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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 10:

  Material coordinate system. Vectors, basis vector derivatives, and gradient operator in

the polar, cylindrical, and spherical material coordinate systems.

  Basis vectors, basis vector derivatives, and gradient operator in the beam and shell

material coordinate systems.

  Curvature of curves and surfaces.
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2.1 COORDINATE SYSTEMS

In solid mechanics, particles of a body (a closed system of particles) are identified by

coordinates of the initial geometry. Equilibrium equations etc. can be written for any

selection of the material coordinates, but a clever selection may simplify the setting.

A Cartesian ( , , )x y z  coordinate system with known derivatives of the basis vector, gradient

operator etc. is always needed as a reference system.
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CURVILINEAR MATERIAL COORDINATE SYSTEM

Position vector:
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BASIS VECTORS

The basis vectors of a Cartesian coordinate system are constants. Starting with the position

vector ( , , ) ( , , ) ( , , ) ( , , )r x i y j z k             
   of particle ( , , )   and using

definitions /h r   
  , /h r   

  , /h r   
    (h , h , h  are the lengths or, later,

the scaling coefficients)
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https://en.wikipedia.org/wiki/Cartesian_coordinate_system
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The starting point is the position vector of a material point in the reference system

( , , ) ( , , ) ( , , ) ( , , )r x i y j z k             
   expressed in terms of ( , , )  

identifying the particles. Basis vectors of the curvilinear ( , , )    system
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where h h h h     
  

 , h h 


,  and h h 


 are the scaling coefficients.

As basis vectors of the Cartesian reference coordinate system are constants, the

derivatives of the basis vectors of the curvilinear ( , , )   coordinate system with respect

to { , , }     become
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      1( )
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In the last form, the relationship between the basis vectors is used the other way around

to have the derivatives in the basis of the curvilinear system.
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GRADIENT OPERATOR

As a vector gradient in invariant with respect to the coordinate system. Change of the basis

and the quantities used for particle identification affects, however, the representation

( , , )x y z :

T
/
/
/

x

y x y z

z

e x
e y e e e

x y z
ze
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/ / /
/ / /
/ / /

x y z
H x y z

x y z

  
  
  

      
        
       

.

Notice that  F  and  H  differ only in the scaling of the rows!
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Using the chain rule, the relationships between coordinates and basis vectors and the

(coordinate system) invariance of the gradient operator (it is a vector)
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https://en.wikipedia.org/wiki/Chain_rule
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Matrices  H  and  F  differ only in scaling of the rows. Denoting the diagonal matrix

of the scaling coefficient by   { , , }h diag h h h    it holds     h F H . Further, in an

orthonormal coordinate system    1 TF F   so

  

T
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1 1 1( ) /
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e
e H F e e e

h h h
e



   
  






  




    
                       


   


 .

 Therefore, it is enough to know the scaling coefficients.
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POLAR COORDINATES ( , )r 

In a curvilinear rectangular Polar coordinate system, a particle is identified by its distance r

from the origin and angle  from a chosen line. Basis vectors, their derivatives, and the

gradient operator are given by mapping ( , ) cos sinr r r i r j   
  :

 cos sin
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re i i
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e j j
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https://en.wikipedia.org/wiki/Polar_coordinate_system
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The derivatives follow from the generic expression or in a more clear manner from steps

(just to emphasize the idea)

 cos sin
sin cos

re i i
F
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    . 

In writing the gradient expression, one needs the relationships between basis and partial

derivatives in a Cartesian and polar coordinate systems:
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 / / / / cos sin / /
/ / / / sin cos / /

r x r y r x x x
H

x y y r r y y
 

    
                      

                                   
.

 Using the vector (operator) invariance with respect to the coordinate system used
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EXAMPLE Derive the component forms of the balance law 0f   
 in the polar

coordinate system when stress and distributed force

T
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 ,

respectively. Derivatives of the basis vectors and the gradient operator of the polar

coordinate system are
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In polar coordinate system basis vectors depend on the angular coordinate. First, let us

expand the stress divergence and consider the terms one-by-one by keeping the order of

the basis vectors and position of the inner product:

1( ) ( )r rr r r r r r re e e e e e e e e e
r r           
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            .

Next, by considering the terms one-by-one by keeping the order of the basis vectors,

position of the inner product, and taking into account the non-zero derivatives

/re e  
   and / re e    

  ,
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Finally, by combining the terms
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With the distributed force r rf f e f e  
   , the local form of the momentum balance

0f   
  in the polar coordinate system
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EXAMPLE The small strain measure is obtained as the symmetric part of displacement

gradient (a tensor then). Use the definition to find the components of the strain tensor (a) in

Cartesian coordinate system and (b) in the polar system.
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In Cartesian system, / /i x j y      
 

 and x yu u i u j 
  , therefore

( )( ) )y yx x
x y

u uu uu i j u i u j ii ij ji jj
x y x x y y

   
       

     

       


c( ) y yx xu uu uu ii ji ij jj
x x y y
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c
1 1 1[ ( ) ] ( ) ( )
2 2 2

y y yx x xu u uu u uu u ii jj ij ji
x y x y y x


    

         
     

      . 

