
CS-E4075 Special course on Gaussian processes:
Session #11

Dynamical models

Harri Lähdesmäki

Aalto University

harri.lahdesmaki@aalto.fi

Monday 15.02.2021

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 1 / 45

Outline

Motivation

Multi-output Gaussian processes

Discrete-time dynamical GP models
Application 1: Model-based reinforcement learning with GPs

Discrete-time dynamical GPs models: noisy data

Continuous-time dynamical models with kernels and GPs

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 2 / 45

Motivation

Many real-world problems involve a
dynamical system

For many real-world systems the
dynamics are unknown

→ We would like learn a dynamical
system from observed data

Dynamics of many real-world
systems can be controlled

→ We would like to use our learned
proxy dynamics to control the
system

Robotics:

Charles Gadd1, Markus Heinonen1, Harri Lähdesmäki1, Samuel Kaski1,2

Data: Initial data D0 = {st,at, st+1}t obtained by
performing random actions. Initial action
proposal distribution defined by m and v.

for each episode i do
Train model: optimise {Z, ✓, �} and sample U
for each t = 1, . . . , TaskHorizon do

for each control optimisation iter do
Sample K = 300 action sequences
a(k) ⇠ N (m, diag v)

For each sequence, sample P = 5
trajectories under the model
s(p,k)|a(k)

For each sequence, calculate the
expected long term reward over
horizon HPt+H

⌧=t
1
P

PP
p=1 r(s

(p,k)
⌧+1 ,a

(k)
⌧)

Update m and v using the mean and
variance of the top performing action
sequences

end
Perform first action of the sequence at

Append observed tuple (st,at, st+1) to data
set.

Re-sample inducing outputs UUU
end

end
Algorithm 1: Our DGP-MPC algorithm.

These full-uncertainty sample trajectories are then
pushed to the deterministic reward function. The long-
term reward is the sum of rewards along this horizon,
and the expectation under the model is used with the
cross-entropy method to optimise the action sequence,
as outlined in Algorithm (1).

Joint predictive posterior samples. When plan-
ning, predictions for each particle are made using the
joint predictive posterior distribution across all pro-
posed action sequences simultaneously. The upshot
of this is that, within each independent particle, tra-
jectories remain correlated by state and actions. Con-
sequently this smooths our reward objective. If two
sequences are similar, or lead to a similar point in the
state space then we expect the trajectories to follow
consistent dynamics with each other.

4 EXPERIMENTAL RESULTS

We now consider the performance of our model on a
number of control tasks. We begin by first outlining
these tasks, before analysing the improvements that
are gained by increasing model-capacity through depth,
and incorporating prior information through kernel
choice. Finally we compare our approach to competing

(a) Cartpole (b) Reacher (c) Half-cheetah

Figure 3: Environments

methods.

4.1 Benchmark environments

We consider three environments upon which to test
our model. The first example is a modified cartpole,
in which we demonstrate the advantages of improved
model capacity even in simple settings. We then con-
sider two additional environments: the reacher, in
which the goal is to control a robot arm to reach a
target; and the half cheetah environment, in which
the goal to teach a cheetah to run. To the best of
our knowledge this latter environment has previously
posed insurmountable challenges for Gaussian process
based models due to the contact points leading to sig-
nificantly non-stationary dynamics. We demonstrate
that increased model capacity allows us to tackle this
problem. Additionally, we report significant sample
efficiency improvements in the early stages of learning.

Non-stationary cartpole. We consider the simple
swinging cartpole task, as depicted in figure 3(a), mod-
ified such that each episode begins with the cart at
the end of the rail. Similar modifications have been
considered in previous works with varying motiva-
tions, (Kamthe and Deisenroth, 2017). Within this
task, the objective is to balance the pole above the
cart, with a modification that the reward’s target lies
near the boundary. Consequently, the true underly-
ing dynamics are then non-stationary near the contact
point at the end of the rail. In all cases reported in this
example, where relevant we sample K = 300 action
sequences, use 200 inducing points, and use P = 5
particles. Each episode takes 200 control iterations.

Reacher. We next consider the reacher environment,
in which the objective is to direct a robot arm’s end
effector to reach a target ball, as depicted in figure 3(b).
For this example we sample K = 300 action sequences,
use 200 inducing points, and use P = 5 particles. Each
episode takes 150 control iterations

Half-cheetah. Lastly we consider the half-cheetah
environment, depicted in figure 3(c). Here our task
is to make the cheetah run, where more reward is

Video prediction:

Motivation

A) First principle
ODE models
(few dimensions)

B) Video prediction (1M
pixels over 100K frames)

C) Motion capture (100’s
of joints)

D) Gene regulatory
network kinetics (30K
genes)

Motivation
� Some ODE models can be

built from first principles (e.g.
Leibniz at 1690 [Sas92])

y(s) = s2

dy2 = 4y(dx2 + dy2)

dx
dy

=

�
1� 4y
2
�

y

https://en.wikipedia.org/ wiki/File:Tautochrone_curve.gif

� Gene regulatory network
models 2016
[CHC99, PMS16]

dr/dt = f (p)� Vr

dp/dt = Lr � Up

f (p) = f (p0) +
df (p)

dp
|p0(p � p0)

Network image from [CHC99]

� Large scale regulatory
network models

Image from [SGCPG+06]

E) Optimal transport

Sobolev Descent

Figure 5: Morphing between several
shapes using Kernelized Sobolev De-
scent. Intermediate steps are interme-
diate particles states of the Sobolev de-
scent. Last column in the output of
Kernelized Sobolev Descent.

Figure 6: Morphing between several shapes using
Neural Sobolev Descent. The descent is performed
using a critic modeled by a simple 3-layer MLP.

Figure 7: Particles (Images) of Neural Sobolev
Descent at convergence, when the target dis-
tribution is the trucks class of CIFAR 10 and
the Sobolev critic is a learned CNN.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of particules updates in Sobolev Descent

10-2

10-1

100

101

102

FI
D

 s
co

re

Figure 8: Frechet Inception Score (FID) of the parti-
cles produced by neural Sobolev descent as the descent
progresses. FID is computed using the features from
the second max pooling layer of the Inception v3 net
(192-dim), by comparison against the truck class.

We use Sobolev descent for morphing between shapes.
The source distribution is the distribution of points
x 2 R2 sampled uniformly from a shape A, that we
need to move to become shape B. Such type of morph-
ing has been considered in the Wasserstein Barycenter
framework [28, 29]. Figure 5 shows the result of Ker-
nelized Sobolev Descent (Algorithm 1) transforming
between a source shape �q and a target shape �p, using
random fourier features for m = 100 and L = 600,
� = 0.01 and � = 0.01. We see that Kernelized Sobolev
Descent morphs the shapes as the number of iterations

approaches L = 600. Figure 6 shows Neural Sobolev
Descent morphing between source shapes and target
shapes. The first column is the source shape and last
column is the target shape, in between columns are
intermediate outputs of the Neural Sobolev Descent.
Neural Sobolev Descent converges even on complex and
unrelated shapes. Appendix H.3 provides the imple-
mentation and training details, and visualizes the critic
f�(x) during the descent (Figure 13). Code is avail-
able on https://bit.ly/2GtWXsY. Videos of shapes
morphing are available on https://goo.gl/X4o8v6.

High Dimensional Experiments: Transporting
Noise to Images. We use neural Sobolev descent to
transport uniform noise to the 5000 images in CIFAR10
labeled truck, similar to a typical GAN setup. The
Sobolev critic architecture is a DCGAN discriminator
architecture [30]. We see in Fig 7 that Sobolev descent
converges and produces samples similar to the images
from a trained GAN. The FID score [31] along the
descent is given in Fig 8. This experiment confirms
qualitatively and quantitatively our theoretical findings
on Sobolev descent as a simplified proxy for GANs.

6 Conclusion
We introduced Sobolev descent on particles as a simpli-
fied proxy to GAN training. Sobolev descent constructs
paths of distributions which minimize a kinetic energy,
similar to dynamical Optimal Transport. We high-
lighted its convergence, its capacity in modeling high
dimensional distributions and the crucial role of regular-
ization in obtaining smooth transition paths by filtering
out high frequency gradients. Our work sheds light on
gradient based learning of GANs such as Sobolev GAN
[8], that can be seen as a dynamic transport rather
than the static as popularized by WGAN [4]. Our anal-
ysis explains GAN stabilization through early stopping
(small updates of critic) [24, 25] as a regularization on
the critic, inducing smoother paths to equilibrium.

F) Classification

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 3 / 45

Multi-output Gaussian processes

In this lecture we will consider dynamical models in a high dimensional space (d > 1)

Consider a multi-output (vector-valued) function f : Rp → Rd where d > 1, denoted as

f(x) =




f1(x)
...

fd (x)




We denote that f follows a multi-output Gaussian process prior as

f(x) ∼ GP(µ(x),K (x, x′|θ)),

where µ(x) ∈ Rd is the mean (which we assume as 0) and K (x, x′|θ) is a matrix-valued positive
definite cross-covariance function (CCF)

The (i, j) entry of the d-by-d matrix K (x, x′|θ) defines the covariance between the output
dimensions (i, j) for any inputs x, x′

[K (x, x′|θ)]i,j = cov(fi (x), fj (x′)|θ)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 4 / 45

Multi-output Gaussian processes: CCFs

The CCF can have a number of different structures
Independent
Implicit/Linear model of coregionalization
Full cross-covariance

Here we assume multi-output GPs that factorize across the output dimensions, which is equivalent
to diagonal CCF

K (x, x′|θ) = diag (k1(x, x′|θ), . . . , kd (x, x′|θ))

The dimension specific scalar-valued covariance functions ki (x, x′|θi) can be any valid kernels and
are often assumed to be shared across output dimensions

K (x, x′|θ) = k(x, x′|θ) · Id

We assume (unless stated otherwise) the squared exponential (SE) covariance functions with input
dimension specific length-scales (thus, θ = (σf , `1, . . . , `d))

K (x, x′|θ) = σ2
f exp


−1

2

d∑

j=1

(xj − x ′j)2

`2
j


 · Id

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 5 / 45

Multi-output Gaussian processes: joint Gaussian

Consider a finite collection of inputs X = (x1, . . . , xN)

By the definition of GPs, the function values evaluated at X have a joint multivariate Gaussian
distribution

f(X) =




f(x1)
...

f(xN)


 ∈ RNd and p(f(X)) = N (f(X)|0,KXX (θ))

where

KXX (θ) =




K (x1, x1|θ) K (x1, x2|θ) · · · K (x1, xN |θ)
K (x2, x1|θ) K (x2, x2|θ) · · · K (x2, xN |θ)

...
...

. . .
...

