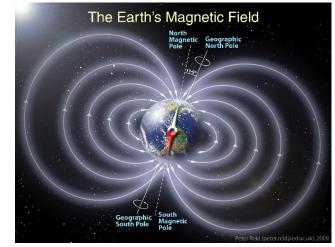

Electromagnetic fields Learning outcome


At the end of this lecture you will be able to:

- List the most important electromagnetic field quantities
- Explain what these quantities describe
- Calculate some of these quantities from electromagnetic theory

Magnetism and energy conversion

- Electromechanical energy conversion is based on the interaction between magnetic fields
- Magnetic field can be produced by permanent magnets or electromagnets
 - In electromagnets, field is generated by current in the coil (Ampere's law)
 - Unless moving, permanent magnet produces static magnetic field (DC)
- Control of the coil current produces time-varying magnetic field
- Time-varying field induces voltage in coils and conductors (Faraday's law)

http://www.nasa.gov/sites/default/files/images/607968main_geomagnetic-field-orig_full.jpg

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/imgmag/barsol.gif

Electromagnetic fields

- The magnetic state of the material is defined by its magnetization **M** [A/m]
- The flow of electric charges defines the currents or current density J [A/m²]
- The current density produces a magnetic field defined by:
 - the magnetic flux density **B** [T] or
 - the magnetic field strength H [A/m]
- Electric charge density ρ [C/m³] produce electric fields defined by
 - The electric field strength *E* [V/m] or
 - The electric flux density **D** [C/m²]
- In total six vector fields and one scalar filed are required.
- Material properties tight some of these fields to each other

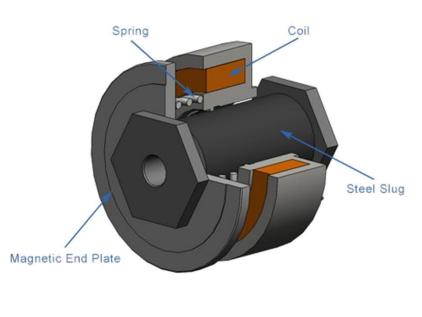
Electromagnetic fields and Maxwell equations

• The electromagnetic fields are ruled by four vector equations: Maxwell equations

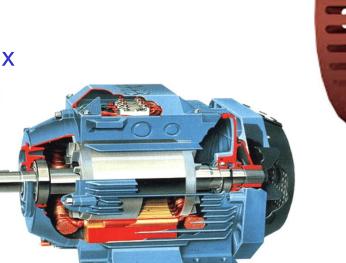
$$\nabla \cdot \mathbf{D} = \rho$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

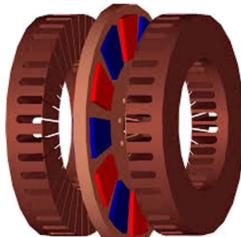
- However, these equations are not enough to solve the fields and there interaction with the materials
- Material properties are also needed

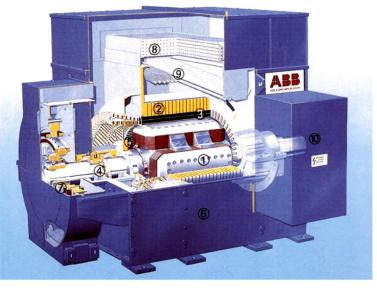
Electromagnetic fields and energy conversion


- Electromagnetic fields have been successfully used in the electromechanical energy conversion.
- By energy conversion we mean conversion of mechanical power to electric power, generators; or vice versa motors and actuators
- To be able to model this energy conversion and the devices that use it, one needs methods
 - to compute the forces and torques
 - to couple electric circuits with field equation
 - to solve dynamic motion equations
 - to couple motion and fields
 - to couple fields and materials

