Key concepts from quantum mechanics (Lecture 1)

(1) Show the following properties of Hermitian operators, where $\alpha \in \mathbb{C}$
(a) $(A+\alpha B)^{\dagger}=A+\alpha^{*} B$
(b) $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$
(2) For any two operators A, B the above result also holds. Show that $(A B C D)^{\dagger}=D^{\dagger} C^{\dagger} B^{\dagger} A^{\dagger}$.
(3) Show that for any three operators A, B, C, the Jacobi identity holds $[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$.
(4) Show that the inner product of any two vectors $|\psi\rangle,|\phi\rangle \in \mathcal{H}$ is invariant under unitary transformations $U U^{\dagger}=$ $U^{\dagger} U=1$.
(5) Show that in a Hilbert space $\| \lambda|\psi\rangle\|=|\lambda|\||\psi\rangle \|$, where $\lambda \in \mathbb{C}$.
(6) Consider applying the following transformation to the Pauli basis vectors $|0\rangle \rightarrow(|0\rangle+|1\rangle) / \sqrt{2},|1\rangle \rightarrow(|0\rangle-$ $|1\rangle) / \sqrt{2}$.
(a) Write down the matrix representations of the Pauli-spin operators in the new basis.
(b) Show that the Pauli-spin operators anti-commute, where the anti-commutator is defined as $[A, B]_{+}=$ $A B+B A$.
(7) An electron can be in one of two potential wells that are so close that it can "tunnel" from one to the other. Its state vector can be written as $\alpha|0\rangle+\beta|1\rangle$ where $|0\rangle$ is the state of being in the first well and $|1\rangle$ is the state of being in the second well and all kets are correctly normalised. What is the probability of finding the particle in the first well given that: (a) $\alpha=i / 2$ (b) $\beta=e^{i \pi} \quad$ (c) $\beta=1 / 3+i / \sqrt{2}$?
(8) A particle is trapped in a potential such that its allowed eigen-energies are $E=n^{2} \mathcal{E}$, where $n=1,2,3, \ldots$ is an integer, and \mathcal{E} is a positive constant. The eigen-vectors of the system are the complete number basis. At $t=0$ the state of the particle is $|\psi(0)\rangle=0.2|1\rangle+0.3|2\rangle+0.4|3\rangle+0.843|4\rangle$
(a) Suppose that at $t=0$ the particle's energy was measured, what is the probability of getting an energy value less than $6 \mathcal{E}$?
(b) Calculate the mean and the square root of the second moment (rms value) of the particle's energy in the state $|\psi(0)\rangle$.
(c) Calculate the state of the system after time t. Do the quantities calculated in (b) remain the same in this new state?
(d) When the energy is measured it turns out to be $16 \mathcal{E}$. After the measurement, what is the state of the system? What result is obtained if the energy is measured again?
(9) Given that the wavefunction of a particle is defined as

$$
\Psi(x)= \begin{cases}2 A \sin \frac{\pi x}{a} & -a \leq x \leq a \\ 0 & \text { otherwise }\end{cases}
$$

Determine the value of A, the expectation value of x, x^{2}, p, and p^{2}. What is the value of the uncertainty in the position-momentum?

Circuit elements (Lecture 2)

(1) Calculate the average power absorbed by a 20Ω resistor when a current of $I(t)=3 / 4 \sin (3 t) A$ is applied.
(2) A $10 \mu H$ inductor is driven by a current $I(t)=30 \cos (50 t) m A$. Calculate the power supplied to the inductor.
(3) Suppose that a current of $-3 A$ flows through a surface S , how many electrons pass through S when t equals (a) 1 sec (b) $3 \mu \mathrm{sec}$ (c) 53.4 fsec .
(4) A resistance of 5Ω has a current $I(t)=510^{3} A$ in the interval $0 \leq t \leq 2 \mathrm{msec}$. Obtain the instantaneous and average power.
(5) An inductance of $4 m H$ has a voltage $V(t)=2 e^{-10^{3} t} V$. Obtain the maximum stored energy. Assume initially that the current is zero.
(6) Calculate the source voltage V in Fig. 1 then define its polarity in the following two cases (a) $I=2 A$, (b) $I=$ $-2 A$.

Figure 1
(7) Calculate the equivalent resistance of the circuit shown in Fig. 2 when (a) $R_{x}=\infty$, (b) $R_{x}=0$ (c) $R_{x}=5$

Figure 2
(8) Using the current division method, calculate the source current in Fig. 3 and the power delivered to the circuit.

Figure 3
(9) Using voltage division calculate V_{1} and V_{2} in the circuit shown in Fig. 4

Figure 4
(10) Show that for a four resistors in parallel the current in R_{4} branch is related to the total current by $I_{4}=$ $I_{T}\left(\frac{R^{\prime}}{R^{\prime}+R_{4}}\right)$, where $R^{\prime}=\frac{R_{1} R_{2} R_{3}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}$
(11) A transmission line has the following per-unit-length parameters: $L=0.5 \mu H / m, C=200 \mathrm{pF} / \mathrm{m}, R=$ $4.0 \Omega / m$, and $G=0.02 S / m$. Calculate the propagation constant and characteristic impedance of this line at 800 MHz . If the line is 30 cm long, what is the attenuation in dB ? Recalculate these quantities in the absence of $\operatorname{loss}(\mathrm{R}=\mathrm{G}=0)$.