K (xN , x1|θ) K (xN , x2|θ) · · · K (xN , xN |θ)


 ∈ RNd×Nd

For the multi-output GP prior that factorizes across dimensions, we can also write simply as

p(f(X)) =
d∏

i=1

p(fi (X))

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 6 / 45

Discrete-time dynamical models

Consider a discrete-time, stochastic dynamical system with states xt ∈ Rd , for t = 0, 1, 2, . . .

xt+1 = f(xt) + wt ,

where f : Rd → Rd is an unknown transition function and wt is the i.i.d. system noise w ∼ N (0,Σ)

Alternatively we can write
p(xt+1|xt) = N (xt+1|f(xt),Σ)

The system is first-order Markovian

Assume a collection of N time-series trajectories of length T + 1, D = {x(n)
0:T}N

n=1, where the
measurements are the true system states x without any measurement noise

The data D can be presented as N · T state transition pairs (x(n)
t , x(n)

t+1) (or input-output pairs)

X =
(

x(1)
0 , . . . , x(1)

T−1, . . . , x
(N)
0 , . . . , x(N)

T−1

)
∈ Rd×NT

y =
(

x(1)
1

T
, . . . , x(1)

T

T
, . . . , x(N)

1

T
, . . . , x(N)

T

T
)T
∈ RdNT×1

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 7 / 45

Discrete-time dynamical models

Consider a discrete-time, stochastic dynamical system with states xt ∈ Rd , for t = 0, 1, 2, . . .

xt+1 = f(xt) + wt ,

where f : Rd → Rd is an unknown transition function and wt is the i.i.d. system noise w ∼ N (0,Σ)

Alternatively we can write
p(xt+1|xt) = N (xt+1|f(xt),Σ)

The system is first-order Markovian

Assume a collection of N time-series trajectories of length T + 1, D = {x(n)
0:T}N

n=1, where the
measurements are the true system states x without any measurement noise

The data D can be presented as N · T state transition pairs (x(n)
t , x(n)

t+1) (or input-output pairs)

X =
(

x(1)
0 , . . . , x(1)

T−1, . . . , x
(N)
0 , . . . , x(N)

T−1

)
∈ Rd×NT

y =
(

x(1)
1

T
, . . . , x(1)

T

T
, . . . , x(N)

1

T
, . . . , x(N)

T

T
)T
∈ RdNT×1

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 7 / 45

Discrete-time dynamical GP models

We are interested in learning the underlying dynamical model which is completely unknown
We do not have a parametric form for f

We can assign the multi-output GP prior for f

f(x) ∼ GP(µ(x),K (x, x′|θ))

We can learn an estimate of the unknown transition function from D by maximizing the marginal
likelihood w.r.t. GP hyperparameters (and the system noise parameter Σ if unknown)

ln p(y|θ) = −NT
2
− 1

2
ln |Ky| −

1
2

yT K−1
y y,

where
Ky = KXX (θ) + INT ⊗ Σ

If the output dimensions of the GP are a priori independent, dimensions do not contain any shared
parameters (i.e., K (x, x′|θ) = diag (k1(x, x′|θ1), . . . , kd (x, x′|θd))), and the covariance of the
system noise is also diagonal, then it can be seen that the learning factorizes across dimensions

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 8 / 45

Discrete-time dynamical GP models

We are interested in learning the underlying dynamical model which is completely unknown
We do not have a parametric form for f

We can assign the multi-output GP prior for f

f(x) ∼ GP(µ(x),K (x, x′|θ))

We can learn an estimate of the unknown transition function from D by maximizing the marginal
likelihood w.r.t. GP hyperparameters (and the system noise parameter Σ if unknown)

ln p(y|θ) = −NT
2
− 1

2
ln |Ky| −

1
2

yT K−1
y y,

where
Ky = KXX (θ) + INT ⊗ Σ

If the output dimensions of the GP are a priori independent, dimensions do not contain any shared
parameters (i.e., K (x, x′|θ) = diag (k1(x, x′|θ1), . . . , kd (x, x′|θd))), and the covariance of the
system noise is also diagonal, then it can be seen that the learning factorizes across dimensions

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 8 / 45

Discrete-time dynamical GP models: illustration

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 9 / 45

Discrete-time dynamical GP models: predictions

After learning the dynamics model with (X , y), the standard GP predictive distributions can be used
to compute the transition function prediction for a new input state x∗

p(f(x∗)|X , y, x∗) = N (f(x∗)|µ(x∗),Σ(x∗)),

where µ(x∗) and Σ(x∗) are the standard prediction equations

µ(x∗) = Kx∗X K−1
y y

Σ(x∗) = Kx∗x∗ − Kx∗X K−1
y KXx∗

Thus, given a state at time t , xt , our estimate of the one time-step prediction p(xt+1|X , y, xt) is
obtained by combining the above equations with the system noise wt :

p(xt+1|xt) = p(xt+1|X , y, xt) = N (xt+1|µ(xt),Σ(xt) + Σ)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 10 / 45

Discrete-time dynamical GP models: long-term predictions

Given a state distribution at time t , p(xt), we are often interested in making long-term predictions
for the state evolution xt+1, . . . , xt+H

Given p(xt), the prediction equation for a single time step can be written

p(xt+1) =

∫
p(xt+1|xt)p(xt)dxt ,

where p(xt+1|xt) = p(xt+1|X , y, xt)

For long-term predictions p(xt+1), . . . , p(xt+H), we can iteratively make one time-step predictions

The above integral cannot be solved analytically but can be approximated by Monte Carlo sampling
Draw xt+1 from p(xt+1), then with xt+1 fixed draw p(xt+2|X , y, xt+1), etc.
This will give a realization from p(xt+1, xt+2, . . . , xt+H)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 11 / 45

Discrete-time dynamical GP models: prediction illustration

An illustration of long term predictions

Uncertainty accumulates

Sample-Efficient Reinforcement Learning using Deep Gaussian
Processes

Charles Gadd1 Markus Heinonen1 Harri Lähdesmäki1 Samuel Kaski1,2
1Aalto University, Finland 2University of Manchester, UK

Abstract

Reinforcement learning provides a framework
for learning to control which actions to take
towards completing a task through trial-and-
error. In many applications observing interac-
tions is costly, necessitating sample-efficient
learning. In model-based reinforcement learn-
ing efficiency is improved by learning to sim-
ulate the world dynamics. The challenge
is that model inaccuracies rapidly accumu-
late over planned trajectories. We introduce
deep Gaussian processes where the depth of
the compositions introduces model complexity
while incorporating prior knowledge on the
dynamics brings smoothness and structure.
Our approach is able to sample a Bayesian
posterior over trajectories. We demonstrate
highly improved early sample-efficiency over
competing methods. This is shown across a
number of continuous control tasks, including
the half-cheetah whose contact dynamics have
previously posed an insurmountable problem
for earlier sample-efficient Gaussian process
based models.

1 INTRODUCTION

Reinforcement learning (RL) provides a rigorous, auto-
mated framework for control and sequential decision
making. Through trial-and-error, actions are chosen
with the goal of achieving an objective defined a priori

which is often encompassed by a reward function. With
each action taken our experience of interactions in a
potentially complex environment grows, and our goal
is to choose actions that maximise the reward. RL
has been applied to numerous domains, ranging from

Preliminary work. Under review.

Figure 1: Demonstration of how uncertainty in the
states st progressively increases when simulating further
into the future when designing actions at that maximise
a reward r.

robotics to gaming (Deisenroth and Rasmussen, 2011;
Kaiser et al., 2019).

Even in systems where both the environment and task
are considered simple, many thousands or millions of
observations are often required (Sutton et al., 1998). In
cases where simulation or experimentation is expensive,
many RL approaches become impractical (Yu, 2018).
Recent advances in model-based reinforcement learning
(MBRL) allow for sample-efficient RL by learning an
environment dynamics model on much smaller data
sets (Chua et al., 2018; Kamthe and Deisenroth, 2017;
Deisenroth and Rasmussen, 2011). This model can
then be used in proxy of a simulated or real experi-
mental environment when learning an optimal policy
or planning.

The choice of the dynamics model plays a crucial role.
Its uncertainty or bias propagates through time, where
uncertainty can explode within just a few trajectory
steps (See Figure 1). Additionally, a sufficiently flexi-
ble model is required to model realistic non-smooth or
non-stationary systems accurately. Crucially then, for
sample efficiency we require a model with a principled
framework for the inclusion of uncertainty, whilst main-
taining the flexibility and capacity required to learn

ar
X

iv
:2

01
1.

01
22

6v
1

 [s
ta

t.M
L]

 2
 N

ov
 2

02
0

Figure from (Gadd et al, 2021)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 12 / 45

Discrete-time dynamical GP models: alternative model variants

Deterministic dynamic model

xt+1 = f(xt)

Time differential model

xt+1 = xt + f(xt) + wt ,

where the GP prior for f now has a zero
mean

Time differential model with irregular
sampling times (t0, t1, . . . , tN) (also called
gradient matching)

x(ti+1) = x(ti) + ∆ti · f(x(ti)) + w(ti),

where ∆ti = ti+1 − ti

Control model with an external control
variate at ∈ Rk

xt+1 = xt + f(xt , at) + wt ,

where f : Rd × Rk → Rd

Deep GP model

xt+1 = xt + fL ◦ fL−1 . . . f1(xt)︸ ︷︷ ︸
deep GP with L layers

+ wt

Higher-order models

xt+1 = xt + f(xt , . . . , xt−l) + wt ,

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 13 / 45

Discrete-time dynamical GP models: alternative model variants

Deterministic dynamic model

xt+1 = f(xt)

Time differential model

xt+1 = xt + f(xt) + wt ,

where the GP prior for f now has a zero
mean

Time differential model with irregular
sampling times (t0, t1, . . . , tN) (also called
gradient matching)

x(ti+1) = x(ti) + ∆ti · f(x(ti)) + w(ti),

where ∆ti = ti+1 − ti

Control model with an external control
variate at ∈ Rk

xt+1 = xt + f(xt , at) + wt ,

where f : Rd × Rk → Rd

Deep GP model

xt+1 = xt + fL ◦ fL−1 . . . f1(xt)︸ ︷︷ ︸
deep GP with L layers

+ wt

Higher-order models

xt+1 = xt + f(xt , . . . , xt−l) + wt ,

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 13 / 45

Application 1: Model-based reinforcement learning with GPs

Reinforcement learning (RL) provides a principled framework for data-driven autonomous learning
for control and sequencial decision making

Through trial-and-error, controls are chosen with the goal of completing a task or maximizing a
pre-defined objective

An example: learn to control a robot via trial-and-error to make the robot to complete a task

Standard RL methods are typically implemented with neural networks that require lots of
trial-and-errors to complete a task

Model-based reinforcement learning (MBRL) provides a solution to achieve sample efficiency, i.e.,
learn an accurate model / complete a task with little data

→ MBRL with GPs

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 14 / 45

Application 1: Model-based reinforcement learning with GPs

Reinforcement learning (RL) provides a principled framework for data-driven autonomous learning
for control and sequencial decision making

