Key concepts from quantum mechanics (Lecture 1)

- (1) Show the following properties of Hermitian operators, where $\alpha \in \mathbb{C}$
 - (a) $(A + \alpha B)^{\dagger} = A + \alpha^* B$
 - (b) $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$
- (2) For any two operators A, B the above result also holds. Show that $(ABCD)^{\dagger} = D^{\dagger}C^{\dagger}B^{\dagger}A^{\dagger}$.
- (3) Show that for any three operators A, B, C, the Jacobi identity holds [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0.
- (4) Show that the inner product of any two vectors $|\psi\rangle$, $|\phi\rangle \in \mathcal{H}$ is invariant under unitary transformations $UU^{\dagger} = U^{\dagger}U = 1$.
- (5) Show that in a Hilbert space $||\lambda |\psi\rangle|| = |\lambda||||\psi\rangle||$, where $\lambda \in \mathbb{C}$.
- (6) Consider applying the following transformation to the Pauli basis vectors $|0\rangle \rightarrow (|0\rangle + |1\rangle)/\sqrt{2}$, $|1\rangle \rightarrow (|0\rangle |1\rangle)/\sqrt{2}$.
 - (a) Write down the matrix representations of the Pauli-spin operators in the new basis.
 - (b) Show that the Pauli-spin operators anti-commute, where the anti-commutator is defined as $[A, B]_+ = AB + BA$.
- (7) An electron can be in one of two potential wells that are so close that it can "tunnel" from one to the other. Its state vector can be written as $\alpha |0\rangle + \beta |1\rangle$ where $|0\rangle$ is the state of being in the first well and $|1\rangle$ is the state of being in the second well and all kets are correctly normalised. What is the probability of finding the particle in the first well given that: (a) $\alpha = i/2$ (b) $\beta = e^{i\pi}$ (c) $\beta = 1/3 + i/\sqrt{2}$?
- (8) A particle is trapped in a potential such that its allowed eigen-energies are $E = n^2 \mathcal{E}$, where n = 1, 2, 3, ... is an integer, and \mathcal{E} is a positive constant. The eigen-vectors of the system are the complete number basis. At t = 0 the state of the particle is $|\psi(0)\rangle = 0.2 |1\rangle + 0.3 |2\rangle + 0.4 |3\rangle + 0.843 |4\rangle$
 - (a) Suppose that at t = 0 the particle's energy was measured, what is the probability of getting an energy value less than $6\mathcal{E}$?
 - (b) Calculate the mean and the square root of the second moment (rms value) of the particle's energy in the state $|\psi(0)\rangle$.
 - (c) Calculate the state of the system after time t. Do the quantities calculated in (b) remain the same in this new state?
 - (d) When the energy is measured it turns out to be $16\mathcal{E}$. After the measurement, what is the state of the system? What result is obtained if the energy is measured again?
- (9) Given that the wavefunction of a particle is defined as

$$\Psi(x) = \begin{cases} 2A\sin\frac{\pi x}{a} & -a \le x \le a\\ 0 & \text{otherwise} \end{cases}$$

Determine the value of A, the expectation value of x, x^2 , p, and p^2 . What is the value of the uncertainty in the position-momentum?

Circuit elements (Lecture 2)

- (1) Calculate the average power absorbed by a 20 Ω resistor when a current of $I(t) = 3/4 \sin(3t)A$ is applied.
- (2) A $10\mu H$ inductor is driven by a current $I(t) = 30\cos(50t)mA$. Calculate the power supplied to the inductor.
- (3) Suppose that a current of -3A flows through a surface S, how many electrons pass through S when t equals (a) 1sec (b) $3\mu sec$ (c)53.4fsec.
- (4) A resistance of 5Ω has a current $I(t) = 510^3 A$ in the interval $0 \le t \le 2msec$. Obtain the instantaneous and average power.
- (5) An inductance of 4mH has a voltage $V(t) = 2e^{-10^3 t}V$. Obtain the maximum stored energy. Assume initially that the current is zero.
- (6) Calculate the source voltage V in Fig.1 then define its polarity in the following two cases (a)I = 2A, (b)I = -2A.

Figure 1

(7) Calculate the equivalent resistance of the circuit shown in Fig.2 when (a) $R_x = \infty$, (b) $R_x = 0$ (c) $R_x = 5$

Figure 2

(8) Using the current division method, calculate the source current in Fig.3 and the power delivered to the circuit.

Figure 3

(9) Using voltage division calculate V_1 and V_2 in the circuit shown in Fig.4

Figure 4

- (10) Show that for a four resistors in parallel the current in R_4 branch is related to the total current by $I_4 = I_T(\frac{R'}{R'+R_4})$, where $R' = \frac{R_1R_2R_3}{R_1R_2+R_1R_3+R_2R_3}$
- (11) A transmission line has the following per-unit-length parameters: $L = 0.5 \mu H/m$, C = 200 pF/m, $R = 4.0 \Omega/m$, and G = 0.02 S/m. Calculate the propagation constant and characteristic impedance of this line at 800 *MHz*. If the line is 30 *cm* long, what is the attenuation in dB? Recalculate these quantities in the absence of loss ($\mathbf{R} = \mathbf{G} = 0$).