 In polar coordinates r ru u e u e  
   , and / / ( )re r e r       

  , /re e  
   and

/ re e    
  . Otherwise, calculation follows the steps used with the Cartesian

coordinate system (one of the exercise problems).
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CYLINDRICAL COORDINATES ( , , )r z

A particle is identified by its distance r from the z-axis origin, angle  from the x-axis and

distance z from the xy-plane. Mapping cos sinr r i r j zk   
  gives

cos sin 0
sin cos 0
0 0 1

r

z

e i
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SPHERICAL COORDINATES ( , , )r 

A particle is identified by its distance r , angle  from the x-axis, and angle    from the z-

axis. Mapping ( , , ) (sin cos sin sin cos )r r r i j k        
  , gives

cos cos cos sin sin
sin cos 0

sin cos sin sin cosr

e i
e j

ke
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According to the generic recipe (here c cos  and s sin )
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2.2 CURVES AND SURFACES

The solution domain of an engineering (beam or plate) model has usually lower

dimension than the body . The representation of the domain embedded in  may

be mid-line or mid-curve of curve of beam or mid-plane or mid-surface of plate)

Curve:

Surface: 2( , )    

Shape of a mid-curve is defined by a one-parameter mapping and a mid-surface by a two-

parameter mapping. In MEC-E8003, the coordinate curves of surfaces (defined by constant

values of  or  ) are assumed to be orthogonal (just to simplify the setting).


3V  3

0 ( ) ( ) ( ) ( )r x i y j z k     
    

0 ( , ) ( , ) ( , ) ( , )r x i y j z k         
  2 parameters

1 parameter



2-25

SOME MAPPINGS

Coil ,

Cylinder

Cone

Sphere

Ellipsoid

Hyperboloid

Torus

0( ) cos sin
2

r iR jR kh   


  
 

0( , ) ( cos sin )r z R i j kz    
 

0( , ) ( )( cos sin )r z s R z i j kz   
 

0( , ) ( sin cos sin sin cos )r R i j k        
 

0( , ) ( sin cos sin sin cos )r R i j k         
 

0( , ) ( sinh cos sin sin cosh )r R i j h k         
 

0 cos ( cos ) sin ( cos ) si( , n) i R r j R rr kr       
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BEAMS AND PLATES

Mid-curve or mid-surface mapping identifies the particles on the mid-curve or mid-surface.

Identification of all particles (P in the figure) of a thin body requires also the relative position

vector  :

Beam mapping: 0( ( ) ( )( , , ) ) n bne br n b r e    
  

Shell mapping: 0 ( , )( , , ) ( , ) nnr r en     
 

The mapping for the mid-curve or surface is used to define the basis vectors. In MEC-E8003

basis vectors are orthonormal to keep the setting as simple as possible (curved geometry

induces some complications anyway)!

O

P

relative

relative



2-27

 BEAM COORDINATES ( , , )s n b

Particle is identified by distance  along the mid-curve and distances ( , )n b  from the curve.

Mapping 0( ( ) ( )( , , ) ) n bne s b sr s n b r s e 
    gives

 
0 /

( / ) / /
s

n s s

b s n

e r s i
e e s e s F j
e e e k

     
              

          

 
  
  

,  
/
/
/
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r n H j
r b k

   
       

       





s n

n s b
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e e
e e e

s
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1 [ ( )]
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 Beam ( , , )s n b coordinate system is curvilinear and orthonormal. Therefore the matrix of

the basis vector derivatives is anti-symmetric (why?) and expressible in form

    1
0

( ) 0
0

s s b n s n

n n b s n s b

b b n s b n

e e e e
e F F e e e e

s s
e e e e

  
   
  


         

                                         

   
    
   

containing geometrical quantities s  , , and 1/b R   . Explicit

expressions for curvature   and torsion   require an explicit form of 0( )r s  or  F .

 The gradient operator at a generic point in terms of the basis vectors at the mid-curve is

based on 0 n br r ne be  
     the beam is given by  ( H  follows from r  and  F   follows

from 0r


0n 
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/ 1 1
/ 0 1 0 0 1 0
/ 0 0 1 0 0 1

s

n

b

r s n b n e n b n i i
r n e F j H j
r b e k k

                    
                                             

  
  
  

.

