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Project work outline
Completing the course gives 5 ECTS points.

You can get 2 extra ECTS points by completing an 
optional small project:
• The work should be done in groups of 1-4 people 

(expected workload scales)

The project work timeline:
• Kick-off session now
• Q&A support session on thursday 4th of March 

10:15
• Hand-in a detailed project report (one per group) no 

later than 12th of March (eg. 4-10 pages)
• Project work seminar on 18th of March with group 

presentations (10-20 min)

The project work consist of at least one of following tasks

1. Analyze your favourite dataset with Gaussian process 
models of you topic
• Compare the GP model(s) against baseline methods. 

Study the inference of the GP model, and study the 
predictive posteriors of your GP model in your 
dataset.

2. Literature survey/comparison of more advanced Gaussian 
process models/methods of your topic
• Read about your topic from scientific literature. 

Review and discuss the topic.
3. Implementation of more advanced Gaussian process 

models of your topic
• Choose your favourite programming language and/or 

library, and implement an advanced GP model of your 
topic. Describe your implementation and test it. 



Topics
1. Iterative kernel learning

2. Bayesian optimization with Gaussian Processes

3. Bayesian quadrature

4. Relationship between Neural networks and GPs

5. Multioutput Gaussian processes & Kronecker structures

6. Gaussian processes for big data

7. Gaussian processes with monotonicity

8. Gaussian process latent variable model (GPLVM)

9. Convolutional Gaussian processes

10. Gaussian process inference (eg. VI, EP, MCMC)

11. Deep Gaussian processes

12. State-space GPs

13. Dynamical GPs

14. Own topic (contact Markus/Arno)

- Please tell us your 
topic/group: 
markus.o.heinonen@aalto.fi
or arno.solin@aalto.fi

mailto:markus.o.heinonen@aalto.fi
mailto:arno.solin@aalto.fi


Composite kernel learning

• Learn a composite kernel function form
• Automatic Statistician (AS)

• Duvenaud et al 2013. Structure Discovery in 
Nonparametric Regression through 
Compositional Kernel Search

• Kim et al 2018. Scaling up the Automatic 
Statistician: Scalable Structure Discovery using 
Gaussian Processes

• Compositional Kernel Search (CKS) / Neural 
Kernel Networks (NKN)
• Sun et al 2018. Differentiable Compositional 

Kernel Learning for Gaussian Processes
• + others

Differentiable Compositional Kernel Learning for Gaussian Processes
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Figure 2. Neural Kernel Network: each module consists of a Linear layer and a Product layer. NKN is based on compositional rules for
kernels, thus every individual unit itself represents a kernel.
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The Automatic Statistician searches over the compositional
space based on three search operators.

1. Any subexpression S can be replaced with S + B,
where B is any primitive kernel family.

2. Any subexpression S can be replaced with S ⇥ B,
where B is any primitive kernel family.

3. Any primitive kernel B can be replaced with any other
primitive kernel family B0.

The search procedure relies on a greedy search: at ev-
ery stage, it searches over all subexpressions and all pos-
sible operators, then chooses the highest scoring com-
bination. To score kernel families, it approximates the
marginal likelihood using the Bayesian information criterion
(Schwarz et al., 1978) after optimizing to find the maximum-
likelihood kernel parameters.

3. Neural Kernel Networks
In this section, we introduce the Neural Kernel Network
(NKN), a neural net which computes compositional kernel
structures and is end-to-end trainable with gradient-based
optimization. The input to the network consists of two
vectors x1,x2 2 Rd, and the output k(x1,x2) 2 R (or
C) is the kernel value. Our NKN architecture is based on
well-known composition rules for kernels:
Lemma 2. For kernels k1, k2

• For �1,�2 2 R+, �1k1 + �2k2 is a kernel.

• The product k1k2 is a kernel.

We design the architecture such that every unit of the net-
work computes a kernel, although some of those kernels
may be complex-valued.

3.1. Architecture

The first layer of the NKN consists of a set of primitive
kernels. Subsequent layers alternate between linear combi-
nations and products. Since the space of kernels is closed
under both operations, each unit in the network represents
a kernel. Linear combinations and products can be seen as
OR-like and AND-like operations, respectively; this is a
common pattern in neural net design (LeCun et al., 1989;
Poon & Domingos, 2011). The full architecture is illustrated
in Figure 2.