Through trial-and-error, controls are chosen with the goal of completing a task or maximizing a
pre-defined objective

An example: learn to control a robot via trial-and-error to make the robot to complete a task

Standard RL methods are typically implemented with neural networks that require lots of
trial-and-errors to complete a task

Model-based reinforcement learning (MBRL) provides a solution to achieve sample efficiency, i.e.,
learn an accurate model / complete a task with little data

→ MBRL with GPs

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 14 / 45

MBRL with GPs: learning a dynamics model / emulator

Assume the control model with an external control variate at ∈ Rk

xt+1 = xt + f(xt , at) + wt

and the GP prior for f : Rd × Rk → Rd

An estimate of the Markovian transition function f emulates the real-world system and can be used
to predict the outcome / next state given the current state xt and control action at

Assume that noise-free data has been collected from the real-world system, which can be
presented as a collection of triplets (or input xt , at and output xt+1 pairs)

D = {(xt , at , xt+1)}T
t=0

The discrete-time dynamical GP model can be learned again by maximizing the marginal likelihood
as described abnove

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 15 / 45

MBRL with GPs: learning a dynamics model / emulator

Assume the control model with an external control variate at ∈ Rk

xt+1 = xt + f(xt , at) + wt

and the GP prior for f : Rd × Rk → Rd

An estimate of the Markovian transition function f emulates the real-world system and can be used
to predict the outcome / next state given the current state xt and control action at

Assume that noise-free data has been collected from the real-world system, which can be
presented as a collection of triplets (or input xt , at and output xt+1 pairs)

D = {(xt , at , xt+1)}T
t=0

The discrete-time dynamical GP model can be learned again by maximizing the marginal likelihood
as described abnove

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 15 / 45

MBRL with GPs: objective function

In RL setting we typically have a pre-defined reward function r(x, a)

Reward is high for that part of the state space where we want the system to end-up, and low elsewhere
Reward may also penalize large control actions

For brevity, denote the H-step ahead control actions as (at , at+1, . . . , at+H) = at:t+H

The objective function can be defined as the expected reward over a time horizon H

R(at:t+H) =
t+H∑

τ=t

∫
r(xτ+1, aτ)p(xτ+1|xτ , aτ)dxτ+1,

where the prediction equation p(xτ+1|xτ , aτ) is now augmented with the control aτ

The integral cannot be solved in closed-form but can be approximated by sampling trajectories
(=long-term predictions) from the dynamics model f with Monte Carlo

The goal is to choose control actions at:t+H so that the objective function over a time horizon H is
maximized

ât:t+H = arg max R(at:t+H)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 16 / 45

MBRL with GPs: objective function

In RL setting we typically have a pre-defined reward function r(x, a)

Reward is high for that part of the state space where we want the system to end-up, and low elsewhere
Reward may also penalize large control actions

For brevity, denote the H-step ahead control actions as (at , at+1, . . . , at+H) = at:t+H

The objective function can be defined as the expected reward over a time horizon H

R(at:t+H) =
t+H∑

τ=t

∫
r(xτ+1, aτ)p(xτ+1|xτ , aτ)dxτ+1,

where the prediction equation p(xτ+1|xτ , aτ) is now augmented with the control aτ

The integral cannot be solved in closed-form but can be approximated by sampling trajectories
(=long-term predictions) from the dynamics model f with Monte Carlo

The goal is to choose control actions at:t+H so that the objective function over a time horizon H is
maximized

ât:t+H = arg max R(at:t+H)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 16 / 45

MBRL with GPs: illustration

An illustration of MBRL with GPs: maximization of the reward / objective function

Sample-Efficient Reinforcement Learning using Deep Gaussian
Processes

Charles Gadd1 Markus Heinonen1 Harri Lähdesmäki1 Samuel Kaski1,2
1Aalto University, Finland 2University of Manchester, UK

Abstract

Reinforcement learning provides a framework
for learning to control which actions to take
towards completing a task through trial-and-
error. In many applications observing interac-
tions is costly, necessitating sample-efficient
learning. In model-based reinforcement learn-
ing efficiency is improved by learning to sim-
ulate the world dynamics. The challenge
is that model inaccuracies rapidly accumu-
late over planned trajectories. We introduce
deep Gaussian processes where the depth of
the compositions introduces model complexity
while incorporating prior knowledge on the
dynamics brings smoothness and structure.
Our approach is able to sample a Bayesian
posterior over trajectories. We demonstrate
highly improved early sample-efficiency over
competing methods. This is shown across a
number of continuous control tasks, including
the half-cheetah whose contact dynamics have
previously posed an insurmountable problem
for earlier sample-efficient Gaussian process
based models.

1 INTRODUCTION

Reinforcement learning (RL) provides a rigorous, auto-
mated framework for control and sequential decision
making. Through trial-and-error, actions are chosen
with the goal of achieving an objective defined a priori

which is often encompassed by a reward function. With
each action taken our experience of interactions in a
potentially complex environment grows, and our goal
is to choose actions that maximise the reward. RL
has been applied to numerous domains, ranging from

Preliminary work. Under review.

Figure 1: Demonstration of how uncertainty in the
states st progressively increases when simulating further
into the future when designing actions at that maximise
a reward r.

robotics to gaming (Deisenroth and Rasmussen, 2011;
Kaiser et al., 2019).

Even in systems where both the environment and task
are considered simple, many thousands or millions of
observations are often required (Sutton et al., 1998). In
cases where simulation or experimentation is expensive,
many RL approaches become impractical (Yu, 2018).
Recent advances in model-based reinforcement learning
(MBRL) allow for sample-efficient RL by learning an
environment dynamics model on much smaller data
sets (Chua et al., 2018; Kamthe and Deisenroth, 2017;
Deisenroth and Rasmussen, 2011). This model can
then be used in proxy of a simulated or real experi-
mental environment when learning an optimal policy
or planning.

The choice of the dynamics model plays a crucial role.
Its uncertainty or bias propagates through time, where
uncertainty can explode within just a few trajectory
steps (See Figure 1). Additionally, a sufficiently flexi-
ble model is required to model realistic non-smooth or
non-stationary systems accurately. Crucially then, for
sample efficiency we require a model with a principled
framework for the inclusion of uncertainty, whilst main-
taining the flexibility and capacity required to learn

ar
X

iv
:2

01
1.

01
22

6v
1

 [s
ta

t.M
L]

 2
 N

ov
 2

02
0

Figure from (Gadd et al, 2021)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 17 / 45

MBRL with GPs: open-loop control

How to find an optimal action sequence ât:t+H?

Cross-entropy method
1 Initialize m and v
2 Sample k = 1, . . . ,K action sequences

a(k)
t:t+H ∼ N (m,diag v)

3 For each action sequence a(k)
t:t+H sample p = 1, . . . ,P trajectories x(k,p)

t+1 , . . . , x(k,p)
t+H+1 using the GP

surrogate of the dynamics model f
4 For each action sequence approximate the expected long term reward over horizon H as

R̂(a(k)
t:t+H) =

t+H∑
τ=t

1
P

P∑
p=1

r(x(k,p)
τ+1 , a(k,p)

τ)

5 Return the current best action sequence, or update m and v using the mean and variance of the top
performing action sequences and go back to step 2

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 18 / 45

MBRL with GPs: model predictive control with feedback

MBRL with GPs is typically implemented as a model predictive control (MPC) method with
feedback (closed-loop) control

Once the optimal control sequence at time t is found ât:t+H , only the first control action ât is applied
to the real-world system

The system transitions from the current state xt to a state xt+1

After a single step ahead we update the data D ← D ∪ {(xt , at , xt+1)} and re-train the GP
dynamics model

The MPC then re-optimizes the actions ât+1:t+H+1 and this closed-loop MPC continues by
iteratively learning dynamics and re-optimizing the action sequence

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 19 / 45

MBRL with GPs: CartPole example

CartPole example (with a wall on right)
Measurements of the system state
include

Position and velocity of the cart
Angle and angular velocity of the pole

Desired states are on right with the pole
at up-right position

Visualizations of the GPs based learning
at an early and a later learning stage

Charles Gadd1, Markus Heinonen1, Harri Lähdesmäki1, Samuel Kaski1,2

Data: Initial data D0 = {st,at, st+1}t obtained by
performing random actions. Initial action
proposal distribution defined by m and v.

for each episode i do
Train model: optimise {Z, ✓, �} and sample U
for each t = 1, . . . , TaskHorizon do

for each control optimisation iter do
Sample K = 300 action sequences
a(k) ⇠ N (m, diag v)

For each sequence, sample P = 5
trajectories under the model
s(p,k)|a(k)

For each sequence, calculate the
expected long term reward over
horizon HPt+H

⌧=t
1
P

PP
p=1 r(s

(p,k)
⌧+1 ,a

(k)
⌧)

Update m and v using the mean and
variance of the top performing action
sequences

end
Perform first action of the sequence at

Append observed tuple (st,at, st+1) to data
set.

Re-sample inducing outputs UUU
end

end
Algorithm 1: Our DGP-MPC algorithm.

These full-uncertainty sample trajectories are then
pushed to the deterministic reward function. The long-
term reward is the sum of rewards along this horizon,
and the expectation under the model is used with the
cross-entropy method to optimise the action sequence,
as outlined in Algorithm (1).

Joint predictive posterior samples. When plan-
ning, predictions for each particle are made using the
joint predictive posterior distribution across all pro-
posed action sequences simultaneously. The upshot
of this is that, within each independent particle, tra-
jectories remain correlated by state and actions. Con-
sequently this smooths our reward objective. If two
sequences are similar, or lead to a similar point in the
state space then we expect the trajectories to follow
consistent dynamics with each other.

4 EXPERIMENTAL RESULTS

We now consider the performance of our model on a
number of control tasks. We begin by first outlining
these tasks, before analysing the improvements that
are gained by increasing model-capacity through depth,
and incorporating prior information through kernel
choice. Finally we compare our approach to competing

(a) Cartpole (b) Reacher (c) Half-cheetah

Figure 3: Environments

methods.

4.1 Benchmark environments

We consider three environments upon which to test
our model. The first example is a modified cartpole,
in which we demonstrate the advantages of improved
model capacity even in simple settings. We then con-
sider two additional environments: the reacher, in
which the goal is to control a robot arm to reach a
target; and the half cheetah environment, in which
the goal to teach a cheetah to run. To the best of
our knowledge this latter environment has previously
posed insurmountable challenges for Gaussian process
based models due to the contact points leading to sig-
nificantly non-stationary dynamics. We demonstrate
that increased model capacity allows us to tackle this
problem. Additionally, we report significant sample
efficiency improvements in the early stages of learning.

