Soft Magnetic Materials – Hysteresis and eddy current

Learning outcome

At the end of this lecture you will be able to:

- Analyze the hysteresis phenomenon in magnetic materials
- Describe the process of Eddy current in conducting materials
- Compute Eddy current and Hysteresis losses in electrical sheet

Brain storming

- Take 10 min and think of what kind of measurements you need to characterize magnetic materials (electrical steel, e.g.)
- Write down the devices and components needed for these measurements, we will compile the results during the lecture
- List of quantities to measure:

• List of devices needed

Characterization of magnetic materials: Simple scenario

- The toroid has 2 coils
 - Current is supplied to the first coil to magnetize the core according to Ampere's law
 - Faraday law induces voltage in the second coil whenever the flux is time-varying
- Assume homogeneous flux in the toroid core
- Ampere's law states that:
 - Faraday law states that

$$B = \frac{1}{N_2 A} \int u(t) dt$$

 $H = \frac{N_1 i}{1}$

Toroidal core with two windings

Measuring the current and the induced voltage, allows us to plot the B-H relationship

Magnetic materials and fields: Hysteresis

- Magnetic materials are described by the H-B relationship: permeability.
- This relationship is neither linear nor single-valued.
- The curves are obtained by increasing the current to a given value and then reversing it to the opposite value (slow process avoids dynamic effects)

Characteristics of electrical steel: Hysteresis

- *B-H* relationship is nonlinear and multi-valued; *B* lags behind *H*
- *B*_r residual flux density (*H*=0)
- *H_c* coercitive magnetic field strength (*B*=0)
- The locus of the tip of the hysteresis loops is the magnetization curve

Soft magnetic materials

- Soft magnetic materials usually mean materials with
 - Low coercivity ($H_c=1 100 \text{ A/m}$)
 - Low field to saturation (H=1000 5000 A/m)
 - High saturation flux density (B = 1 2 T)
- Such material class includes:
 - Low-carbon steels (construction steel sheet used in small household appliance motors)

 Non-oriented Fe-Si laminations 		Max relative	Coercivity	Saturation
Grain-oriented Fe-Si laminations		permeability	(A/m)	polarization (T)
 Amorphous alloys 	Polycrystalline Fe	3 – 50.10 ³	10 – 100	2.16
	NO Fe 1.0 wt % Si	3 – 10.10 ³	30 – 80	1.96 – 2.12
 Fe-Ni and Fe-Co cores 	GO Fe 3 wt % Si	15 – 80.10 ³	4 – 15	2.02
Powder cores (SMC)	Bounded-sintered	10 ² – 10 ³	100 – 500	1.65 – 1.95
	Fe powder			
Soft ferrites	Fe ₅₀ Ni ₅₀	10 ⁵	4	1.60
	Sintered ferrites	Mn-Zn 10 ³ – 10 ⁴	5 – 20	0.4 - 0.5
	(Mn-Zn and Ni-Zn	Ni-Zn 10 ² – 10 ³	20 – 200	0.2 - 0.35
	Amorphous alloys	10 ⁵	2 – 5	1.56
	(Fe- and Co-based			

Soft magnetic materials

- High purity iron contains few 100 ppm of impurity (C, N, O, P, S, Si, Al)
 - Not common, used only for special purposes (calibration)
- Steel usually has higher carbon contents, Low Carbon Steel
- In soft magnetic materials, Silicon is intentionally diluted in iron. Silicon steel
 - Decrease saturation and coercivity
 - Increase resistivity
 - Decrease AC losses
 - Increase mechanical hardness
- Standard materials (NO): IEC 60404-8-2, IEC 60404-8-4 IEC 60404-8-6, IEC 60404-8-8
 - Other standards also exist

Soft magnetic materials – Manufacturing process

http://sc01.alicdn.com/kf/HTB1JyT6HFXXXXa.XFXXq6xXFXXXW/223470493/HTB1JyT6HFXXXXa.XFXXq6xXFXXXW.jpg

Preparation stages - fully processed NO Fe-Si laminations

- Composition [wt%]: Si (0.9...3.7), Al (0.2...0.8), Mn (0.1...0.3).
- Melting, degassing, continuous casting of slabs.
- Re-heating (1000 °C 1250 °C) and hot rolling to thickness 1.8 mm 2.3 mm.
- Pickling and cold rolling to intermediate gauge.
- Intermediate annealing (750 °C 900 °C).
- Cold rolling to final gauge (0.65 mm 0.35 mm).
- Decarburization and re-crystallization annealing (830 °C 900 °C).
- Final grain-growth annealing (850 °C 1100°C).
- Coating.
- Punching and core assemblage (this is the device manufacturing process)