Primitive kernels. The first layer of the network consists
of a set of primitive kernel families with simple functional
forms. While any kernels can be used here, we use the RBF,
PER, LIN, and RQ kernels from the Automatic Statistician
(see Section 2.3) because these express important structural
motifs for GPs. Each of these kernel families has an as-
sociated set of hyperparameters (such as lengthscales or
variances), and instantiating the hyperparameters gives a
kernel. These hyperparameters are treated as parameters
(weights) in this layer of the network, and are optimized
with the rest of the network. Note that it may be advanta-
geous to have multiple copies of each primitive kernel so
that they can be instantiated with different hyperparameters.

Linear layers. The Linear layer closely resembles a fully
connected layer in deep neural networks, with each layer
hl = Wlhl�1 representing a nonnegative linear combina-
tion of units in the previous layer (i.e. Wl is a nonneg-
ative matrix). In practice, we use the parameterization

Structure Discovery in Nonparametric Regression through Compositional Kernel Search

cylinders. Some of their discrete graph structures have
continous analogues in our own space; e.g. SE1 ⇥ SE2

and SE1 ⇥ Per2 can be seen as mapping the data to
a plane and a cylinder, respectively.

Grosse et al. (2012) performed a greedy search over a
compositional model class for unsupervised learning,
using a grammar and a search procedure which parallel
our own. This model class contained a large number
of existing unsupervised models as special cases and
was able to discover such structure automatically from
data. Our work is tackling a similar problem, but in a
supervised setting.

5. Structure discovery in time series

To investigate our method’s ability to discover struc-
ture, we ran the kernel search on several time-series.

As discussed in section 2, a gp whose kernel is a sum
of kernels can be viewed as a sum of functions drawn
from component gps. This provides another method
of visualizing the learned structures. In particular, all
kernels in our search space can be equivalently writ-
ten as sums of products of base kernels by applying
distributivity. For example,

SE⇥ (RQ+ Lin) = SE⇥RQ+ SE⇥ Lin.

We visualize the decompositions into sums of compo-
nents using the formulae given in the appendix. The
search was run to depth 10, using the base kernels from
Section 2.

Mauna Loa atmospheric CO2 Using our method,
we analyzed records of carbon dioxide levels recorded
at the Mauna Loa observatory. Since this dataset was
analyzed in detail by Rasmussen & Williams (2006),
we can compare the kernel chosen by our method to a
kernel constructed by human experts.
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Figure 3. Posterior mean and variance for di↵erent depths

of kernel search. The dashed line marks the extent of the

dataset. In the first column, the function is only modeled

as a locally smooth function, and the extrapolation is poor.

Next, a periodic component is added, and the extrapolation

improves. At depth 3, the kernel can capture most of the

relevant structure, and is able to extrapolate reasonably.
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Figure 4. First row: The posterior on the Mauna Loa

dataset, after a search of depth 10. Subsequent rows show

the automatic decomposition of the time series. The de-

compositions shows long-term, yearly periodic, medium-

term anomaly components, and residuals, respectively. In

the third row, the scale has been changed in order to clearly

show the yearly periodic structure.



Bayesian optimization

• Find function maximum with least number of tries
• Shahriari et al: Taking the human out of the loop: A review of bayesian

optimization, 2016

Bayesian optimisation with GPs

• Shahriari et al: Taking the human out of the loop: A review 
of bayesian optimization, 2016



Bayesian quadrature

• Estimate an integral numerically with GP assumptions
• Many references

Bayesian quadrature

• Numerically approximate an integral using GP proxies


• Many references



Theoretical neural network / GP connections

• Neural networks are known to converge to Gaussian processes at infinitely wide 
layers
• Williams 1997. Computing with infinite networks
• Lee 2017. Deep neural networks as gaussian processes
• Matthews 2018. Gaussian process behaviour in wide deep neural networks

• Neural networks induce Neural Tangent Kernel (NTK) behavior
• Jacot 2017. Neural tangent kernel: Convergence and generalization in neural networks