Non-stationary cartpole. We consider the simple
swinging cartpole task, as depicted in figure 3(a), mod-
ified such that each episode begins with the cart at
the end of the rail. Similar modifications have been
considered in previous works with varying motiva-
tions, (Kamthe and Deisenroth, 2017). Within this
task, the objective is to balance the pole above the
cart, with a modification that the reward’s target lies
near the boundary. Consequently, the true underly-
ing dynamics are then non-stationary near the contact
point at the end of the rail. In all cases reported in this
example, where relevant we sample K = 300 action
sequences, use 200 inducing points, and use P = 5
particles. Each episode takes 200 control iterations.

Reacher. We next consider the reacher environment,
in which the objective is to direct a robot arm’s end
effector to reach a target ball, as depicted in figure 3(b).
For this example we sample K = 300 action sequences,
use 200 inducing points, and use P = 5 particles. Each
episode takes 150 control iterations

Half-cheetah. Lastly we consider the half-cheetah
environment, depicted in figure 3(c). Here our task
is to make the cheetah run, where more reward is

Figure from (Gadd et al, 2021)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 20 / 45

MBRL with GPs: CartPole example (2)

Comparison of shallow and deep GP model variants with L = 1, . . . , 3 on the (modified) CartPole
example

xt+1 = xt + fL ◦ fL−1 . . . f1(xt , at)︸ ︷︷ ︸
deep GP with L layers

+wt

Charles Gadd
1
, Markus Heinonen

1
, Harri Lähdesmäki

1
, Samuel Kaski

1,2

Figure 5: Modified cartpole reward under our approach with increasing number of layers L and squared exponential
kernels. Lines in the background depict the reward observed across each independent experiment, whilst those in
the foreground depict the mean observed reward across experiments.

4.3 Benchmark comparison

We compare our approach to a number of competing
methods. Firstly we consider PETS, where the dynam-
ics are modelled with ensembles of probabilistic neural
networks and control is performed with planning via
MPC. Two different trajectory sampling approaches are
used: TS1, in which a particle’s bootstrap is continu-
ously re-sampled; and TSinf, in which a particle’s boot
strap does not change during a trial (Chua et al., 2018).
To ensure a fair comparison throughout, all PETS ex-
periments use comparable control parameters to our
approach. We also consider further Gaussian process
approaches: GP-MM, which approximately propagates
the trajectory using moment matching; and GP-DS,
which approximately propagates the trajectory using
distributional sampling. For these later GP experi-
ments we again kept parameters comparable with our
own choices.

In figure 6 the maximum seen rewards are plotted
against the number of control steps. We report the

result for our approach with L = 3 and for each bench-
mark we report the mean over 10 independent runs.
When comparing our approach to each benchmark we
clearly observe both a faster learning rate, and in many
cases an improved final reward. In the half cheetah
task we observe an exceedingly fast initial learning rate,
with reward being accumulated from the very begin-
ning given only a single episode of random interactions.
In contrast GP-MM and GP-DS were unable to accu-
mulate any reward, whilst PETS requires many more
interactions before accumulating positive reward. As
expected, PETS does eventually surpass our perfor-
mance, but requires many times more samples to do
so. Plots showing performance with more episodes are
given in the supplementary material, but lie beyond
the scope of our sample-efficiency setting.

We also consider the consistency of the learning process.
Whilst the maximum seen reward gives a good depiction
of the optimal performance of a controller through
the exploration process, we are also concerned with
the learning curves as depicted in figure 5, including

Environment Kernel Average episode reward
L = 1 L = 2 L = 3

Modified Cartpole
over 15 episodes

Squared exponential 90.71± 15.43 132.73± 7.10 147.53± 4.01
Matérn-5/2 85.38± 15.38 133.36± 6.61 141.34± 3.39
Matérn-3/2 95.97± 15.59 140.81± 4.35 149.81± 3.76
Matérn-1/2 98.33± 9.80 141.98± 4.86 147.67± 4.26

Reacher
over 15 episodes

Squared exponential �50.88± 3.81 �44.62± 2.78 �49.04± 6.38
Matérn-5/2 �47.42± 3.57 �46.74± 3.97 �44.85± 2.37
Matérn-3/2 �45.09± 3.53 �44.39± 1.90 �44.68± 3.14
Matérn-1/2 �39.89± 0.57 �40.82± 1.26 �41.28± 2.39

Half cheetah
over 10 episodes

Squared exponential 359± 124.5 1256± 133.5 1498± 70.4
Matérn-5/2 474± 123.9 1603± 42.7 1612± 112.4
Matérn-3/2 671± 83.9 1540± 139.5 1680± 83.3
Matérn-1/2 584± 68.0 1264± 85.9 1400± 116.7

Table 2: Average episode reward for each environment under different kernel choices and model depth. Values
reported are the mean and deviation over 10 independent trials.

Figure from (Gadd et al, 2021)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 21 / 45

Dynamical GP models with explicit basis functions

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 22 / 45

Application 2: Gene regulatory network inference with GPs

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 23 / 45

Discrete-time dynamical GP models: noisy data

Previous models / methods assumed noise-free data

If the states xt cannot be measured exactly, then our model should account for measurement
uncertainty: e.g. yt = xt + nt , where nt denotes additive measurement noise, e.g. nt ∼ N (0, σ2

y Id)

More generally, we can consider a model where the dynamics xt are embedded in a
low-dimensional latent space and possibly high-dimensional observations yt are conditional on xt

xt = f(xt−1) + wt

yt = g(xt) + nt ,

where g : Rd → RD and nt ∼ N(0, σ2
y ID)

Traditional auto-regressive methods assume linear mappings for f and g

If the underlying model is non-linear but unknown, we can assign multi-output GP prior for both f
and g

→ We retrieve a model that is called Gaussian process dynamical model (GPDM) (Wang et al., 2005)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 24 / 45

Discrete-time dynamical GP models: noisy data

Previous models / methods assumed noise-free data

If the states xt cannot be measured exactly, then our model should account for measurement
uncertainty: e.g. yt = xt + nt , where nt denotes additive measurement noise, e.g. nt ∼ N (0, σ2

y Id)

More generally, we can consider a model where the dynamics xt are embedded in a
low-dimensional latent space and possibly high-dimensional observations yt are conditional on xt

xt = f(xt−1) + wt

yt = g(xt) + nt ,

where g : Rd → RD and nt ∼ N(0, σ2
y ID)

Traditional auto-regressive methods assume linear mappings for f and g

If the underlying model is non-linear but unknown, we can assign multi-output GP prior for both f
and g

→ We retrieve a model that is called Gaussian process dynamical model (GPDM) (Wang et al., 2005)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 24 / 45

Gaussian process dynamical model: inference

Gaussian process dynamical model (GPDM) can be understood as a GPLVM model where the
latent variables evolve according to discrete-time dynamical GP model

Fitting the GPDM involves simultaneously solving the GPLVM as well as inferring smooth
dynamical GP model for the latent GPLVM embeddings

Lets denote data Y = [y1, . . . , yT]T , latent embedding X = [x1, . . . , xT]T , and hyperparameters of
the latent GP (f) and embedding GP (g) as θf and θg

The learning involves maximizing

p(X , θf, θg|Y) ∝ p(Y |X , θg)︸ ︷︷ ︸
latent embedding

p(X |θf)︸ ︷︷ ︸
dynamics

p(θf)p(θg)

Derivation of the exact expression for p(X , θf, θg|Y) is similar with the derivation of the GPLVM (see
(Wang et al., 2005) for details)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 25 / 45

Gaussian process dynamical model: inference

Gaussian process dynamical model (GPDM) can be understood as a GPLVM model where the
latent variables evolve according to discrete-time dynamical GP model

Fitting the GPDM involves simultaneously solving the GPLVM as well as inferring smooth
dynamical GP model for the latent GPLVM embeddings

Lets denote data Y = [y1, . . . , yT]T , latent embedding X = [x1, . . . , xT]T , and hyperparameters of
the latent GP (f) and embedding GP (g) as θf and θg

The learning involves maximizing

p(X , θf, θg|Y) ∝ p(Y |X , θg)︸ ︷︷ ︸
latent embedding

p(X |θf)︸ ︷︷ ︸
dynamics

p(θf)p(θg)

Derivation of the exact expression for p(X , θf, θg|Y) is similar with the derivation of the GPLVM (see
(Wang et al., 2005) for details)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 25 / 45

Gaussian process dynamical model: comparison to other methods

An illustration of the GPDM and comparison against other methods

Figure from http://gregorygundersen.com/blog/2020/07/24/gpdm/

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 26 / 45

Gaussian process dynamical model: illustration on CMU mocap data

An illustration of the GPDM on the high-dimensional CMU mocap walking data

(a) (b) (c)

(d) (e)

Figure 2: Models learned from a walking sequence of 2.5 gait cycles. The latent positions
learned with a GPLVM (a) and a GPDM (b) are shown in blue. Vectors depict the temporal
sequence. (c) - log variance for reconstruction shows regions of latent space that are recon-
structed with high confidence. (d) Random trajectories drawn from the model using HMC
(green), and their mean (red). (e) A GPDM of walk data learned with RBF+linear kernel
dynamics. The simulation (red) was started far from the training data, and then optimized
(green). The poses were reconstructed from points on the optimized trajectory.

(a)

(b)

Figure 3: (a) Two GPDMs and mean predictions. The first is that from the previous figure.
The second was learned with a linear kernel. (b) The GPDM model was learned from 3
swings of a golf club, using a 2nd order RBF kernel for dynamics. The two plots show 2D
orthogonal projections of the 3D latent space.

initializing HMC with mean-prediction, we find that the sampler reaches equilibrium in a
small number of interations. Compared to the RBF kernels, mean-prediction motions gen-
erated from GPDMs with the linear kernel often deviate from the original data (e.g., see
Figure 3a), and lead to over-smoothed animation.

Figure 3(b) shows a 3D GPDM learned from three swings of a golf club. The learning
aligns the sequences and nicely accounts for variations in speed during the club trajectory.

3.2 Optimization
While mean-prediction is efficient, there is nothing in the algorithm that prevents trajecto-
ries from drifting away from the training data. Thus, it is sometimes desirable to optimize
a particular motion under the GPDM, which often reduces drift of the mean-prediction mo-

Figure from (Wang et al., 2005)
Harri Lähdesmäki Gaussian processes Monday 15.02.2021 27 / 45

Updated motivation

Many real-world problems involve a
continuous-time dynamical system

For many real-world systems the
dynamics are unknown

→ We would like learn a
continuous-time dynamical system
from observed data

Dynamics of many real-world
systems can be controlled

→ We would like to use our learned
continuous-time proxy dynamics to
control the system

Robotics:

Charles Gadd1, Markus Heinonen1, Harri Lähdesmäki1, Samuel Kaski1,2

Data: Initial data D0 = {st,at, st+1}t obtained by
performing random actions. Initial action
proposal distribution defined by m and v.

for each episode i do
Train model: optimise {Z, ✓, �} and sample U
for each t = 1, . . . , TaskHorizon do

for each control optimisation iter do
Sample K = 300 action sequences
a(k) ⇠ N (m, diag v)

For each sequence, sample P = 5
trajectories under the model
s(p,k)|a(k)

For each sequence, calculate the
expected long term reward over
horizon HPt+H

⌧=t
1
P

PP
p=1 r(s

(p,k)
⌧+1 ,a

(k)
⌧)

Update m and v using the mean and
variance of the top performing action
sequences

end
Perform first action of the sequence at

Append observed tuple (st,at, st+1) to data
set.