Standards and meanings

- IEC: International Electrotechnical Commission
 - 250-35A5: 2.5 W/kg losses at 50 Hz (1.5T peak induction), 0.35 mm thickness
- JIS: Japanese Industrial Standards
- AISI: American Iron and Steel Institute
- ASTM: American Society for Testing and Material
- EN: European Norm
- GOST/FOCT (SUST): State Union Standard

IEC 404-8-4	EN 10106	AISI	ASTM A677	JIS 2552	GOST
(1986)	(1995)		(1989)	(1986)	214270-75
250-35A5	M235-50A	M15	36F145	35A250	2413
270-35A5	M270-35A	M19	36F158	35A270	2412
290-50A5	M290-50A	M15	47F168	50A290	2413
310-50A5	M310-50A	M19	47F174	50A310	2412

Hysteresis eddy current and losses

- Magnetic materials present hysteresis and they are conductors.
- Hysteresis means that the flux or flux density does not establish immediately when the current or filed strength is established
 - the flux density is lagging behind the field strength.
- The conductivity of the material means that it is subject to Faraday law in the same manner as other non magnetic conductors.
- Eddy currents are induced in the conducting magnetic material as a consequence of time-varying magnetic flux density

Investigation work 20 min

 Look in internet for the difference between alternating and rotating hysteresis (5 min)

• With your mates, decide on what are the most important differences (5 min)

- Present your list and decision to the class (10 min)
 - You might use internet

Alternating hysteresis

- Experience with the toroid:
 - In a very slow process, increase the current and then reverse it to the opposite value and draw the HB-curve
- The obtained curve is a unidirectional or alternating hysteresis characteristic

- Consider the single sheet tester below.
- The flux density in the sheet can be controlled to a rotational form
- In a very slow process, while keeping the flux density amplitude constant, increase its angle with respect to the x-axis and draw the *H*-locus (H_xH_y)

Measured **B**- and **H**-loci for a NO silicon sheet

1.5

0.5

Ω

- Phase angle between **B** and **H**
- **B** is never alternating or rotating in actual device it is more or less elliptic

- The magnetization process is different in alternating and rotating field
- This is seen in the hysteresis loss behavior

Eddy current

• Eddy currents are induced in the conducting magnetic material as a consequence of time-varying magnetic flux density and Faraday law

Eddy current

- Eddy currents in electrical sheet are generally 3-dimensional
- If the return path is short and can be ignored, the problem reduces to two separated 1D problems
- The two problems are coupled through material characteristics

$$\frac{\partial^{2}h_{x}(z,t)}{\partial z^{2}} = \sigma \frac{\partial b_{x}(z,t)}{\partial t}$$
$$\frac{\partial^{2}h_{y}(z,t)}{\partial z^{2}} = \sigma \frac{\partial b_{y}(z,t)}{\partial t}$$

 $\boldsymbol{j} = j_x(z,t)\boldsymbol{e}_x + j_y(z,t)\boldsymbol{e}_y$

rotating field and EC.avi

alternating field and EC.avi

$$P_{eddy} = \int_{V} \left(\frac{1}{T} \int_{0}^{T} \frac{J^{2}}{\sigma} dt \right) dV$$

Soft Magnetic Materials – material types

Learning outcome

At the end of this lecture you will be able to:

- List different materials and how they are manufactured
- Describe the physical properties of these materials
- Explain the magnetic and mechanical coupling of these materials
- Explain how this coupling affects some of their properties

Brain storming

- Take 10 min and think of what are the most important physical properties of soft magnetic materials
- Write them down, we will compile the results during the lecture
- List of quantities to measure:

No Oriented electrical sheets

- Fe-Si alloy used in rotating electrical machines and small transformers
- Coercive field Hc = 40 80 A/m
- The magnetocrystalline anisotropy decreases with increasing Si
- A phosphate-based or chromate-based coating thickness 0.5 µm 5 µm
 provides the necessary interlaminar insulation, and ensures good lamination punchability
- Never isotropic, exhibiting some 10% 20% variation of the loss along different directions in the lamination plane
- Gauge of 0.35 mm 0.50 mm
 - Losses: 2.10 2.30 W/kg at 1.5 T and 50 Hz
 - Induction: of 1.50 1.60 T at 2500 A/m.
- Gauge of 0.10 mm to 0.27 mm for high speed machines
- Main producers : ThyssenKrupp Electrical Steel GmbH, Mittal-Arcelor, Nippon Steel Corporation, Cogent Steel, POSCO Steel.

Grain Oriented electrical sheets

- Applied field must do work against anisotropy:
 - Crystal anisotropy energy *E* is stored in any crystal.
 - E can be expressed in terms of a series expansion of the direction cosines of M_s
 - In a cubic crystal, let M_s make angles a, b, c with the crystal axes, and α_1 , α_2 , α_3 the cosines of these angles, which are called direction cosines

$$E = K_0 + K_1(\alpha_1^2 \alpha_2^2 + \alpha_2^2 \alpha_3^2 + \alpha_3^2 \alpha_1^2) + K_2(\alpha_1^2 \alpha_2^2 \alpha_3^2) + \cdots$$

• Only K₁ is important and is expressed in J/m³

Grain Oriented electrical sheets

- Grain-oriented (GO) Fe-Si laminations, the crystallites have their easy axis close to the rolling direction (RD) and the (110) plane nearly parallel to the lamination surface
 - This is the so-called Goss texture
 - large grain size (from a few millimeters to a few centimeters)
 - little content of impurities, coercive fields as low as 4 10 A/m

- conventional grain oriented (CGO) and high permeability (HGO) alloys
 - Dispersion of the [001] axes of the crystallites around RD \sim 7° and \sim 3°, respectively
 - W17/50 = 1.40 0.80 W/kg at 1.7 T and 50 Hz

Some parameters of the manufacturing process

CGO	CGO HO		HGO-1		HGO-2		HGO-3	
			Compos	ition (wt%)				
33.2	Si Mn	2.93.3 0.03	Si	2.93 0.05	Si Mn	3.13.3 0.02	Si Mn	
0.02	S	0.07	Mn	0.02	Se	0.02	S	
0.03	C	0.03	S	0.04	Sb	0.001	B	
balance	Fe	0.015	N	0.030.07	C	0.005	N	
		0.050.07	C	balance	Fe	0.030.05	C	
		balance	Fe			balance	Fe	
-			Inl	hibitors				
MnS		MnS + AlN	MnS + AlN		MnSe + Sb		B + N + S	
Melting, va	cuum degas.	sing and continuou	s casting of	slabs				
			Re-heatin	ng – hot rolling				
1320 °C		1360 °C	1360 °C		1320 °C		1250 °C	
Annealing 9001100 °C		11001150	11001150 °C		900 °C		8701020 °C	
Cold reduct 70 %	tion	87 %		6070 %		80 %		
Annealing 8001000	nnealing 001000 °C 800 - 10		800 <mark>- 1</mark> 000 °	600 − 1000 °C				
Cold reduct 55 %	tion		1111	65 %		8 <u>1111</u>		
61		644	Deca	rburization				
53.		80	0850 °C	(wet H_2 atmosphere)				
			MgO coa	ting and coiling				
Box anneali	ing (seconda	ary recrystallization	1)					
1200 °C	0 °C 1200 °C		820900 °C +1200 °C		1200 °C			
Phosphate a	coating and	thermal flattening						

Amorphous alloys

- Ribbons of variable width (up to 100 200 mm)
- Thickness ranging between 15 μm and 40 μm.
- The composition of soft magnetic amorphous alloys is T70-80M30-20
 - T=Fe, Co, and Ni
 - M=combination of metalloids (e.g. B, Si, P, C)
- Fe-based ribbons reach at best coercive fields of 2- 3 A/m.
- Very high fracture stress $\sigma r \sim 2800$ Mpa
- Electrical resistivity increased by a factor of 2-3 with respect to their crystalline counterpart

Amorphous alloys

- One may describe an amorphous alloy as a random ensemble of structural units, each extending over a distance δ equal to a few atomic spacing
- Lack of crystalline order does not prevent the formation of ferromagnetic order
- unique combination of mechanical hardness and magnetic softness
- know as noncrystaline or metallic glasses (metaglass)