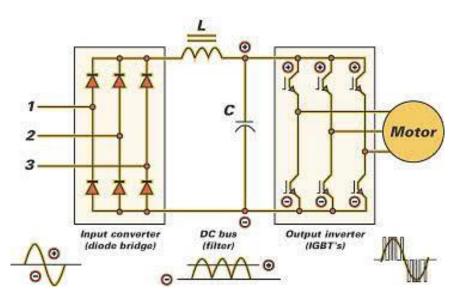
Brain storming


- Take 20 min and think of what kind of devices and components are involved in electrical energy conversion and transmission
- Write down these devices and components, we will compile the results during the lecture
- List of devices and components:
 - Electrical machines (motors and generators)
 - Power electronic components and devices
 - Transformers
 - Batteries and super capacitors
 - Cables and bus bars
 - Solar panels
 - Inductors and heat exchangers
 - Light bubbles and LEDs
 - Antennas, microwave heaters
 - Speakers and microphones
 - Fuel cells, thermocouples

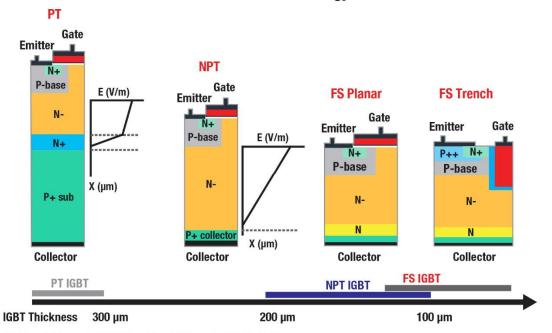

Electromechanical energy conversion


- Examples of electromagnetic energy conversion devices
 - Rotating electrical machine radial and axial flux
 - Linear electrical machines, continuous motion
 - Linear actuator

https://www.onlineamd.com/FileUploads/image/Hottopic-photo-2.jpg



Power electronics and energy conversion


- Examples of energy conversion with power electronics
 - Rectifiers, Inverters, Frequency converters
 - Soft starters, Active power factor correction
 - Semiconductor devices

http://www.dynexsemi.com/media//n/e/new-banner-igbt-module_2.png

http://www.frequencyinverter.org/image/frequency-inverter-rectifier.jpg

IGBT Trend Technology

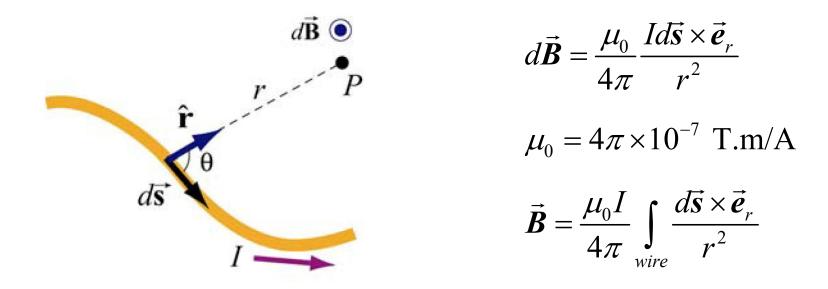
PT: Punch-Through, NPT: Non Punch-Through, FS: Field Stop

Energy transmission and distribution

- Examples of energy transmission devices
 - Transformers, cables and transmission lines
 - Switch gears and contactors
 - protection and measurement devices

http://www.parsakhgar.com/images/industrial_underground_cable.png

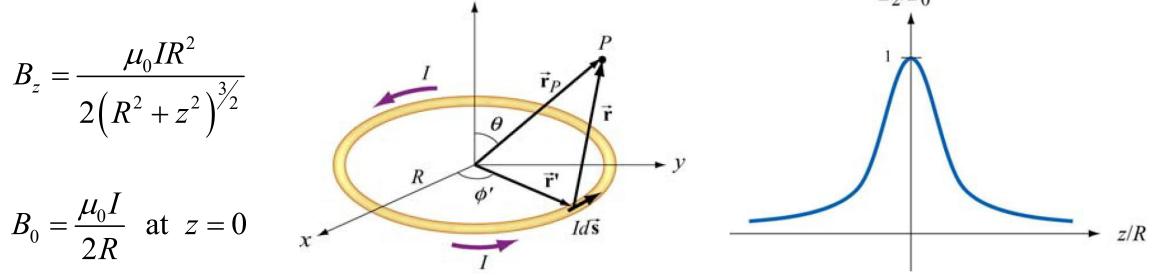
https://www.toshiba.com/tic/product_images/Medium-Voltage-Switchgear.jpg



