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1 Key concepts from quantum mechanics
Here we review briefly the basic concepts from quantum theory that are most relevant
to this course.

1.1 States, observables, and the Born rule
Throughout this lecture, we assume closed system dynamics. These are the type of
problems where the system’s state evolve according to the Schrödinger’s equation

[ Kinetic energy︷ ︸︸ ︷
−~2

2m
P 2 + V (x)︸ ︷︷ ︸

Potential energy

]
|ψ〉 = i~

∂

∂t
|ψ〉

A more general formulation of quantum theory defines states as density operators, and
measurements as generalized POVMs (positive operator valued measures). However,
in this lecture these topics are not addressed.

1.1.1 States

Every quantum system is associated with a space over the complex numbers C equipped
with an inner product operation. Such a space is called the Hilbert space. All Hilbert
spaces are in general infinite dimensional, however we will mostly deal with finite di-
mensional ones. They have some nice properties such as the existence of a set basis
vectors and they admit a matrix representation. In the Schrödinger picture states are
square integrable functions. The inner product of any two elements ∈ H is

〈f, g〉 =

∫ ∞
−∞

f(x) · g(x) dx

where we have assumed that f(x), and g(x) are functions of the position of a particle
and the overbar means the complex conjugate.
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The inner product has some properties. Firstly, it defines a state norm
√
〈f, f〉 = ||f ||,

where 0 ≤ ||f ||< ∞, such that equality holds only when f = 0. Secondly, it is linear
in its second entry1 〈f, αg + βk〉 = α 〈f, g〉 + β 〈f, k〉,whereas anti-linear in the first
one 〈αf + βh, g〉 = ᾱ 〈f, g〉 + β̄ 〈h, g〉 where α, β ∈ C. Finally, it is anti-symmetric
〈f, g〉 = 〈g, f〉.
Alternatively we may opt for the Heisenberg picture to describe our state. In this pic-
ture states in a finite dimensional Hn are represented by column vectors (kets), whose
entries ∈ C, |ψ〉 = (α1, α2, ....., α2)ᵀ. The inner product in this case is defined as

〈ψ|φ〉 =
∑
n

ψ̄iφi

where 〈ψ| is the conjugate transpose (bra) of the column vector |ψ〉.
A finite dimensional Hilbert space always has a set of linearly independent ele-
ments called orthonormal basis (ONB) {|i〉}n, such that 〈i|j〉 = δij , where δij =
1, when i = j, and 0 otherwise. Any ONB ∈ H resolve the identity operator on H,
Î =

∑
n |n〉 〈n|, also known as completeness relation. Hence any state |ψ〉 ∈ H

can be written in terms of these basis elements |ψ〉 =
∑
n Cn |n〉, where Cn =

〈n|ψ〉. Similarly, we can define wavefunctions in the Schrödinger picture as Ψ =∫∞
−∞ ψ(x) |x〉 dx, where ψ(x) = 〈x|ψ〉, and provided that

∫∞
−∞ |x〉 〈x| = 1.

1.1.2 Observables

Observables in quantum mechanics are represented by linear operators L(H) on H,
such that for A ∈ L(H), A(α |ψ1〉 + β |ψ2〉) = αA |ψ1〉 + βA |ψ2〉, where L(H) is
the space of all linear operators acting on H, and α, β ∈ C. The conjugate transpose
(adjoint) A† of an operatorA is defined as 〈ψ1|Aψ2〉 = 〈ψ1A

†|ψ2〉. Most of the time
we are interested in self-adjoint (Hermitian) operators A = A†, and unitary operators
A† = A−1, such that AA† = A†A = I . Different ONBs are linked with one another
via unitary operators. The spectrum (possible observed outcomes) of an observable
is either discrete (such as the allowed energies inside a potential well) or continuous
(position or momentum of a moving particle).
In the Schrödinger picture the expected value of an observable A with respect to
some state function ψ is written as Aψ =

∫∞
−∞ ψ†(x)Aψ(x) dx, where, ψ(x) = 〈x|ψ〉

is the state wavefunction written in position basis
∫∞
−∞ |x〉 〈x| dx. Whereas in the

Heisenberg picture the expected value of an observableA with respect to some ket |ψ〉
is 〈ψ|A|ψ〉. Furthermore, the uncertainty of A is defined as ∆A =

√
〈A2〉 − 〈A〉2.