Multioutput GPs

• Bonilla et al 2006. Multi-task Gaussian process prediction
• Stegle et al 2021. Efficient inference in matrix-variate Gaussian models with iid

observation noise



GPs for big data

• Scaling GPs to million/billion points 
• Hensman et al 2015: Scalable Variational Gaussian process Classification
• Wilson et al 2015: Kernel Interpolation for Scalable Structured Gaussian 

Processes (KISS-GP)
• Wang 2019. Exact Gaussian Processes on a Million Data Points
• Liu 2019. When Gaussian Process Meets Big Data: A Review of Scalable GPs



Constrained GPs

• Riihimäki et al 2011. Gaussian processes with monotonicity information
• Jidling 2017. Linearly constrained Gaussian Processes

GPs with monotonicity

• Riihimäki et al. Gaussian processes with monotonicity 
information, 2011

         650

Gaussian processes with monotonicity information
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Figure 1: Example of Gaussian process solution (mean + 95% interval) without monotonicity information (a),
and the corresponding derivative of the latent function (d). Subfigures (b) and (c) illustrate the solutions with
monotonicity information, and the corresponding derivatives are shown in (e) and (f). The virtual derivative
observations (shown with short vertical lines) in (b) are placed on locations where the probability of derivative
being negative is large (seen in Subfigure (d)). In Subfigure (c) the derivative points are placed on a grid.
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Figure 2: Contour plot of the log marginal likelihood without monotonicity information (a), and the corre-
sponding solutions (b) and (c) at the modes. Subfigure (d) shows contour plot of the marginal likelihood with
monotonicity information, and Subfigures (e) and (f) illustrate the corresponding solutions at the modes. The
locations of virtual observations are shown with short vertical lines in Subfigures (e) and (f).



GPLVMs

• Titsias 2010. Bayesian Gaussian Process Latent Variable 
Model

• Märtens 2018. Decomposing feature-level variation with 
Covariate Gaussian Process Latent Variable Models

GP latent variable models (GPLVMs)

• Titsias et al. Bayesian Gaussian process latent variable 
model, 2010
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Figure 3: The digit images visualised in the 2-D latent space. We followed [5] in plotting images in
a random order but not plotting any image which would overlap an existing image. 538 of the 3000
digits are plotted. Note how little space is taken by the ‘ones’ (the thin line running from (-4, -1.5) to
(-1, 0)) in our visualisation, this may be contrasted with the visualisation of a similar data-set in [5].
We suggest this is because ‘ones’ are easier to model and therefore do not require a large region in
latent space.

shef.ac.uk/~neil/gplvm/ along with avi video files of the 1-D visualisation and
results from two further experiments on the same data (a 1-D GPLVM model of the digits
and a 2-D GPLVM model of the faces).

3 Discussion

Empirically the RBF based GPLVM model gives useful visualisations of a range of data-
sets. Strengths of the method include the ability to optimise the kernel parameters and to
generate fantasy data from any point in latent space. Through the use of a probabilistic
process we can obtain error bars on the position of the manifolds which can be visualised
by imposing a greyscale image upon the latent space.

When Kernels Collide: Twin Kernel PCA The eigenvalue problem which provides the
maxima of (2) with respect to for the linear kernel is exploited in kernel PCA. One could
consider a ‘twin kernel’ PCA where both T and T are replaced by kernel
functions. Twin kernel PCA could no longer be undertaken with an eigenvalue decompo-
sition but Algorithm 1 would still be a suitable mechanism with which to determine the
values of and the parameters of ’s kernel.

Decomposing feature-level variation with Covariate-GPLVMs

Figure 1: The presence of covariate effects confounds the
mappings from the underlying latent z (on x-axis) to the
feature space (selected feature on y-axis). Standard GPLVM
(panel A)) ignores covariate information which is denoted
by colour, whereas its inclusion in c-GPLVM (panel B))
allows us to capture a variety of nonlinear covariate effects.
Furthermore, we would like to decompose the feature-level
variation into covariate x and latent z additive contributions
and their non-linear interaction as shown in panels (C1-C3).

we are not interested in simply learning conditional distri-
butions p(y|x) or p(x|y). Instead, our work focuses on
discovery applications. Our goal is two-fold:

• Learn a low-dimensional z that is covariate-adjusted.
• Characterise feature-level variation, separating what is

explained by z from the contribution of x.