http://www.arresterworks.com/resources/photo_images/big_images/arresters_protecting_230kv_windfarm.jpg

Source of magnetic fields

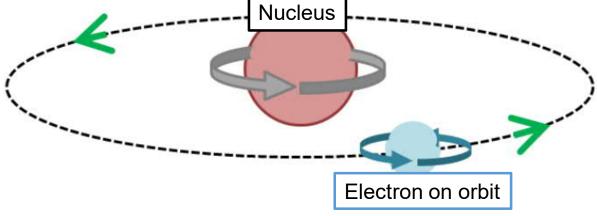
- The motion of electrically charged particles produces electric currents
- Electric currents produce a magnetic field according to the Biot-Savart law



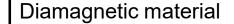
• An other way to look at the field induced by currents is the Ampere law

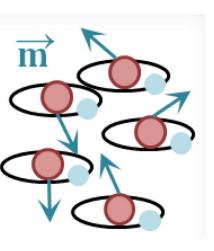
$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$$

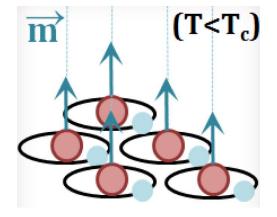
Magnetic field produced by a current loop


• If the current is circulating in a thin circular wire the produced magnetic filed at its origin is along the z-direction and it can be calculated with the Biot-Savart law: $z = \frac{B_z/B_0}{B_z/B_0}$

- If the loop has small radius and is in a uniform magnetic field it experiences a torque, which aims at aligning it with the external field $\tau = m \times B$
- *m* is called the magnetic moment and is given by $m = I_{loop} A_{loop}$