- velocity of 10 40 m/s
- Cooling rate $10^5 10^6 \text{ °C/s}$

Some properties of amorphous materials

	Amorphous ribbon Fe ₇₈ B ₁₃ Si ₉	GO Fe-(3 wt%)Si
	(thickness 0.025 mm)	(thickness 0.23 mm)
Density (kg/m ³)	$7.2 \cdot 10^3$	$7.65 \cdot 10^3$
Young modulus (GPa)	150	120
Yield stress (MPa)	> 700	< 300
Fracture stress (MPa)	2800	350
Fracture strain (%)	2.5	25
Vicker's hardness	800	180
Electrical resistivity ($\Omega \cdot m$)	135·10 ⁻⁸	$45 \cdot 10^{-8}$
Lamination factor (%)	< 90	95
Curie temperature (°C)	410	740
Saturation polarization (T)	1.55	2.03
Saturation magnetostriction	$32 \cdot 10^{-6}$	$25 \cdot 10^{-6} (\lambda_{100})$
dc coercive field (A/m)	2 (after annealing)	5
Max relative permeability	$2 \cdot 10^5$ (after annealing)	$8 \cdot 10^4$
50 Hz power loss at 1.4 T (W/	(kg) 0.25 (after annealing)	0.70

Fe-Ni and Fe-Co

- Alloying Fe with Co increses the saturation and the Curie temperature
- Fe-Co alloys are used in
 - Pole pieces of electromagnets
 - Beam-focusing lenses for electron microscopes
 - Aircraft motors, generators, and transformers
 - Standards IEC 60404-8-6.

Energy losses versus frequency in Fe-Si and Fe-Co laminations:

- 0.195 mm thick NO Fe-(3 wt%)Si
- 0.290 mm thick GO Fe-(3 wt%)Si
- 0.201 mm thick Fe49Co49V2 (Vacoflux50).

Fe-Ni and Fe-Co

- Alloying with Ni decreases the anisotropy constant and make the material isotropic
- Fe-Ni and Fe-Co laminations are delivered uncoated. If required, they are slightly oxidized by making the final part of the heat treatment in air.
- Fe-Ni alloys are applied in a multitude of devices where high-performance magnetic cores are required.
 - measuring instruments
 - switch-mode power supplies
 - ground fault interrupters
 - magnetic sensors
 - recording heads for magnetic tape systems
 - inductors for applications up to the MHz range.

Fe-Ni and Fe-Co material producers

- Two major producers of high-quality Fe-Ni and Fe-Co alloys
 - IMPHY (Groupe Arcelor-Mittal)
 - Vacuumschmelze GmbH
- Strip wound cores are also offered by
 - Magnetics Inc. (USA) and Telcon Ltd. (UK).

	Ј _s (Т)	<i>T</i> _c (°C)	ρ (10 ⁻⁸ Ω ·m)	H _c (A/m)	$\lambda_{\rm s}$	μ _i
Fe64-Ni36 (invar)	1.30	230	75	40	10·10 ⁻⁶	$2 \cdot 10^{3}$
Fe50-Ni50	1.60	490	45	7	$22 \cdot 10^{-6}$	$1.5 \cdot 10^4$
Fe15-Ni80-Mo5 (permalloy) Fe14-Ni77-Mo4-Cu5 (mumetal)	0.80 0.78	400 400	60 60	0.4 1.5	$2 \cdot 10^{-6}$ $2 \cdot 10^{-6}$	$1.5 \cdot 10^5$ $4 \cdot 10^4$
Fe49-Co49-V2 (permendur)	2.35	930	27	50-100	70·10 ⁻⁶	$2 \cdot 10^{3}$

Soft Magnetic Composites SMC

- For applications
 - Medium frequency range, few hundred Hz to few ten kHz
 - Requiring specially shaped cores
 - hardly achievable through lamination stacking. Powder cores provide an attractive solution
- relatively isotropic materials
 - Suited for applications where three-dimensional flux paths are established
- SMC are obtained either by sintering or compacting
- Sintered core
 - high resistivity (2 time the original material)
 - relatively good permeability
- Compacted cores
 - very high resistivity
- low losses (hysteresis and eddy current)

Manufacturing of SMC

- Nanocrystalline alloys are pulverized by milling due to their brittle nature
- Crystalline particles of average size between 5 µm and 200 µm are obtained by water atomization
- Compacting process permits manufacturing net-shape parts, without need for further tooling.

