1. [4 pts] Sketch a contour plot (ie level curves) of the following surface. Clearly indicate on your plot the locations of local minima, local maxima and saddle points.

$x=$ saddle

2. [4 pts] Determine if the following limit exists: $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{2}+4 y^{6}}$

Along the line $y=0=\lim _{x \rightarrow 0} \frac{0}{x^{2}}=0$

$$
\text { Along the curve } \begin{aligned}
x=y^{3}: & \lim _{x \rightarrow 0} \frac{x^{3} x^{3}}{\left(x^{3}\right)^{2}+4 x^{6}} \\
& =\lim _{x \rightarrow 0} \frac{1}{5}=\frac{1}{5} \neq 0
\end{aligned}
$$

We obtained different limits along different paths approaching (0,0), therefore the limit does not exist.
3. [$4 \mathbf{p t s}]$ Find the tangent plane to the surface $z=\ln (x y)$ when $x=1$ and $y=1$.

$$
\begin{aligned}
z & =\ln (x y)=\ln (x)+\ln (y) \\
\frac{\partial z}{\partial x} & =\frac{1}{x} ; \quad \frac{\partial z}{\partial x}(1,1)=1 \\
\frac{\partial z}{\partial y} & =\frac{1}{y}, \quad \frac{\partial z}{\partial y}(1,1)=1
\end{aligned}
$$

Tangent plane: $\quad z=\ln (1.1)+1(x-1)+1(y-1)$

$$
\begin{aligned}
& \Rightarrow \quad z=0+x-1+y-1 \\
& \Rightarrow \quad z=x+y-2
\end{aligned}
$$

Note: The version of the exam with the typo $x=0, y=1$ has no tangent plane as $(0,1)$ is not in the domain of $\ln (x y)$
4. [8 pts] Consider the function

$$
f(x, y)=\frac{\sqrt{1-x^{2}-y^{2}}}{x^{2}}
$$

and let D be its domain.
(a) Find and sketch D.

$$
\begin{aligned}
& x \neq 0 \\
& \text { and } 1-x^{2}-y^{2} \geqslant 0
\end{aligned}
$$

$$
\Leftrightarrow x^{2}+y^{2} \leq 1
$$

(b) Is the domain open, closed or neither?

Neither, as D contains the boundary circle but does not include the y-axis
(c) Does the function have an absolute minimum on D ? If so, then find it. If not, explain why not.
(1) $f(x, y) \geqslant 0$ for all (x, y) in $D, x \neq 0$
(2) For any (a, b) on the circle, $a^{2}+b^{2}=1$, so $f(a, b)=0$

So f has a min of 0 on C_{0}^{∞} for $b=0$
(d) Does the function have an absolute maximum on D ? If so, then find it. If not, explain why not.

$$
\begin{aligned}
& \text { No for example, let } y=0 \text {, then } \\
& f(x, y)=f(x, 0)=\frac{\sqrt{1-x^{2}}}{x^{2}} \\
& \text { Note. } \lim _{x \rightarrow 0} \frac{\sqrt{1-x^{2}}}{x^{2}}=\infty \\
& \text { So no absolute max }
\end{aligned}
$$

5. [6 pts] Let C be the curve with parametric equation $\mathbf{r}(t)=\left\langle 1+t^{2}, 2+2 t^{2}\right\rangle$, for $-1 \leq t \leq 1$.
(a) What shape is the curve?

$$
\left.\begin{array}{l}
x=1+t^{2} \\
y=2+2 t^{2}
\end{array}\right\} \Rightarrow y=2 x
$$

Note: $\vec{r}(-1)=\vec{r}(1)$

$$
=\langle 2,4\rangle
$$

$$
\vec{r}(0)=\langle 1,2\rangle
$$

The curve is a segment of the straight line joining the points $(1,2)$ and $(2,4)$
(b) Find the arc length of C.

By pythagorus the length of the line
harder way is:

$$
\|\vec{r} \cdot(t)\|=\|\langle 2 t, 4 t\rangle\|=\|2 t\langle 1,2\rangle\|=2|t| \sqrt{5}
$$

$$
\begin{aligned}
\text { Length } \int_{0}^{1}\left\|\vec{r}^{\prime}(t)\right\| d t & =2 \sqrt{5} \int_{0}^{1}|t| d \\
& =2 \sqrt{5} \int_{0}^{1} t d t
\end{aligned}
$$

only want to
count the line segment

$$
=\sqrt{5}
$$

once
6. [bonus 4 pts] Propose a function $f(x, y)$ whose graph is the surface in question 1.

- Think first in 2D

- The surface flattens to 0 .
 change the location of
 the local extrema
- One possible reasonable guess is

$$
f(x, y)=e^{-x^{2}(x-1)(x+1)} \cdot e^{-y^{2}(y-1)(y+1)}
$$

This produces a very similar surface

- The actual function is

$$
f(x, y)=\frac{3}{2} e^{-\frac{1}{2}(x-1)^{2}(x+1)^{2}} e^{-\frac{1}{2}(y-1)^{2}(y+1)^{2}}
$$