The matrix elements of an operator A can be written as∑
i

|i〉 〈i|A
∑
j

|j〉 〈j| =
∑
i,j

〈i|A|j〉 |i〉 〈j|

where,
∑
i |i〉 〈i| = 1,

∑
j |j〉 〈j| = 1, 〈i|A|j〉 = Aij , |〉 〈| is called an outer product.

The composition of two operators AB is another operator, such that associativity holds
when acting on an arbitrary ket AB |ψ〉 = A(B |ψ〉).

1This convention is widely used in physics textbooks.

ii



1.1.3 Born Rule

Let us assume that we possess an arbitrary n-dimensional quantum system, its state
can be written in terms of a complete ONB as |ψ〉 =

∑
n Cn |n〉, where Cn = 〈n|ψ〉.

Suppose now we multiply this expression with 〈m|, then by orthogonality and linearity
of the inner product map, this operation singles out a specific probability amplitude
Cm = 〈m|ψ〉. The probability of getting this particular outcome is then found to be
|〈m|ψ〉|2. In other words, the probability of getting outcome m after projecting (mea-
suring) our state on to 〈m| is |Cm|2. Thus the Born rule provides us with a procedure
to determine the different probabilities of possible measurement outcomes. Obviously∑
m|Cm|2 = 1, and the set of projectors {|m〉} constitutes a complete ONB.

2 Hamiltonian, commutators, time evolution,

2.1 Hamiltonian
The Hamiltonian of the system is the Hermitian operator defined asH =

∑
nEn |En〉 〈En|,

it entails a complete description of the system’s energy spectrum. The energy states of
the system are the eigen-states of the Hamiltonian H |En〉 = En |en〉. They consti-
tute a complete ONB. By exponentiating the Hamiltonian operator we define a uni-
tary operator U = e−iHt/~, then after power expansion of this expression we get
e−i(

∑
n En|En〉〈En|)t/~ =

∑
n e
−iωnt |n〉 〈n|, where we have used the relationE = ~ω.

2.2 Commutator
The commutator of two operators A, and B is defined as [A,B] = AB −BA.

2.3 Time evolution
In closed system dynamics, states evolve according to the Schrödinger equationH |ψ〉 =
i~ ∂
∂t |ψ〉. Thus the state after time t is written as |ψ(t)〉 = e−iHt/~ |ψ(0)〉. On the

other hand, operators evolve according to the Heisenberg equation of motion dA
dt =

−i/~[A,H].

3 Examples

3.1 Qubits
In the quantum world a qubit is the smallest carrier of information. The space of a sin-
gle qubit is the 2-dimensional Hilbert spaceH2. An example of a basis set inH2 is the
so called computational basis |0〉 = (1, 0)ᵀ , |1〉 = (0, 1)ᵀ. Operators in a qubit space
are 2×2 matrices. The Pauli group of matrices is of particular interest to us, especially
when we consider different qubit manipulations. It is straight forward to figure out the
action of the Pauli matrices on the computational basis, for instance, the Pauli σx flips
the state of the system σx |0〉 = |1〉, σx |1〉 = |0〉.
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Thus by orthogonality of the computational basis, its matrix elements are only off-
diagonal 〈0|σx|1〉, and 〈1|σx|0〉

I =

(
1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

3.2 Harmonic oscillator

~ω

|0〉

|1〉

|2〉

Figure 1

The equally spaced eigen-energies of the harmonic oscillator are a complete ONB, they
are called the number states {|n〉}n. In terms of the ladder operator, the Hamiltonian
of a harmonic oscillator can be written as

H = ~ω(a†a+ 1/2)

where a = mω
2~ (x + i

mωp), a† = mω
2~ (x − i

mωp), a†a = n is the number operator,
~ is the reduced Plank constant, ω of the oscillator’s frequency, m is the mass of the
oscillator, x is the position operator, and p = −i~∂/∂x is the momentum operator.
The position and momentum operators obey a commutation relationship [x, p] = i~.
Their complete, and normalized ONB are defined such that

∫∞
−∞ |q〉 〈q| = 1, 〈q|q′〉 =

δ(q − q′),
∫∞
−∞ |p〉 〈p| = 1 〈p|p′〉 = δ(p − p′), respectively. Moreover, they can

be related via a Fourier transformation 〈x|p〉 = 1√
π
eipx. Any state of the harmonic

oscillator can be written in either the position or the momnetum basis Ψ(x) = 〈x|ψ〉,
Ψ(p) = 〈p|ψ〉.
Number state are eigenstates of the number operator n̂ |n〉 = n |n〉, where n is the
number of particles in that particular state. The action of the ladder operators on the
number states is defined as a |n〉 =