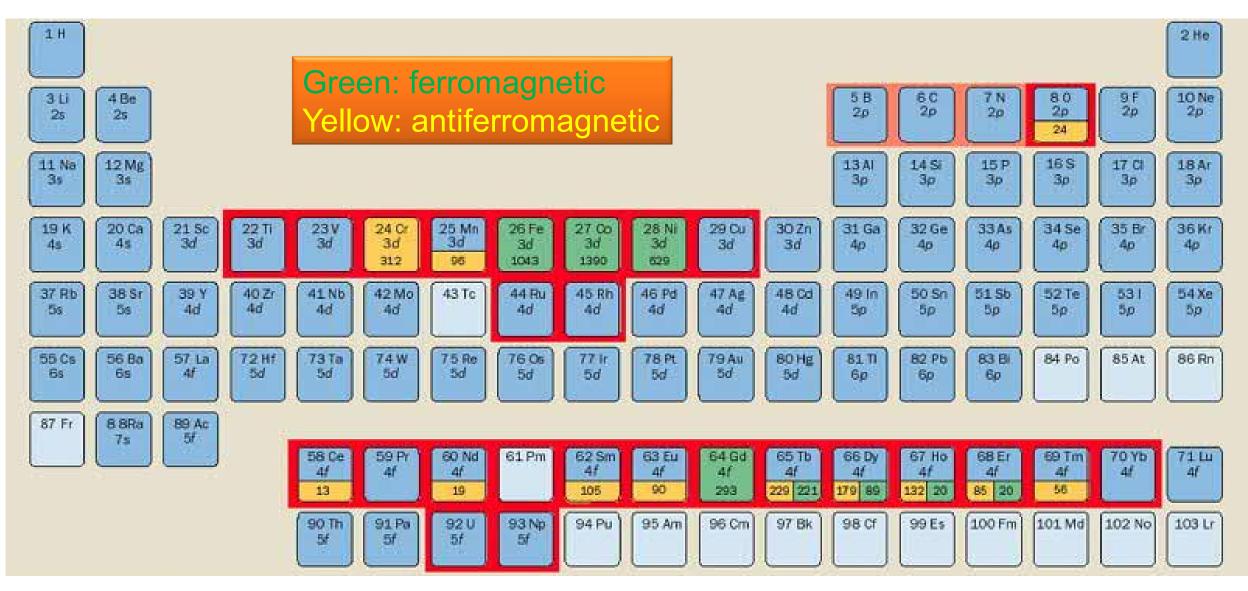

Origins of magnetism in material


- Magnetism has its origins in the motion of charges and the atomic structure.
- A full understanding of magnetism requires quantum theory
- Most of magnetic phenomena can be understood with classic theory.
- Electron motion on orbit produces magnetic moment (orbital moment)
- Rotation of electron around itself produces spin moment
- There is also a moment produced by the rotation of nucleus around itself but it is negligible

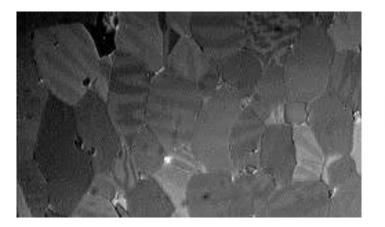


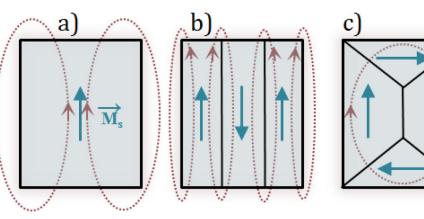
Origins of magnetism in material

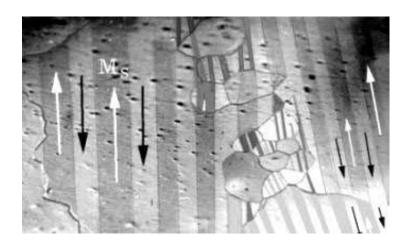
- The atomic moment is the vector sum of all the orbital moments of its electrons
- For atoms with full electron shells, the resulting moment is null
- In some atomic structures with incomplete electron shells, the resultant is different from zero and thus the material is said to be magnetic.
- Not all the atoms with incomplete electron shells are magnetic. This is due to the fact that the combination of atoms results in most case in a global neutralization of magnetic moments of the atoms.



Ferromagnetic material

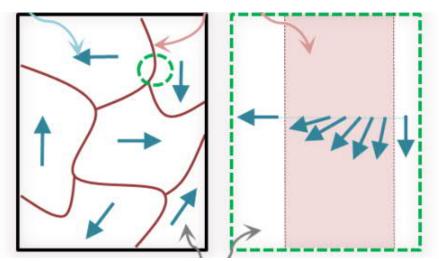

Magnetic materials

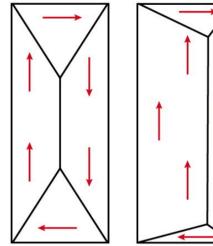


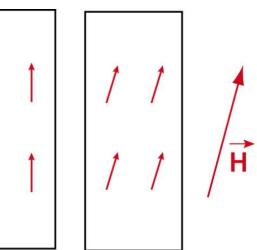

http://images.iop.org/objects/phw/world/17/11/7/pw2_11-04.jpg

Ferromagnetic materials

- Due to different interactions in the matter the moments of a ferromagnetic material are forced to group in small domains, called Weiss domains
- The grouping in domains minimizes the total energy of the material
- In each domain, all the moments are aligned, the domain is saturated
- The domains are separated by small regions called Bloch walls






a) Maximum energy, b) lower energy, c) minimum energy

Domain structure

- Magnetic domains in magnetic materials are separated by domain wall: Bloch walls
- The magnetic moments in the wall rotate progressively from one direction to the other. This transition minimizes the wall energy.
- Under external applied field the domain walls move and collapse
- The wall motion is not continuous, impurities and other *obstacles (pinning sites)* stop the motion until it jumps to the next obstacle: hysteresis