Re-sample inducing outputs UUU
end

end
Algorithm 1: Our DGP-MPC algorithm.

These full-uncertainty sample trajectories are then
pushed to the deterministic reward function. The long-
term reward is the sum of rewards along this horizon,
and the expectation under the model is used with the
cross-entropy method to optimise the action sequence,
as outlined in Algorithm (1).

Joint predictive posterior samples. When plan-
ning, predictions for each particle are made using the
joint predictive posterior distribution across all pro-
posed action sequences simultaneously. The upshot
of this is that, within each independent particle, tra-
jectories remain correlated by state and actions. Con-
sequently this smooths our reward objective. If two
sequences are similar, or lead to a similar point in the
state space then we expect the trajectories to follow
consistent dynamics with each other.

4 EXPERIMENTAL RESULTS

We now consider the performance of our model on a
number of control tasks. We begin by first outlining
these tasks, before analysing the improvements that
are gained by increasing model-capacity through depth,
and incorporating prior information through kernel
choice. Finally we compare our approach to competing

(a) Cartpole (b) Reacher (c) Half-cheetah

Figure 3: Environments

methods.

4.1 Benchmark environments

We consider three environments upon which to test
our model. The first example is a modified cartpole,
in which we demonstrate the advantages of improved
model capacity even in simple settings. We then con-
sider two additional environments: the reacher, in
which the goal is to control a robot arm to reach a
target; and the half cheetah environment, in which
the goal to teach a cheetah to run. To the best of
our knowledge this latter environment has previously
posed insurmountable challenges for Gaussian process
based models due to the contact points leading to sig-
nificantly non-stationary dynamics. We demonstrate
that increased model capacity allows us to tackle this
problem. Additionally, we report significant sample
efficiency improvements in the early stages of learning.

Non-stationary cartpole. We consider the simple
swinging cartpole task, as depicted in figure 3(a), mod-
ified such that each episode begins with the cart at
the end of the rail. Similar modifications have been
considered in previous works with varying motiva-
tions, (Kamthe and Deisenroth, 2017). Within this
task, the objective is to balance the pole above the
cart, with a modification that the reward’s target lies
near the boundary. Consequently, the true underly-
ing dynamics are then non-stationary near the contact
point at the end of the rail. In all cases reported in this
example, where relevant we sample K = 300 action
sequences, use 200 inducing points, and use P = 5
particles. Each episode takes 200 control iterations.

Reacher. We next consider the reacher environment,
in which the objective is to direct a robot arm’s end
effector to reach a target ball, as depicted in figure 3(b).
For this example we sample K = 300 action sequences,
use 200 inducing points, and use P = 5 particles. Each
episode takes 150 control iterations

Half-cheetah. Lastly we consider the half-cheetah
environment, depicted in figure 3(c). Here our task
is to make the cheetah run, where more reward is

Video prediction:

Motivation

A) First principle
ODE models
(few dimensions)

B) Video prediction (1M
pixels over 100K frames)

C) Motion capture (100’s
of joints)

D) Gene regulatory
network kinetics (30K
genes)

Motivation
� Some ODE models can be

built from first principles (e.g.
Leibniz at 1690 [Sas92])

y(s) = s2

dy2 = 4y(dx2 + dy2)

dx
dy

=

�
1� 4y
2
�

y

https://en.wikipedia.org/ wiki/File:Tautochrone_curve.gif

� Gene regulatory network
models 2016
[CHC99, PMS16]

dr/dt = f (p)� Vr

dp/dt = Lr � Up

f (p) = f (p0) +
df (p)

dp
|p0(p � p0)

Network image from [CHC99]

� Large scale regulatory
network models

Image from [SGCPG+06]

E) Optimal transport

Sobolev Descent

Figure 5: Morphing between several
shapes using Kernelized Sobolev De-
scent. Intermediate steps are interme-
diate particles states of the Sobolev de-
scent. Last column in the output of
Kernelized Sobolev Descent.

Figure 6: Morphing between several shapes using
Neural Sobolev Descent. The descent is performed
using a critic modeled by a simple 3-layer MLP.

Figure 7: Particles (Images) of Neural Sobolev
Descent at convergence, when the target dis-
tribution is the trucks class of CIFAR 10 and
the Sobolev critic is a learned CNN.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of particules updates in Sobolev Descent

10-2

10-1

100

101

102

FI
D

 s
co

re

Figure 8: Frechet Inception Score (FID) of the parti-
cles produced by neural Sobolev descent as the descent
progresses. FID is computed using the features from
the second max pooling layer of the Inception v3 net
(192-dim), by comparison against the truck class.

We use Sobolev descent for morphing between shapes.
The source distribution is the distribution of points
x 2 R2 sampled uniformly from a shape A, that we
need to move to become shape B. Such type of morph-
ing has been considered in the Wasserstein Barycenter
framework [28, 29]. Figure 5 shows the result of Ker-
nelized Sobolev Descent (Algorithm 1) transforming
between a source shape �q and a target shape �p, using
random fourier features for m = 100 and L = 600,
� = 0.01 and � = 0.01. We see that Kernelized Sobolev
Descent morphs the shapes as the number of iterations

approaches L = 600. Figure 6 shows Neural Sobolev
Descent morphing between source shapes and target
shapes. The first column is the source shape and last
column is the target shape, in between columns are
intermediate outputs of the Neural Sobolev Descent.
Neural Sobolev Descent converges even on complex and
unrelated shapes. Appendix H.3 provides the imple-
mentation and training details, and visualizes the critic
f�(x) during the descent (Figure 13). Code is avail-
able on https://bit.ly/2GtWXsY. Videos of shapes
morphing are available on https://goo.gl/X4o8v6.

High Dimensional Experiments: Transporting
Noise to Images. We use neural Sobolev descent to
transport uniform noise to the 5000 images in CIFAR10
labeled truck, similar to a typical GAN setup. The
Sobolev critic architecture is a DCGAN discriminator
architecture [30]. We see in Fig 7 that Sobolev descent
converges and produces samples similar to the images
from a trained GAN. The FID score [31] along the
descent is given in Fig 8. This experiment confirms
qualitatively and quantitatively our theoretical findings
on Sobolev descent as a simplified proxy for GANs.

6 Conclusion
We introduced Sobolev descent on particles as a simpli-
fied proxy to GAN training. Sobolev descent constructs
paths of distributions which minimize a kinetic energy,
similar to dynamical Optimal Transport. We high-
lighted its convergence, its capacity in modeling high
dimensional distributions and the crucial role of regular-
ization in obtaining smooth transition paths by filtering
out high frequency gradients. Our work sheds light on
gradient based learning of GANs such as Sobolev GAN
[8], that can be seen as a dynamic transport rather
than the static as popularized by WGAN [4]. Our anal-
ysis explains GAN stabilization through early stopping
(small updates of critic) [24, 25] as a regularization on
the critic, inducing smoother paths to equilibrium.

F) Classification

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 28 / 45

Updated motivation

Some ODE models
can be built from first
principles (e.g. Leibniz
at 1690)

y(s) = s2

dy2 = 4y(dx2 + dy2)

dx

dy
=

√
1 − 4y

2
√

y

https://en.wikipedia.org/
wiki/File:Tautochrone_curve.gif

Gene regulatory
network models

dr/dt = f (p) − Vr

dp/dt = Lr − Up

f (p) = f (p0) +
df (p)

dp
|p0 (p − p0)

Motion capture (100’s
of joints)

Motivation

A) First principle
ODE models
(few dimensions)

B) Video prediction (1M
pixels over 100K frames)

C) Motion capture (100’s
of joints)

D) Gene regulatory
network kinetics (30K
genes)

Motivation
� Some ODE models can be

built from first principles (e.g.
Leibniz at 1690 [Sas92])

y(s) = s2

dy2 = 4y(dx2 + dy2)

dx
dy

=

�
1� 4y
2
�

y

https://en.wikipedia.org/ wiki/File:Tautochrone_curve.gif

� Gene regulatory network
models 2016
[CHC99, PMS16]

dr/dt = f (p)� Vr

dp/dt = Lr � Up

f (p) = f (p0) +
df (p)

dp
|p0(p � p0)

Network image from [CHC99]

� Large scale regulatory
network models

Image from [SGCPG+06]

E) Optimal transport

Sobolev Descent

Figure 5: Morphing between several
shapes using Kernelized Sobolev De-
scent. Intermediate steps are interme-
diate particles states of the Sobolev de-
scent. Last column in the output of
Kernelized Sobolev Descent.

Figure 6: Morphing between several shapes using
Neural Sobolev Descent. The descent is performed
using a critic modeled by a simple 3-layer MLP.

Figure 7: Particles (Images) of Neural Sobolev
Descent at convergence, when the target dis-
tribution is the trucks class of CIFAR 10 and
the Sobolev critic is a learned CNN.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of particules updates in Sobolev Descent

10-2

10-1

100

101

102

FI
D

 s
co

re

Figure 8: Frechet Inception Score (FID) of the parti-
cles produced by neural Sobolev descent as the descent
progresses. FID is computed using the features from
the second max pooling layer of the Inception v3 net
(192-dim), by comparison against the truck class.

We use Sobolev descent for morphing between shapes.
The source distribution is the distribution of points
x 2 R2 sampled uniformly from a shape A, that we
need to move to become shape B. Such type of morph-
ing has been considered in the Wasserstein Barycenter
framework [28, 29]. Figure 5 shows the result of Ker-
nelized Sobolev Descent (Algorithm 1) transforming
between a source shape �q and a target shape �p, using
random fourier features for m = 100 and L = 600,
� = 0.01 and � = 0.01. We see that Kernelized Sobolev
Descent morphs the shapes as the number of iterations

approaches L = 600. Figure 6 shows Neural Sobolev
Descent morphing between source shapes and target
shapes. The first column is the source shape and last
column is the target shape, in between columns are
intermediate outputs of the Neural Sobolev Descent.
Neural Sobolev Descent converges even on complex and
unrelated shapes. Appendix H.3 provides the imple-
mentation and training details, and visualizes the critic
f�(x) during the descent (Figure 13). Code is avail-
able on https://bit.ly/2GtWXsY. Videos of shapes
morphing are available on https://goo.gl/X4o8v6.