Thus we are interested in inferring both the posterior
p(z|y,x) over latent coordinates as well as the mappings
p(f (j)|y,x, z) for every feature j. We wish to understand
the nature of the feature-level variability and e.g. allow us
to identify sets of features which are fully explained by co-
variates versus those which show complex dependence on
both latent variables and covariates. We will principally do
this in a high-dimensional data setting where the number of
features is vastly greater than the number of covariates.

We particularly focus on the use of Gaussian Processes
(GP) as a non-parametric model over the mapping functions.
Our choice reflects the strong theoretical underpinnings of
GP models as well as recent advances that have enabled
such models to be scalable to large data sets (Hensman
et al., 2013; 2015). In the context of dimensionality reduc-
tion, the Gaussian Process Latent Variable Model (GPLVM)
(Lawrence, 2005) is the reference for probabilistic non-
linear dimensionality reduction which has spawned numer-
ous extensions, e.g. (Shon et al., 2006; Ek & Lawrence,
2009; Gao et al., 2011; Jiang et al., 2012; Damianou &
Lawrence, 2013; Gadd et al., 2018).

Figure 2: Graphical models for (a) GPLVM, (b) a particular
implementation of supervised-GPLVM, and (c) c-GPLVM.

Figure 3: Here we use GPLVM, supervised-GPLVM and
c-GPLVM to learn a 2D latent space (z) from a synthetic
data set which contains 5 discrete classes A-E (x). Here the
data generative mechanism contains both the class effects
(covariate x) as well as the shared 2D latent structure (z).
For all three methods, their learned 2D latent space z has
been shown twice, coloured by x (top panel) and the true
underlying z (bottom panel). The dominant effect of the
5 classes means a GPLVM will learn a latent space that
reflects the presence of these groups. This is further exag-
gerated with the supervised-GPLVM which acts to increase
the separation between the classes and is most useful if class
discrimination is the ultimate objective. In contrast, the c-
GPLVM seeks to find the common shared structure between
the 5 classes, and infers a latent space which adjusts for the
presence of the 5 classes (in linear modelling this process
would be analogous to “regressing out” the class-specific
effects).

Figure 1(A,B) illustrates our setting of interest where feature
values vary not only over the latent coordinate, but also over
a single, continuous covariate. This dependence on the
covariate may confound the mappings from z to y(j) when
applying a GPLVM. As a result, it will fail to account for the
underlying latent structure in the data that is shared across
all covariate values. Covariate effects can be incorporated
in various ways (e.g. the supervised-GPLVM in Figure 2).

Our proposal, which we call the covariate-GPLVM (c-
GPLVM), specifically focuses on learning a set of map-
pings f (j) : (z,x) 7! y(j) which are defined on the joint
space of z and x. This can be seen as a hybrid between the
GP regression and the GP latent variable model where the
input space consists of two parts: fixed covariates x and



Convolutional GPs

• Apply GPs to images
• Wilk 2017. Convolutional Gaussian Processes
• Dutordoir 2019. Bayesian Image Classification with Deep Convolutional Gaussian ProcessesBayesian Image Classification with Deep Convolutional Gaussian Processes

(a) Conv-GP (b) TICK-GP

Figure 2: We show five samples from the patch response function g(·) after training on MNIST 2 vs 7. The
two black-and-white images (left) are the inputs. They were incorrectly classified by the Conv-GP (a), but
correctly classified by the TICK-GP (b). The samples show that the posterior of the Conv-GP is overconstrained,
noticeable by the paler colours and the even background (see text).

In TICK we introduce a single hyperparameter, the
lengthscale of kloc, to control only the degree of in-
sensitivity (i.e. the degree to which the output of g(·)
depends on the location of the input patch). We will
learn this lengthscale and other hyperparameters auto-
matically, using the marginal likelihood. We use Adler
et al. [1981, Theorem 4.1.1.] to get an intuition in how
this parameter effects g(·) for the same patch input
depending on its location. If we assume Nu to be the
number of times a GP-draw from a stationary kernel k
crosses the level u in the unit interval, then

Eg(·)[Nu] =
1

2⇡
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2) gives an expected number of zero-
crossings E[N0] = (⇡`)�1.