√
n |n− 1〉, and a† |n〉 =

√
n+ 1 |n+ 1〉. Their

expectation value with respect to a number state is 〈n|a|n〉 = 〈n|a†|n〉 = 0. The
ground state of a harmonic oscillator is its lowest possible energy state a |0〉 = 0. Any
number state can be can be found by successive application of the creation operator on
the ground state |n〉 = a†

n

√
n!
|0〉.
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4 Basic circuit elements and variables
In this lecture we briefly review the fundamental physical concepts required for ele-
mentary circuit analysis. Throughout this lecture we adopt the SI system to quantify
circuit variables, hence a familiarity with the different orders of magnitude that a circuit
variable may vary over is expected.

4.1 Elementary concepts

4.1.1 Electric and displacement currents

Electric charges Q can be either positive or negative, their unit is Coulomb C. For an
arbitrary open surface S, the current I through S is defined as

I =
dQ

dt
C/sec

where C/sec is the Ampere A.
On the other hand, a displacement current Id is not the result of the physical motion
of charged particles. Instead, it occurs due to a variation in the electric field. A good
example of this phenomenon is a parallel plate capacitor, where the variation in the
density of the charges deposited on the capacitor’s plate induces a time-varying elec-
tric field. This time-varying electric field is associated with a magnetic field as was
established by Maxwell.

4.1.2 Voltage

Voltage V is defined as the work done W on a positive test charge +Q in some electric
field E to move it from one point to another.

V =
W

Q
J/C

where J/C is joule (energy units) per Coulomb is one Volt.

4.1.3 Electric power

Electric power P is defined as the rate of energy expenditure (transfer).

P =
dW

dt
J/sec

where J/sec is the Watt W .
Electric power is also related to the voltage and current of a circuit element via the
following relation P = V I
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4.1.4 Magnetic flux

Flux Φ is a quantity associated with inductors (more on inductors and their roles inside
a circuit in the upcoming section). The flow of electrons inside a wire creates an asso-
ciated magnetic field. When the wire is folded into an N -turn coil (inductor), the total
flux is defined as

Φ = NΨ

where Ψ is the magnetic flux of one turn.
From Faraday’s law, a time varying magnetic flux induces a voltage

V =
dΦ

dt

4.2 Circuit elements

4.2.1 The resistor

R

V

+

−

I

Figure 2

A resistor is an element that impedes the flow of of electric chrges through it. They
are responsible for energy dissipation in any circuit by converting electric current into
heat. The resistor’s value is related to the voltage and the current across it by Ohm’s
law

R =
V

I
V/A

where V/A is the Ohm Ω
The power dissipated by a resistive element can be calculated using Ohm’s law also

P = V I = I2R =
V 2

R

We can calculate the resistivity of any conductor with a uniform cross-section A via a
simple formula

R =
ρL

A

where ρ is the resistivity, L is the conductor’s length, and A is its cross-section area.
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4.2.2 The inductor

L

V

+

−

I

Figure 3

An inductor is a circuit elemnt that stores energy in the magnetic field. It is character-
ized by its inductance L defined as

L =
Φ

I
Ω · sec

where Ω · sec is the Henry H
The relationship between the voltage and current of an inductor is determined by Fara-
day’s law

V =
dΦ

dt
= L

dI

dt

The energy stored or released by an inductor during a time interval can be deduced
easily as follows

W =

∫ t2

t1

V I dt =

∫ t2

t1

P dt =
1

2
L(i22 − i21)

4.2.3 The capacitor

C

V

+

−

I

Figure 4

A capacitor is a two parallel plate conductors separated by a a dielectric or insulating
material. It stores energy in the electric field. The capacitance unit is Farad F and is
defined as

C =
Q

v
F
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where F is C/V
The current and voltage across a capacitor are related by

I = C
dV

dt

The energy stored or released by a capacitor during a time interval can be deduced
easily as follows

W =

∫ t2

t1

V I dt =

∫ t2

t1

P dt =
1

2
C(v2

2 − v2
1)

5 Circuit laws
Two specific laws are of particular interest to us: Kirchoff’s voltage and current laws.

5.1 Kirchoff’s voltage law
Simply put, Kirchoff’s voltage law states that for any closed loop inside a circuit the
algebraic sum of the voltages inside the loop is equal to zero.