High Dimensional Experiments: Transporting
Noise to Images. We use neural Sobolev descent to
transport uniform noise to the 5000 images in CIFAR10
labeled truck, similar to a typical GAN setup. The
Sobolev critic architecture is a DCGAN discriminator
architecture [30]. We see in Fig 7 that Sobolev descent
converges and produces samples similar to the images
from a trained GAN. The FID score [31] along the
descent is given in Fig 8. This experiment confirms
qualitatively and quantitatively our theoretical findings
on Sobolev descent as a simplified proxy for GANs.

6 Conclusion
We introduced Sobolev descent on particles as a simpli-
fied proxy to GAN training. Sobolev descent constructs
paths of distributions which minimize a kinetic energy,
similar to dynamical Optimal Transport. We high-
lighted its convergence, its capacity in modeling high
dimensional distributions and the crucial role of regular-
ization in obtaining smooth transition paths by filtering
out high frequency gradients. Our work sheds light on
gradient based learning of GANs such as Sobolev GAN
[8], that can be seen as a dynamic transport rather
than the static as popularized by WGAN [4]. Our anal-
ysis explains GAN stabilization through early stopping
(small updates of critic) [24, 25] as a regularization on
the critic, inducing smoother paths to equilibrium.

F) Classification

Video prediction (1M
pixels over 100K
frames)

Motivation

A) First principle
ODE models
(few dimensions)

B) Video prediction (1M
pixels over 100K frames)

C) Motion capture (100’s
of joints)

D) Gene regulatory
network kinetics (30K
genes)

Motivation
� Some ODE models can be

built from first principles (e.g.
Leibniz at 1690 [Sas92])

y(s) = s2

dy2 = 4y(dx2 + dy2)

dx
dy

=

�
1� 4y
2
�

y

https://en.wikipedia.org/ wiki/File:Tautochrone_curve.gif

� Gene regulatory network
models 2016
[CHC99, PMS16]

dr/dt = f (p)� Vr

dp/dt = Lr � Up

f (p) = f (p0) +
df (p)

dp
|p0(p � p0)

Network image from [CHC99]

� Large scale regulatory
network models

Image from [SGCPG+06]

E) Optimal transport

Sobolev Descent

Figure 5: Morphing between several
shapes using Kernelized Sobolev De-
scent. Intermediate steps are interme-
diate particles states of the Sobolev de-
scent. Last column in the output of
Kernelized Sobolev Descent.

Figure 6: Morphing between several shapes using
Neural Sobolev Descent. The descent is performed
using a critic modeled by a simple 3-layer MLP.

Figure 7: Particles (Images) of Neural Sobolev
Descent at convergence, when the target dis-
tribution is the trucks class of CIFAR 10 and
the Sobolev critic is a learned CNN.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of particules updates in Sobolev Descent

10-2

10-1

100

101

102

FI
D

 s
co

re

Figure 8: Frechet Inception Score (FID) of the parti-
cles produced by neural Sobolev descent as the descent
progresses. FID is computed using the features from
the second max pooling layer of the Inception v3 net
(192-dim), by comparison against the truck class.

We use Sobolev descent for morphing between shapes.
The source distribution is the distribution of points
x 2 R2 sampled uniformly from a shape A, that we
need to move to become shape B. Such type of morph-
ing has been considered in the Wasserstein Barycenter
framework [28, 29]. Figure 5 shows the result of Ker-
nelized Sobolev Descent (Algorithm 1) transforming
between a source shape �q and a target shape �p, using
random fourier features for m = 100 and L = 600,
� = 0.01 and � = 0.01. We see that Kernelized Sobolev
Descent morphs the shapes as the number of iterations

approaches L = 600. Figure 6 shows Neural Sobolev
Descent morphing between source shapes and target
shapes. The first column is the source shape and last
column is the target shape, in between columns are
intermediate outputs of the Neural Sobolev Descent.
Neural Sobolev Descent converges even on complex and
unrelated shapes. Appendix H.3 provides the imple-
mentation and training details, and visualizes the critic
f�(x) during the descent (Figure 13). Code is avail-
able on https://bit.ly/2GtWXsY. Videos of shapes
morphing are available on https://goo.gl/X4o8v6.

High Dimensional Experiments: Transporting
Noise to Images. We use neural Sobolev descent to
transport uniform noise to the 5000 images in CIFAR10
labeled truck, similar to a typical GAN setup. The
Sobolev critic architecture is a DCGAN discriminator
architecture [30]. We see in Fig 7 that Sobolev descent
converges and produces samples similar to the images
from a trained GAN. The FID score [31] along the
descent is given in Fig 8. This experiment confirms
qualitatively and quantitatively our theoretical findings
on Sobolev descent as a simplified proxy for GANs.

6 Conclusion
We introduced Sobolev descent on particles as a simpli-
fied proxy to GAN training. Sobolev descent constructs
paths of distributions which minimize a kinetic energy,
similar to dynamical Optimal Transport. We high-
lighted its convergence, its capacity in modeling high
dimensional distributions and the crucial role of regular-
ization in obtaining smooth transition paths by filtering
out high frequency gradients. Our work sheds light on
gradient based learning of GANs such as Sobolev GAN
[8], that can be seen as a dynamic transport rather
than the static as popularized by WGAN [4]. Our anal-
ysis explains GAN stabilization through early stopping
(small updates of critic) [24, 25] as a regularization on
the critic, inducing smoother paths to equilibrium.

F) Classification

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 29 / 45

Updated motivation

Some ODE models
can be built from first
principles (e.g. Leibniz
at 1690)

y(s) = s2

dy2 = 4y(dx2 + dy2)

dx

dy
=

√
1 − 4y

2
√

y

https://en.wikipedia.org/
wiki/File:Tautochrone_curve.gif

Gene regulatory
network models

dr/dt = f (p) − Vr

dp/dt = Lr − Up

f (p) = f (p0) +
df (p)

dp
|p0 (p − p0)

Motion capture (100’s
of joints)

Motivation

A) First principle
ODE models
(few dimensions)

B) Video prediction (1M
pixels over 100K frames)

C) Motion capture (100’s
of joints)

D) Gene regulatory
network kinetics (30K
genes)

Motivation
� Some ODE models can be

built from first principles (e.g.
Leibniz at 1690 [Sas92])

y(s) = s2

dy2 = 4y(dx2 + dy2)

dx
dy

=

�
1� 4y
2
�

y

https://en.wikipedia.org/ wiki/File:Tautochrone_curve.gif

� Gene regulatory network
models 2016
[CHC99, PMS16]

dr/dt = f (p)� Vr

dp/dt = Lr � Up

f (p) = f (p0) +
df (p)

dp
|p0(p � p0)

Network image from [CHC99]

� Large scale regulatory
network models

Image from [SGCPG+06]

E) Optimal transport

Sobolev Descent

Figure 5: Morphing between several
shapes using Kernelized Sobolev De-
scent. Intermediate steps are interme-
diate particles states of the Sobolev de-
scent. Last column in the output of
Kernelized Sobolev Descent.

Figure 6: Morphing between several shapes using
Neural Sobolev Descent. The descent is performed
using a critic modeled by a simple 3-layer MLP.

Figure 7: Particles (Images) of Neural Sobolev
Descent at convergence, when the target dis-
tribution is the trucks class of CIFAR 10 and
the Sobolev critic is a learned CNN.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of particules updates in Sobolev Descent

10-2

10-1

100

101

102

FI
D

 s
co

re

Figure 8: Frechet Inception Score (FID) of the parti-
cles produced by neural Sobolev descent as the descent
progresses. FID is computed using the features from
the second max pooling layer of the Inception v3 net
(192-dim), by comparison against the truck class.

We use Sobolev descent for morphing between shapes.
The source distribution is the distribution of points
x 2 R2 sampled uniformly from a shape A, that we
need to move to become shape B. Such type of morph-
ing has been considered in the Wasserstein Barycenter
framework [28, 29]. Figure 5 shows the result of Ker-
nelized Sobolev Descent (Algorithm 1) transforming
between a source shape �q and a target shape �p, using
random fourier features for m = 100 and L = 600,
� = 0.01 and � = 0.01. We see that Kernelized Sobolev
Descent morphs the shapes as the number of iterations

approaches L = 600. Figure 6 shows Neural Sobolev
Descent morphing between source shapes and target
shapes. The first column is the source shape and last
column is the target shape, in between columns are
intermediate outputs of the Neural Sobolev Descent.
Neural Sobolev Descent converges even on complex and
unrelated shapes. Appendix H.3 provides the imple-
mentation and training details, and visualizes the critic
f�(x) during the descent (Figure 13). Code is avail-
able on https://bit.ly/2GtWXsY. Videos of shapes
morphing are available on https://goo.gl/X4o8v6.

High Dimensional Experiments: Transporting
Noise to Images. We use neural Sobolev descent to
transport uniform noise to the 5000 images in CIFAR10
labeled truck, similar to a typical GAN setup. The
Sobolev critic architecture is a DCGAN discriminator
architecture [30]. We see in Fig 7 that Sobolev descent
converges and produces samples similar to the images
from a trained GAN. The FID score [31] along the
descent is given in Fig 8. This experiment confirms
qualitatively and quantitatively our theoretical findings
on Sobolev descent as a simplified proxy for GANs.

6 Conclusion
We introduced Sobolev descent on particles as a simpli-
fied proxy to GAN training. Sobolev descent constructs
paths of distributions which minimize a kinetic energy,
similar to dynamical Optimal Transport. We high-
lighted its convergence, its capacity in modeling high
dimensional distributions and the crucial role of regular-
ization in obtaining smooth transition paths by filtering
out high frequency gradients. Our work sheds light on
gradient based learning of GANs such as Sobolev GAN
[8], that can be seen as a dynamic transport rather
than the static as popularized by WGAN [4]. Our anal-
ysis explains GAN stabilization through early stopping
(small updates of critic) [24, 25] as a regularization on
the critic, inducing smoother paths to equilibrium.

F) Classification

Video prediction (1M
pixels over 100K
frames)

Motivation

A) First principle
ODE models
(few dimensions)

B) Video prediction (1M
pixels over 100K frames)

C) Motion capture (100’s
of joints)

D) Gene regulatory
network kinetics (30K
genes)

Motivation
� Some ODE models can be

built from first principles (e.g.
Leibniz at 1690 [Sas92])

y(s) = s2

dy2 = 4y(dx2 + dy2)

dx
dy

=

�
1� 4y
2
�

y

https://en.wikipedia.org/ wiki/File:Tautochrone_curve.gif

� Gene regulatory network
models 2016
[CHC99, PMS16]

dr/dt = f (p)� Vr

dp/dt = Lr � Up

f (p) = f (p0) +
df (p)

dp
|p0(p � p0)

Network image from [CHC99]

� Large scale regulatory
network models

Image from [SGCPG+06]

E) Optimal transport

Sobolev Descent

Figure 5: Morphing between several
shapes using Kernelized Sobolev De-
scent. Intermediate steps are interme-
diate particles states of the Sobolev de-
scent. Last column in the output of
Kernelized Sobolev Descent.

Figure 6: Morphing between several shapes using
Neural Sobolev Descent. The descent is performed
using a critic modeled by a simple 3-layer MLP.

Figure 7: Particles (Images) of Neural Sobolev
Descent at convergence, when the target dis-
tribution is the trucks class of CIFAR 10 and
the Sobolev critic is a learned CNN.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of particules updates in Sobolev Descent

10-2

10-1

100

101

102

FI
D

 s
co

re

Figure 8: Frechet Inception Score (FID) of the parti-
cles produced by neural Sobolev descent as the descent
progresses. FID is computed using the features from
the second max pooling layer of the Inception v3 net
(192-dim), by comparison against the truck class.

We use Sobolev descent for morphing between shapes.
The source distribution is the distribution of points
x 2 R2 sampled uniformly from a shape A, that we
need to move to become shape B. Such type of morph-
ing has been considered in the Wasserstein Barycenter
framework [28, 29]. Figure 5 shows the result of Ker-
nelized Sobolev Descent (Algorithm 1) transforming
between a source shape �q and a target shape �p, using
random fourier features for m = 100 and L = 600,
� = 0.01 and � = 0.01. We see that Kernelized Sobolev
Descent morphs the shapes as the number of iterations

approaches L = 600. Figure 6 shows Neural Sobolev
Descent morphing between source shapes and target
shapes. The first column is the source shape and last
column is the target shape, in between columns are
intermediate outputs of the Neural Sobolev Descent.
Neural Sobolev Descent converges even on complex and
unrelated shapes. Appendix H.3 provides the imple-
mentation and training details, and visualizes the critic
f�(x) during the descent (Figure 13). Code is avail-
able on https://bit.ly/2GtWXsY. Videos of shapes
morphing are available on https://goo.gl/X4o8v6.

High Dimensional Experiments: Transporting
Noise to Images. We use neural Sobolev descent to
transport uniform noise to the 5000 images in CIFAR10
labeled truck, similar to a typical GAN setup. The
Sobolev critic architecture is a DCGAN discriminator
architecture [30]. We see in Fig 7 that Sobolev descent
converges and produces samples similar to the images
from a trained GAN. The FID score [31] along the
descent is given in Fig 8. This experiment confirms
qualitatively and quantitatively our theoretical findings
on Sobolev descent as a simplified proxy for GANs.

6 Conclusion
We introduced Sobolev descent on particles as a simpli-
fied proxy to GAN training. Sobolev descent constructs
paths of distributions which minimize a kinetic energy,
similar to dynamical Optimal Transport. We high-
lighted its convergence, its capacity in modeling high
dimensional distributions and the crucial role of regular-
ization in obtaining smooth transition paths by filtering
out high frequency gradients. Our work sheds light on
gradient based learning of GANs such as Sobolev GAN
[8], that can be seen as a dynamic transport rather
than the static as popularized by WGAN [4]. Our anal-
ysis explains GAN stabilization through early stopping
(small updates of critic) [24, 25] as a regularization on
the critic, inducing smoother paths to equilibrium.

F) Classification

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 29 / 45

Ordinary differential equations (ODEs)

An ordinary differential equation (ODE) system defined by differential field / drift function

dxt

dt
:= ẋt = f(xt)

where
ẋt , xt ∈ RD, f : RD → RD

Given an initial state x0 and (possible) parameters θ, ODE solution xt := x(t , θ, x0) indexed by
t ∈ T = R+ is

xt = x0 +

∫ t

0
ẋτdτ = x0 +

∫ t

0
f(xτ)dτ

Interested in cases where f is completely unknown and is to be estimated from noisy data

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 30 / 45

Ordinary differential equations (ODEs)

An ordinary differential equation (ODE) system defined by differential field / drift function

dxt

dt
:= ẋt = f(xt)

where
ẋt , xt ∈ RD, f : RD → RD

Given an initial state x0 and (possible) parameters θ, ODE solution xt := x(t , θ, x0) indexed by
t ∈ T = R+ is

xt = x0 +

∫ t

0
ẋτdτ = x0 +

∫ t

0
f(xτ)dτ

Interested in cases where f is completely unknown and is to be estimated from noisy data

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 30 / 45

Black-box ODEs

We are interested in cases
where f is completely
unknown and we are given
only noisy observations at
T = (t1, . . . , tN):

yt = xt + εt

εt ∼ N (0,Ω)

Ω = diag(ω2
1 , . . . , ω

2
D)

Input data

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8

-2

0

2

Inference / The true system

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8

-2

0

2

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 31 / 45

Black-box ODEs

We are interested in cases
where f is completely
unknown and we are given
only noisy observations at
T = (t1, . . . , tN):

yt = xt + εt

εt ∼ N (0,Ω)

Ω = diag(ω2
1 , . . . , ω

2
D)

Input data

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8

-2

0

2

Inference / The true system

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8

-2

0

2

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 31 / 45

Black-box ODEs

We are interested in cases
where f is completely
unknown and we are given
only noisy observations at
T = (t1, . . . , tN):

yt = xt + εt

εt ∼ N (0,Ω)

Ω = diag(ω2
1 , . . . , ω

2
D)

Input data

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8

-2

0

2

Inference / The true system

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8

-2

0

2

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 31 / 45

Nonparametric ODE (npODE) Model (Heinonen et al., 2018)

As before, we set a vector-valued Gaussian process (GP) prior over the D-dimensional vector field

f (x) ∼ GP(0,Kθ(x , x ′)), Kθ(x, x′) = σ2
f exp


−1

2

D∑

j=1

(xj − x ′j)2

`2
j


 · ID

with kernel parameters θ = (σf , `1, . . . , `D) that defines prior mean and covariance

E[f(x)] = 0

cov[f(x), f(x′)] = Kθ(x, x′)

By GP definition

X = (x1, . . . , xn)T ∈ Rn×D

f(X) = (f (x1)T , . . . , f (xn)T)T ∈ RnD×1

p(f(X)) = N (f(X)|0,Kθ(X ,X))

Kθ(X ,X) = (K (xi , xj))n
i,j=1 ∈ RnD×nD

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 32 / 45

Nonparametric ODE (npODE) Model (Heinonen et al., 2018)

As before, we set a vector-valued Gaussian process (GP) prior over the D-dimensional vector field

f (x) ∼ GP(0,Kθ(x , x ′)), Kθ(x, x′) = σ2
f exp


−1

2

D∑

j=1

(xj − x ′j)2

`2
j


 · ID

with kernel parameters θ = (σf , `1, . . . , `D) that defines prior mean and covariance

E[f(x)] = 0

cov[f(x), f(x′)] = Kθ(x, x′)

By GP definition

X = (x1, . . . , xn)T ∈ Rn×D

f(X) = (f (x1)T , . . . , f (xn)T)T ∈ RnD×1

p(f(X)) = N (f(X)|0,Kθ(X ,X))

Kθ(X ,X) = (K (xi , xj))n
i,j=1 ∈ RnD×nD

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 32 / 45

Inducing points, kernel interpolation, integration

Introduce:

Inducing points and vectors

Z = (z1, . . . , zM)T ∈ RM×D

U = (u1, . . . ,uM)T = (f(z1), . . . , f(zM))T ∈ RM×D

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 33 / 45

Inducing points, kernel interpolation, integration

Introduce:

Inducing points and vectors

Z = (z1, . . . , zM)T ∈ RM×D

U = (u1, . . . ,uM)T = (f(z1), . . . , f(zM))T ∈ RM×D

For any x ∈ RD, we obtain vector field by GP
“posterior” predictions

ẋ = f(x|Z ,U) , Kθ(x,Z)Kθ(Z ,Z)−1vec(U)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 34 / 45

Inducing points, kernel interpolation, integration

Introduce:

Inducing points and vectors

Z = (z1, . . . , zM)T ∈ RM×D

U = (u1, . . . ,uM)T = (f(z1), . . . , f(zM))T ∈ RM×D

For any x ∈ RD, we obtain vector field by GP
“posterior” predictions

ẋ = f(x|Z ,U) , Kθ(x,Z)Kθ(Z ,Z)−1vec(U)

We can integrate xt = x0 +
∫ t

0 f(xτ |Z ,U)dτ

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 35 / 45

Changing an inducing vector

Inducing vectors and kernel hyperparameters completely specify the vector field / initial value
problem

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 36 / 45

Posterior

The posterior is then

p(U, x0,θ,Ω|Y ,Z) ∝ p(Y |U,Z , x0,θ,Ω)︸ ︷︷ ︸
likelihood

p(U|Z ,θ)︸ ︷︷ ︸
GP prior

p(θ)p(Ω) = L,

where

p(Y |U,Z , x0,θ,Ω) =
N∏

i=1

N (yi |xti ,Ω)

=
N∏

i=1

N
(

yi

∣∣∣ x0 +

∫ ti

0
fU(xτ)dτ

︸ ︷︷ ︸
xU (ti)

,Ω
)

p(U|Z ,θ) = N (vec(U)|0,Kθ(Z ,Z))

Remark: Ω = diag(ω2
1 . . . , ω

2
D)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 37 / 45

Posterior

The posterior is then

p(U, x0,θ,Ω|Y ,Z) ∝ p(Y |U,Z , x0,θ,Ω)︸ ︷︷ ︸
likelihood

p(U|Z ,θ)︸ ︷︷ ︸
GP prior

p(θ)p(Ω) = L,

where

p(Y |U,Z , x0,θ,Ω) =
N∏

i=1

N (yi |xti ,Ω)

=
N∏

i=1

N
(

yi

∣∣∣ x0 +

∫ ti

0
fU(xτ)dτ

︸ ︷︷ ︸
xU (ti)

,Ω
)

p(U|Z ,θ) = N (vec(U)|0,Kθ(Z ,Z))

Remark: Ω = diag(ω2
1 . . . , ω

2
D)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 37 / 45

Model estimation with gradients

We can seek the MAP solution

UMAP, x0,MAP,θMAP,ΩMAP = argmax
U,x0,θ,Ω

logL

or aim sampling the posterior

Gradient descent or HMC sampling both need computing the gradients of the likelihood

dp(yi |x0,U,Ω)

dU
=

dN (yi |xU(ti),Ω)

dxU(ti)︸ ︷︷ ︸
easy

dxU(ti)
dU︸ ︷︷ ︸
hard

which requires computing sensitivities

dxU(t)
dU

=
d

dU

(
x0 +

∫ t

0
fU(x(τ))dτ

)
≡ S(t)

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 38 / 45

Sensitivities

Lets consider the time derivative of S(t)

Ṡ(t) =
d
dt

dxU(t)
dU

=
d

dU

ẋ,f︷ ︸︸ ︷
dxU(t)

dt
=

df(xU(t),U)

dU

Total derivative of the right hand side1

Ṡ(t)︷ ︸︸ ︷
d
dt

dxU(t)
dU

=

J(t)︷ ︸︸ ︷
∂f(xU(t),U)

∂x

S(t)︷ ︸︸ ︷
dxU(t)

dU
+

R(t)︷ ︸︸ ︷
∂f(xU(t),U)

∂U

Sensitivities form another ODE system!