You can observe that property most easily in fig. 2
(b), where the lengthscale of the SE in the trained
TICK-GP approximated (⇡/2)�1, corresponding to ⇡ 2
zero-crossings in the image. Inspecting the identical
background patches away from the digit, we see that
g(·) varies smoothly, and changes sign (i.e. predicts a
different class) depending on where background patches
are appearing. The mapping of similar patches also
varies smoothly across the stroke: the response of hori-
zontal and vertical lines in the image gives only locally
similar responses. We also notice that the samples from
the TICK-GP have much larger deviations from the
mean, showing that the patch-response function is less
constrained and can represent epistemic uncertainty
for observing certain patches at certain locations.

3.3 Deep Convolutional Gaussian Processes

With the ideas of improved convolutional kernels and
deep Gaussian processes in place, it is straightforward
to conceive of a model that does both: a deep GP with
convolutional kernels at each layer. To do this we need

to make these convolutional layers map from images
to images, which we do using a multi-output kernel.

We propose a reformulation to the convolutional kernel
of eq. (1): instead of summing over the patches, we
apply g(·) to all patches in the input image. As a
result, we obtain a vector-valued function f : RD

! RP

defined as

f(x) = {fp(x)}
P
p=1 =

n
g(x[p])

oP

p=1
, (3)

where fp(·) indicates the pth output of f(·). Because the
same g(·) is applied to the different patches, there will
be correlations between outputs. For this reason, we
consider the mapping f(·) a multi-output GP (MOGP),
and name it the Multi-Output Convolutional Kernel
(MOCK). Multi-output GPs [Alvarez et al., 2012] can
be characterised by their covariance between the dif-
ferent outputs fp and fq of different inputs x and x0,
giving in our case

Cov[fp(x), fq(x
0)] = kg

⇣
x[p]

,x0[q]
⌘
. (4)

In this setting, if we are dealing with N images of P
patches, the corresponding covariance matrix has a
size of N⇥N⇥P⇥P , which makes its calculation and
inversion infeasible for most datasets.

Efficient inference for MOGPs relies strongly on choos-
ing useful inducing variables. We developed a frame-
work for generic MOGPs that allows for the flexible
specification of both multi-output priors and induc-
ing variables. This means that we can take compu-
tational advantage of independence properties of the
prior. Given our framework, which puts the right
mathematical and software abstractions in place, the
implementation of a complex MOGP, such as a DCGP,
is not much more difficult than that of a single-output
GP [van der Wilk et al., 2020].



GP inference (VI, EP, MCMC)

• Inference of GPs is a hot topic, often done in combination with deep GPs
• Salimbeni 2017. Doubly Stochastic Variational Inference for Deep Gaussian Processes
• Havasi 2018. Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian 

Monte Carlo
• Salimbeni 2019. Deep Gaussian Processes with Importance-Weighted Variational Inference



Deep GPs

• The deep GP formulation
• Salimbeni 2017. Doubly Stochastic Variational 

Inference for Deep Gaussian Processes
• Damianou 2013. Deep Gaussian Processes

• Deep GPs are known to suffer from rank 
collapse
• Duvenaud 2014. Avoiding pathologies in very 

deep networks
• Hegde 2019. Deep learning with differential 

Gaussian process flows



State-space GPs

• Nickish 2018. State Space Gaussian Processes with Non-Gaussian Likelihood
• Solin 2018. Infinite-Horizon Gaussian Processes



Dynamical GPs

• Learning system dynamics with GPs
• Wang 2008. Gaussian process dynamical models for human 

motion
• Macdonald 2015. Controversy in mechanistic modelling with 

Gaussian processes
• Heinonen 2018. Learning unknown ODE models with 

Gaussian processes

• Applications in RL
• Deisenroth 2014. Gaussian Processes for Data-Efficient 

Learning in Robotics and Control [PILCO]
• Kamthe 2017. Data-Efficient Reinforcement Learning with 

Probabilistic Model Predictive Control