Collector

Properties of SMC

Soft ferrites

- Largely applied at frequencies above the audio range
 - Up to few hundred MHz, because of their non-metallic character
- They have the general composition
 - MO·Fe₂O₃, where M is a divalent metal ion such as Fe²⁺, Mn²⁺, Ni²⁺, Zn²⁺, Mg²⁺

- Typical applications include
 - magnetic heads
 - antenna rods
 - inductor cores in switched-mode power supplies
 - cores for electromagnetic interference suppression
 - pulse and wide-band transformers for television and telecommunications

Soft ferrites

die.

- Magnetic properties of ferrites are due to the magnetic moments of the metal ions
- Nonmagnetic Zn ferrite is often added to increase magnetization saturation
- During sintering, all linear dimensions of a part shrink from 10 to 25%, and allowance for this must be made in designing the pressing mold or extrusion

Two broad classes of ferrites

• Mn–Zn Ferrites

- initial permeability of 1000-2000
- coercivity less than 80 A/m
- Low losses up to frequencies of about 1 MHz
- Resistivity is about 20–100 ohm-cm.
- Ni–Zn Ferrites
 - Very high frequency operation, 100 MHz
 - Initial permeability 10–1000
 - Coercivity of few hundreds A/m
 - Very high resistivity 105 ohm-cm.

 The value of permeability and coercivity controlled by the addition of Fe²⁺ ions (Mn-Zn) or Co²⁺ ions (Ni-Zn ferrite)

Investigation work 20 min

• Look in internet for what is meant by magnetostriction and magnetomechanical effects in soft magnetic materials (5 min)

• With your mates, try to explain from where these effect come from (5 min)

- Present your findings and explanations (10 min)
 - You might use internet

- In magnetic materials, magnetism and mechanics are coupled
- Any mechanical loading will change the magnetic properties of the material
- The mechanical stress induced magnetization is called Villri-effect

- In magnetic materials, magnetism and mechanics are coupled
- Any magnetic loading (magnetization) will induce mechanical deformation
- The magnetization induced deformation is called magnetostricion

disc.avi

comsolanim.avi

• Magnetostriction have useful applications and harmful consequences

- Villari effect has very harmful consequences but can also be useful
 - Higher energy losses and low permeability
 Use in contactless stress sensors
 Secondary coil
 Primary coil
 Steel cable
 Steel cable

- magnetomechanical effects are manifestations of the same phenomenon:
 - Motion of magnetic domain walls accompanied by lattice and grain rearrangement

Magnetomechanical modelling issues

Magnetomechanical modelling issues

- Thermodynamics based model
 - Magnetomechanical invariants and free energy as functions of these invariants

$$I_{1} = \operatorname{tr}(\boldsymbol{\varepsilon}), \quad I_{2} = \frac{1}{2}\operatorname{tr}(\boldsymbol{\varepsilon}^{2}), \quad I_{3} = \operatorname{det}(\boldsymbol{\varepsilon})$$
$$I_{4} = \frac{\boldsymbol{B} \cdot \boldsymbol{B}}{B_{\operatorname{ref}}^{2}}, \quad I_{5} = \frac{\boldsymbol{B} \cdot (\tilde{\boldsymbol{\varepsilon}}\boldsymbol{B})}{B_{\operatorname{ref}}^{2}}, \quad I_{6} = \frac{\boldsymbol{B} \cdot (\tilde{\boldsymbol{\varepsilon}}^{2}\boldsymbol{B})}{B_{\operatorname{ref}}^{2}}$$

$$\psi = \frac{1}{2}\lambda I_1^2 + 2GI_2 - \nu_0 \left(\frac{I_4}{2} + \sum_{i=0}^{n_a-1} \frac{\alpha_i}{i+1} I_4^{i+1} \cdots + \sum_{i=0}^{n_b-1} \frac{\beta_i}{i+1} I_5^{i+1} + \sum_{i=0}^{n_b-1} \frac{\gamma_i}{i+1} I_6^{i+1}\right).$$

Magnetization and stress from energy

$$M(B,\varepsilon) = -\frac{\partial \psi(B,\varepsilon)}{\partial B}$$
$$\sigma_{me}(B,\varepsilon) = \frac{\partial \psi(B,\varepsilon)}{\partial \varepsilon}.$$

Possible linearization and swap of variable and unknowns

$$\varepsilon = \frac{1}{E^{H}}\sigma + gH$$
$$B = g^{*}\sigma + \mu^{\sigma}H$$