Weiss domains and Bloch walls

Wall motion under increasing external field

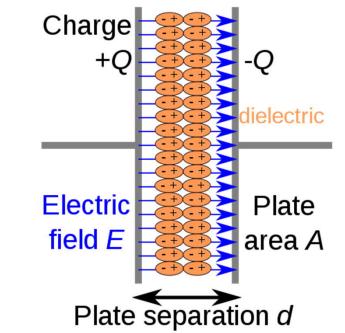
Source of electric fields

• From the Maxwell equations it is clear that the origin of an electric field is either a charge density or a time varying magnetic field

$$\nabla \cdot \boldsymbol{D} = \boldsymbol{\rho}$$
$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

- D, the electric flux density is related to the electric charge density
- E, the electric field strength is related to the potential difference, which is caused by the varying flux density
- E and D are related by the material property, permittivity ϵ $D = \epsilon E$ • ϵ_r is the relative permittivity and ϵ_0 is the vacuum permittivity $\epsilon = \epsilon_r \epsilon_0$

$$\varepsilon_0 = \frac{1}{4\pi \times 10^{-7} c^2} \approx 8.854 \times 10^{-12}$$


Electric fields and materials

- Electric field causes the free charges of a conductor material to move; this motion results in electric currents (or current density).
- The electric conductivity of the material is a description of how easily the free charges move, and it is used to relate the electric field strength and the current density

$$J = \sigma E$$

Electric charges produce electric flux, or electric flux density *D*; this reacts with material to produce an electric field *E*, which depends on how

the material structure is able to polarize. $D = \varepsilon E$

https://upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Capacitor_schematic_ with_dielectric.svg/430px-Capacitor_schematic_with_dielectric.svg.png

Electromagnetic fields and materials

The application of an external field to a magnetic material causes domain • walls to move and thus produce net magnetization of the material. This reaction is described by the material susceptibility

$$M = \chi H$$

• The magnetic flux density in the material is the sum of the one in air and that due to the magnetization

$$\boldsymbol{B} = \boldsymbol{\mu}_0(\boldsymbol{H} + \boldsymbol{M})$$

 We can then describe the total flux density with a material constant called permeability I

$$B = \mu H \qquad \qquad D = \varepsilon E$$

 $J = \sigma E$

• We thus end up with three material parameters and relations $B = \mu H$

Magnetic Materials

• Magnetic materials are usually classified according to their response to an external field. Tree main categories can be differentiated:

• Diamagnetic

- Low but negative susceptibility, consequence of local eddy current at orbital level (reduced loop current of the electron)
- Atoms with closed electron shells such as monoatomic rare gases He, Ne, A, polyatomic gases H2, N2, and ionic solids NaCl.

• Paramagnetic

- Low but positive susceptibility, which changes with temperature
- consequence of thermal agitation.
- Atoms with incomplete electron inner shells
- compounds of transition metal ions and rare earth ions
- Ferromagnetic

- $\chi_m = \frac{C}{\left(T \theta\right)}$
- C: Curie constant*T*: temperature*θ*: constant

Investigation work 20 min

• List the magnetic materials that you know or find from the internet (5 min)

• With your mate, classify these materials as soft or hard (5 min)

- Present your list and classification to the class (10 min)
 - You might use internet

Reading

 Read the paper: Recent Trends and Future Prospects of IGBT and Power MOSFET (40 min)

- Choose one concept that you find interesting from the paper and present it to the class
 - Make a first read through the whole paper quickly to understand what it is about
 - Make a second read focusing on the concept you chose to deepen your understanding
 - If necessary find more about that concept from the internet
- Concepts discussed: