re-parameterisation of the posterior using Cholesky decomposition:
LoL) = Ko(Z,2)
U=LeU
U~N(,I)
Vylog £ = LjVylog £
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Simulated Dynamics

@ Three simulated differential systems:
@ Van der Pol (VDP)
e FitzHugh-Nagumo (FHN), and
o Lotka-Volterra (LV) oscillators

@ Data specs:

5 time series for training

25 data points in each time series

1 cycle of VDP&FHN, 1.7 cycle of LV
Added noise variance: 0.12
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Model fit and predictions

(a) Van der Pol model (b) FitzHugh-Nagumo model Estimated f(x) (c) Lotka-Volterra model
e True f(x)
4 Trajectory x(t)
1.5 - Data y; \
1 . Q  Initial state xo ‘
2
- \
0.5
~ - - -— . 4 ‘
0 g 0 g
— -— ) l
05f _, ‘_ |
2 -1 = |~ — — L o 0 ,<
) RN
-4 -2
-2 0 2 -2 0 2 ——— True x(t) 5 10
) N Fstimated 7, (t) + 3w,
&2 1 B Estimated a»(f) + 3w 1
Data y;;
3 (d) Van der Pol trajectory (e) FitzHugh-Nagumo trajectory 0 ﬁ:]: ]"f'dw “ (f) Lotka-Volterra trajectory
5 TU
24
8
1 1
6
% 0§ % 0 ®
4
-1 B
2
-2
" -2 0(
0 10 20 30 0 10 20 30 40 50 0 5 10 15 20
t t t
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npODE of the CMU mocap walking data

upODE forecast
(a) «  GPDM forecast
npODE GPDM +  VGPLVM forecast VGPLVM
——e— Training data
1 = o Test data
S
-9

LV3
L

o
4 B 1
-1 ERNCEE ) 1 0 !
PC2 PC1 :
(b)

Pose reconstruction 1 / 50

o 2
2 2 1

Pose reconstruction 3 / 50

0

Time ¢
rri Léhdesméaki

Time t
Gaussian processes
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