−
+

Va

R1

−+

Vb

R2

R3

�I

Figure 5

−Va + IR1 + Vb + IR2 + IR3 = 0

Va + Vb = I(R1 +R2 +R3)

5.2 Kirchoff’s current law
Kirchoff’s current law states that the algebraic sum of currents at any node (a point
where different circuital elements are connected) is zero.
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I

I1 I2 I3
+

−

V

Figure 6

I = I1 + I2 + I3

where the total current I is equal to the sum of the currents drawn by the element at
each node.

5.3 Series and parallel connections of different circuital elements
We just state here the general formulas corresponding to each circuit element.

5.4 Circuit elements in series

Req = R1 +R2 + ....+Rn

Leq = L1 + L2 + ....+ Ln

1

Ceq
=

1

C1
+

1

C2
+ ....+

1

Cn

5.5 Circuit elements in parallel

1

Req
=

1

R1
+

1

R2
+ ....+

1

Rn

1

Leq
=

1

L1
+

1

L2
+ ....+

1

Ln

Ceq = C1 + C2 + ....+ Cn
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6 Voltage division

+

−

V

I1

R1

R2

R3

+

−

V1

Figure 7

The path created by connecting a set of resistors in series as shown in Fig.7 is what we
call a voltage divider. It is straight forward to show that

V1 = V
[ R1

R1 +R2 +R3

]
7 Current division
The parallel arrangement of circuital elements as shown in Fig.6 results in current
division. For example, consider the case where the three parallel elements are resistors,
the ratio between the current in the first branch and the overall current entering the
circuit can be found by applying Ohm’s law and KCL.

I =
V

R1
+

V

R2
+

V

R3

,

I1 =
V

R1

I1
I

=
R2R3

R1R2 +R1R3 +R2R3
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8 Transmission lines
Transmission lines (TLs) are means to transport energy from one point to another. One
particular example of a transmission line is the one presented in Fig.8. It is composed
of two parallel plate conductors separated by some dielectric medium. In circuit ele-
ments this is modelled as an infinitely long series of inductors and capacitors. They are
characterized by impedances (conductances) that have the same value per unit length
as the transmission line. The impedance of the transmission line at a given frequency
defines the relation between the voltage and current of a sinusoidal wave of the same
frequency traveling along the line

Z0 =
V +

0

I+
0

=
−V −0
I−0

=

√
Rl + jωLl
Gl + jωCl

Signals on a transmission line propagates as waves with a complex propagation coef-
ficient

γ =
√

(Rl + jωLl)(Gl + jωCl)

where The real part of the propagation coefficient represents dissipation, whereas the
imaginary part represents the stored power.
Another important characteristic of transmission lines is called the voltage standing
wave ratio (VSWR). It is a measure of the efficiency of power transfer from a source,
through a transmission line, to a load. Ideally a perfect match between the source
impedance and that of the transmission line results in lossless transmission. In real
systems, some reflections (destructively interfere with the incident field) occur leading
to voltage maxima and minima. VSWR measures these voltage fluctuations, it is the
ratio of the maximum to minimum voltage

VSWR =
|Vmax|
|Vmin|

=
1 + Γ

1− Γ

where Γ is the voltage reflection coefficient near the load. When the load and transmis-
sion line are matched no reflection occurs, and the VSWR = 1.

R∆z
2

L∆z
2

C∆zG∆z

R∆z
2

L∆z
2

Figure 8 – An infinitely long transmission line modelling a bath of infinite modes
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9 Prelude: Hamiltonian of a transmission line
In realistic scenarios a quantum harmonic oscillator doesn’t operate in absolute isola-
tion of its surroundings as suggested by Schrödinger’s closed dynamics. Although we
refrained from introducing the complete machinery of open quantum systems, we can
still build an intuitive picture of the nature of the coupling between a quantum oscillator
(system) and an external world (environment). Such situation arises when the oscilla-
tor propagates through a lossy wave-guide or being measured by an external device.
Heuristically we can write a phenomenological Hamiltonian for the overall system as

Hsys +
∑
k

~ωkb†kbk + Coupling

In this picture a lossy waveguide transmission line is modelled as a bath of infinite num-
ber of harmonic oscillators, each characterized by a pair of creation and annihilation
operators {b†k, bk}. The nature of the coupling will be determined by the mechanism
of energy transfer between the two systems, as we will see in future lectures.
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