Analytical forms for J(t) and R(t) are available (recall: f(x) = Kθ(x,Z)Kθ(Z ,Z)−1vec(U))

J(t) =
∂Kθ(x,Z)

∂x
Kθ(Z ,Z)−1vec(U) R(t) = Kθ(x,Z)Kθ(Z ,Z)−1

1Recall that the derivative of a composite function f (g(x)) is f ′(g(x))g′(x)
Harri Lähdesmäki Gaussian processes Monday 15.02.2021 39 / 45

Sensitivities

Lets consider the time derivative of S(t)

Ṡ(t) =
d
dt

dxU(t)
dU

=
d

dU

ẋ,f︷ ︸︸ ︷
dxU(t)

dt
=

df(xU(t),U)

dU

Total derivative of the right hand side1

Ṡ(t)︷ ︸︸ ︷
d
dt

dxU(t)
dU

=

J(t)︷ ︸︸ ︷
∂f(xU(t),U)

∂x

S(t)︷ ︸︸ ︷
dxU(t)

dU
+

R(t)︷ ︸︸ ︷
∂f(xU(t),U)

∂U

Sensitivities form another ODE system!

Analytical forms for J(t) and R(t) are available (recall: f(x) = Kθ(x,Z)Kθ(Z ,Z)−1vec(U))

J(t) =
∂Kθ(x,Z)

∂x
Kθ(Z ,Z)−1vec(U) R(t) = Kθ(x,Z)Kθ(Z ,Z)−1

1Recall that the derivative of a composite function f (g(x)) is f ′(g(x))g′(x)
Harri Lähdesmäki Gaussian processes Monday 15.02.2021 39 / 45

Sensitivities

Lets consider the time derivative of S(t)

Ṡ(t) =
d
dt

dxU(t)
dU

=
d

dU

ẋ,f︷ ︸︸ ︷
dxU(t)

dt
=

df(xU(t),U)

dU

Total derivative of the right hand side1

Ṡ(t)︷ ︸︸ ︷
d
dt

dxU(t)
dU

=

J(t)︷ ︸︸ ︷
∂f(xU(t),U)

∂x

S(t)︷ ︸︸ ︷
dxU(t)

dU
+

R(t)︷ ︸︸ ︷
∂f(xU(t),U)

∂U

Sensitivities form another ODE system!

Analytical forms for J(t) and R(t) are available (recall: f(x) = Kθ(x,Z)Kθ(Z ,Z)−1vec(U))

J(t) =
∂Kθ(x,Z)

∂x
Kθ(Z ,Z)−1vec(U) R(t) = Kθ(x,Z)Kθ(Z ,Z)−1

1Recall that the derivative of a composite function f (g(x)) is f ′(g(x))g′(x)
Harri Lähdesmäki Gaussian processes Monday 15.02.2021 39 / 45

Sensitivities

Lets consider the time derivative of S(t)

Ṡ(t) =
d
dt

dxU(t)
dU

=
d

dU

ẋ,f︷ ︸︸ ︷
dxU(t)

dt
=

df(xU(t),U)

dU

Total derivative of the right hand side1

Ṡ(t)︷ ︸︸ ︷
d
dt

dxU(t)
dU

=

J(t)︷ ︸︸ ︷
∂f(xU(t),U)

∂x

S(t)︷ ︸︸ ︷
dxU(t)

dU
+

R(t)︷ ︸︸ ︷
∂f(xU(t),U)

∂U

Sensitivities form another ODE system!

Analytical forms for J(t) and R(t) are available (recall: f(x) = Kθ(x,Z)Kθ(Z ,Z)−1vec(U))

J(t) =
∂Kθ(x,Z)

∂x
Kθ(Z ,Z)−1vec(U) R(t) = Kθ(x,Z)Kθ(Z ,Z)−1

1Recall that the derivative of a composite function f (g(x)) is f ′(g(x))g′(x)
Harri Lähdesmäki Gaussian processes Monday 15.02.2021 39 / 45

Efficient integration in parallel

We solve two ODE systems efficiently in parallel

S(t) = S0 +

∫ t

0

(
J(τ)S(τ) + R(τ)

)
dτ

xt = x0 +

∫ t

0
f(xτ)dτ

where S(0) = 0 and x0 = x̂0.

Partial derivative wrt. σf (finite diff.) and Ω (easy);
(`1, . . . , `D) as part of model selection

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 40 / 45

Efficient integration in parallel

We solve two ODE systems efficiently in parallel

S(t) = S0 +

∫ t

0

(
J(τ)S(τ) + R(τ)

)
dτ

xt = x0 +

∫ t

0
f(xτ)dτ

where S(0) = 0 and x0 = x̂0.

Partial derivative wrt. σf (finite diff.) and Ω (easy);
(`1, . . . , `D) as part of model selection

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 40 / 45

Noncentral Parameterisation

Latent re-parameterisation of the posterior using Cholesky decomposition:

LθLT
θ = Kθ(Z ,Z)

U = LθŨ

Ũ ∼ N (0, I)

∇Ũ logL = LT
θ∇U logL

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 41 / 45

Simulated Dynamics

Three simulated differential systems:
Van der Pol (VDP)
FitzHugh-Nagumo (FHN), and
Lotka-Volterra (LV) oscillators

Data specs:
5 time series for training
25 data points in each time series
1 cycle of VDP&FHN, 1.7 cycle of LV
Added noise variance: 0.12

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 42 / 45

Model fit and predictionsLearning unknown ODE models with GP

Figure 2. Estimated dynamics from Van der Pol, FitzHugh-Nagumo and Lotka-Volterra systems. The top part (a-c) shows the learned
vector field (grey arrows) against the true vector field (black arrows). The bottom part (d-f) shows the training data (grey region points)
and forecasted future cycle likelihoods with the learned model (shaded region) against the true trajectory (black line).

vector field of Equation (8). We use these simulated mod-
els to only illustrate our model behavior against the true
dynamics.

We employ 25 data points from one cycle of noisy observa-
tion data from VDP and FHN models, and 25 data points
from 1.7 cycles from the LV model with a noise variance of
�2

n = 0.12. We learn the npODE model with five training
sequences using M = 62 inducing locations on a fixed grid,
and forecast between 4 and 8 future cycles starting from true
initial state x0 at time 0. Training takes approximately 100
seconds per oscillator. Figure 2 (bottom) shows the training
datasets (grey regions), initial states, true trajectories (black
lines) and the forecasted trajectory likelihoods (colored re-
gions). The model accurately learns the dynamics from less
than two cycles of data and can reproduce them reliably into
future.

Figure 2 (top) shows the corresponding true vector field
(black arrows) and the estimated vector field (grey arrows).
The vector field is a continuous function, which is plotted
on a 8x8 grid for visualisation. In general the most difficult
part of the system is learning the middle of the loop (as
seen in the FHN model), and learning the most outermost
regions (bottom left in the LV model). The model learns the

underlying differential f(x) accurately close to observed
points, while making only few errors in the border regions
with no data.

5. Unknown System Estimation
Next, we illustrate how the model estimates realistic, un-
known dynamics from noisy observations y(t1), . . . ,y(tN).
As in Section 4, we make no assumptions on the structure
or form of the underlying system, and capture the underly-
ing dynamics with the nonparameteric system alone. We
employ no subjective priors, and assume no inputs, controls
or other sources of information. The task is to infer the
underlying dynamics f(x), and interpolate or extrapolate
the state trajectory outside the observed data.

We use a benchmark dataset of human motion capture data
from the Carnegie Mellon University motion capture (CMU
mocap) database. Our dataset contains 50-dimensional pose
measurements y(ti) from humans walking, where each pose
dimension records a measurement in different parts of the
body during movement (Wang et al., 2008). We apply the
preprocessing of Wang et al. (2008) by downsampling the
datasets by a factor of four and centering the data. This
resulted in a total of 4303 datapoints spread across 43 trajec-

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 43 / 45

npODE of the CMU mocap walking data
Learning unknown ODE models with GP

Figure 3. Forecasting 50 future frames after 49 frames of training data of human motion dataset 35 12.amc. (a) The estimated locations
of the trajectory in a latent space (black points) and future forecast (colored lines). (b) The original features reconstructed from the latent
predictions with grey region showing the training data.

dimensions from the three models. The missing values are
shown in circles, while training points are shown with black
dots. All models can accurately reproduce the overall trends,
while npODE seems to fit slightly worse than the other
methods. The PCA projection causes the seemingly perfect
fit of the npODE prediction (at the top) to lead to slightly
warped reconstructions (at the bottom). All methods mostly
fit the missing parts as well. Table 1 shows that on average
the npODE and VGPLVM have approximately equal top
performance on the imputing missing values task.

6. Discussion
We proposed the framework of nonparametric ODE model
that can accurately learn arbitrary, nonlinear continuos-time
dynamics from purely observational data without making
assumptions of the underlying system dynamics. We demon-
strated that the model excels at learning dynamics that can
be forecasted into the future. We consider this work as the

first in a line of studies of nonparametric ODE systems, and
foresee several aspects as future work. Currently we do not
handle non-stationary vector fields, that is time-dependent
differentials ft(x). Furthermore, an interesting future av-
enue is the study of various vector field kernels, such as
divergence-free, curl-free or spectral kernels (Remes et al.,
2017). Finally, including inputs or controls to the system
would allow precise modelling in interactive settings, such
as robotics.

The proposed nonparametric ODE model operates along a
continuous-time trajectory, while dynamic models such as
hidden Markov models or state-space models are restricted
to discrete time steps. These models are unable to consider
system state at arbitrary times, for instance, between two
successive timepoints.

Conventional ODE models have also been considered from
the stochastic perspective with stochastic differential equa-
tion (SDE) models that commonly model the deterministic

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 44 / 45

References

Gadd C, Heinonen M, Lähdesmäki, Kaski S, Sample-efficient reinforcement learning using deep
Gaussian processes, https://arxiv.org/abs/2011.01226

Heinonen M, Yildiz C, Mannerström H, Intosalmi J, Lähdesmäki H, Learning unknown ODE models
with Gaussian processes, In Proceedings of the 35th International Conference on Machine
Learning (ICML), PMLR 80:1959-1968, 2018.

Wang JM, Fleet DJ, Hertzmann A, Gaussian process dynamical models, In Proc. NIPS, pp.
1441-1448, 2005.

Harri Lähdesmäki Gaussian processes Monday 15.02.2021 45 / 45

	Nonparametric ODE Model
	npODE Model
	Sensitivities
	Experiments with npODE

	anm0:
	anm1:

