Superconducting Materials Learning outcome

At the end of this lecture you will be able to:

- Phenomenological describe the phenomenon of superconduction
- Explain how superconductors behave in magnetic fields
- Describe some applications of superconductors in Power Engineering

History of Superconductivity

- 1911 Kamerlingh Onnes discovered superconductivity while studying the resistance of metals at low temperatures (Hg mercury at 4.15K).
 - Resistance fall to zero at low temperature
 - the same phenomenon discovered in other materials
- Highest critical temperature yet 23 K in 1973
- Need of liquid Helium (4 K) or liquid Hydrogen (20 K)

 1933 Walter Meissner & Robert Ochsenfeld discovered a magnetic phenomenon related to superconductivity

History of Superconductivity

- 1986 J. Georg Bednorz & K. Alex Mueller discovered high temperature superconducting material
 - First @35 K and then @92 K
- Usage of liquid Nitrogen (77 K) became possible

• 1962 Josephson effect discovered a quantum phenomenon called after him

1,000 A HTS Wire 1,000 A Copper Wire

Development of Critical temperature

Year

Electric Superconductivity phenomena

Measurement results as reported by Kamerlingh Onnes

Element	$T_{ m c}$ (K)	Element	$T_{\rm c}({\rm K})$	Element	$T_{\rm c}({ m K})$
Al	1.19	Nb	9.2	Tc	7.8
Be	0.026	Np	0.075	\mathbf{Th}	1.37
Cd	0.55	Os	0.65	Ti	0.39
Ga	1.09	Pa	1.3	Tl	2.39
Hf	0.13	Pb	7.2	U	0.2
Hg	4.15	Re	1.7	V	5.3
In	3.40	Rh	0.0003	W	0.012
Ir	0.14	Ru	0.5	Zn	0.9
La	4.8	Sn	3.75	Zr	0.55
Mo	0.92	Ta	4.39		
Compound	$T_{ m c}$ (K)	Compound	$T_{ m c}\left({ m K} ight)$	Compound	$T_{ m c}~({ m K})$
Nb ₃ Sn	18.1	MgB_2	39	UPt ₃	0.5
Nb ₃ Ge	23.2	$PbMo_6S_8$	15	UPd_2Al_3	2
Cs_3C_{60}	19	YPd_2B_2C	23	(TMTSF) ₂ ClO ₄	1.2
$\mathrm{Cs}_3\mathrm{C}_{60}$	40	$\mathrm{HoNi_2B_2C}$	7.5	$(\mathrm{ET})_{2}\mathrm{Cu}[\mathrm{Ni}(\mathrm{CN})_{2}]\mathrm{Br}$	11.5
High- T_{c} superconductor		$T_{ m c}$ (K)	High- $T_{\rm c}$ superconductor		$T_{ m c}\left({ m K} ight)$
La1.83Sr0.17CuO4		38	$Tl_2Ba_2Ca_2Cu_3O_{10+x}$		125
$YBa_2Cu_3O_{6+x}$		93	$HgBa2Ca_2Cu_30_{8+x}$		135
$\mathrm{Bi_2Sr_2Ca_2Cu_3O_{10+x}}$		107	$Hg_{0.8}Tl_{0.2}Ba_{2}Ca_{2}Cu_{3}0_{8.33}$		134

Electric Superconductivity phenomena

• Material in normal state

$$J = \sigma E \qquad \nabla \times E = -\frac{\partial B}{\partial t}$$

- Conductivy \rightarrow 0, $E \rightarrow$ 0, thus B=cte
- External field applied after cooling results in the flux not entering the conductor

• Superconductor does more than this! (Meissner effect)

Investigation work 20 min

• Find an explanation of the Meissner effect in a superconductor and compare it with the behavior of a normal conductor at 0 K (5 min)

• Discuss your understanding with your mate (5 min)

- Merge your explanations and present them to the class
 - You might use internet

Meissner effect

• Meissner effect is noticed only if the field is not too high

Type I and type II superconductivity

- Natural elements are mostly type I superconductors while most compound • are type II superconductors
- Superconductivity is destroyed by a high magnetic field (critical field)
- Two kind of behaviors are distinguished ⊾H Type II normal state Type I H_{c2} Internal field Bi ġ Only 1 B_c Internal field mixed state H_{c} Two B, H_{c1} Meissner state $T_{\rm c}$ Bc B_{c2} Bc1 External field Ba External field Ba $H_{c}(T) = H_{c}(0) \left| 1 - \left(\frac{T}{T_{c}}\right)^{2} \right|$
 - Critical field is temperature dependent

Type II superconductors

- In type II superconductors the flux is not completely repulsed
- The flux penetrates the superconductor to some extends
- In flat conductors the flux is split into normal conduction channels, it is quantized

• Studying these superconducting phenomena in details requires a good background of quantum physics.

Josephson effect

• Yet another quantum physics related phenomenon

- Unexpected continuous electric current between two superconductors separated by a very thin insulating layer (few nm).
 - Electrons form Cooper pairs and condensate in a unique collective quantum wave
 - The wave can spill out of the superconductor
 - The electron pairs goes through the insulator thanks to the tunneling effect (quantum).
 - Current proportional to the sine of the phase difference between the superconductors.
- If a DC-voltage is applied, an alternating current will appear
 - Frequency depends only on voltage and fundamental parameters \rightarrow U-measurement
 - Sensitivity to magnetic field makes it possible to measure low field \rightarrow Squid

Manufacturing technology

2. Multifilamentary architecture provides flexibility

3. Rolling and heat treatment form the superconducting microstructure

- Maglev
 - Superconducting coil on-board
 - Active propulsion coils on-track
 - Passive levitation coils on-track
 - Flux density about 5 T
 - Low Temperature Superconducting technology

- Tokyo-Osaka Speed record 603km/h
- China
 - Shanghai 1.2004, 431 km/h

- Electrical machines
- Homopolar motors
 - 5 200 kW demonstrators
 - With and without iron core
 - 10-40 kA currents
 - Magnetic flux density 2-3T
 - Both Low and High Temperature superconductors

- Electrical machines
- Synchronous machines
 - With partial iron core
 - 1200 4000 kVA
 - Mostly demonstrators

- Cable demonstrators
- 2014, AmpaCity project, Essen, Germany
 - 1 km, 40 MW, 10kV instead of 110 kV
 - HTS ceramic technology, Liquid Nitrogen
- 2008, Long Island Power Authority, New York, USA
 600 m, 574 MW
- In conventional cables, resistive losses are 2-8%
- In superconducting cables AC-losses are presents
 - Eddy-current in conducting matrix and hysteresis loss in ceramic material
 - Although very small, they hinder the cooling system

Investigation work 20 min

• Find an explanation of how superconducting based current limiters work

• Explain the working principle to your mate

- Merge your explanations and present them to the class
 - You might use internet

- Transformers and Current limiters
- Several designs for transformers, but no real application
- Several design and prototypes of current limiters

• Energy storage SMES