As the curvilinear coordinate system is orthonormal so    T 1F F  , the generic

formula for gradient gives

  

T T 1

T 1
/ 1 /

( ) / 0 1 0 /
/ 0 0 1 /

s s

n n

b b

e s e n b n s
e H F n e n
e b e b

   


             

                      
                   

 
 
 

.
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SHELL COORDINATES ( , , )n 

A particle is identified by mid-surface position ( , )   (generalized coordinates) and distance

n  in the normal direction. Mapping 0 ( , )( , , ) ( , ) nnr r en     
   gives

 
0 0

0 0

( / ) / /
( / ) / /

n

e r r i
e r r F j

e e ke





 

 
 

        
               
         

  
  
 

,  
/
/
/

r i
r H j
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    1( )
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e e
e F F e

e e

 

  


   
    

       
   

 
 

 
{ , , }n   and   

T

T 1
/

( ) /
/n

e
e H F

ne








    
         
      






In MEC-E8003, the mapping 0( , )r   is restricted by orthogonality condition 0e e  
  .
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CYLINDRICAL SHELL ( , , )z n

A particle is identified by mid-surface coordinates ( , )z   and distance n  in the normal

direction (inwards). Mid-surface mapping 0 ( , ) cos sinr z iR jR kz    
   gives

 
0 0 1

sin cos 0
cos sin 0

z

n

e i i
e j F j

k ke
  

 

      
                           

 
 
 

,

0z

n

n

e
e e

ee





   
            


 


  zeros otherwise,

1
z n

Re e e
z R n R n 
  

   
   

   .
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SPHERICAL SHELL ( , , )n 

A particle is identified by mid-surface position ( , )   and distance n  in the normal direction

(inwards). Mid-surface mapping 0 ( , ) ( sin cos sin sin cos )r R i j k        
  :

sin cos 0
cos cos cos sin sin
sin cos sin sin cosn

e i
e j
e k





 
    
    

    
                   

 



,

sin cos
cos

sin

n

n

e e e
e e
e e

 

 



 





   
  

          

  
 
 

,
0

n

n

e

e e
e e








   
            



 
 

,

1 1
sin n

R Re e e
R n R R n R n   

  
   

    
   .

P
θ

O



2-33

2.3 CURVATURE

Curvature is the amount by which surface or curve embedded in 3 deviates from being

flat or straight. The radius of curvature 1/R   of a curve is given by the best fitting circle.

Curvature of a surface at a point depends on the direction of a curve through that point.

Curvature: c 0 ne  
 

Principal curvatures: 1 1( , )n  and 2 2( , )n  such that n n  
  

Gaussian curvature: 1 2det[ ]K    

Mean curvature: 1 2
1 1 1: ( )
2 2 2nH e I        

 

Gradient at the mid-curve or mid-surface !

Curvature measure!

Another curvature
measure!

https://en.wikipedia.org/wiki/Curvature
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CURVATURE AND TORSION OF BEAM

The radius of curvature 1/R   at a point is given by the best fitting circle. Torsion 

describes the rate of rotation of  and  around the mid-curve (change of rotation angle

divided by change of the mid-curve coordinate s)

Circular: 1
R

  and 0 

Twisted beam: 0  and 2
h

 


Coil: 2 2
R

h R
 


and 2 2

h
h R

 


ne be
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 A circular beam of radius R has zero torsion. The basis vectors of ( , , )x y z  and ( , , )s n b

coordinate systems differ by rotation with respect to the normal direction to the plane of

circle ( z  here). With distance s along the mid-curve and /s R 

sin cos 0
cos sin 0
0 0 1

s

n

b

e i
e j
e k

 
 

    
                  






1

n se e
s R

 
  


  . 

 A twisted beam has zero curvature.  The basis vectors of ( , , )x y z  and ( , , )s n b  differ by

rotation along the x axis. With notation 2 / h 

1 0 0
0 cos sin
0 sin cos

s

n

b

e i
e s s j
e s s k

 
 

    
                






2

b ne e
s h

 
  


  . 
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EXAMPLE A planar curve of xy  plane is defined by mapping

(a) (generic parametric form of a planar curve)

(b)

Derive the curvature tensor c 0 ne  
  .

Answer:  (a) 2 3/22 )
| |

(
y x x ye e

x y
 

 



 


 


  (b) 22 3/

|
)
|

(1
x x

ye e
y





 
 

0 ( ) ( ) ( )r x i y j 
    

0( ) ( )r x xi y x j 
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To use the definition, one needs the derivatives of the basis vectors and also the gradient

operator of the curvilinear ( , , )n b  system at 0n b  . With the Lagrange’s notation of

derivative with respect to 

 
/ / / 0
/ / / 0

0 0 1
n n n

b n

h he x h y h i i
e h h y h x h j F j
e e e k k

   

 



                               
                 

  
   

   
,

where 2 2h x y     and 2 2n
y x x

h
y

x y

 




 

 


.

The derivatives of the basis vectors follow from the generic expression

https://en.wikipedia.org/wiki/Notation_for_differentiation
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1

0

0 1
( [ ] [

0
1 0 0

0 0 0
) ]

n

n n n n n

b b b

e e e e
e F F e h e h e
e e e

  

 


        
                   
               








 

   
   
  

.

At the mid-curve, where 0n b  , the gradient operator for a curvilinear orthonormal

coordinate system of a beam simplifies to ( /nh h  )

1
n be e e

h n b
 


  

 
  


   

22c 3/2
1 |

)
|

(
n

n
nh y x x ye e e e e

h h x
e

y
e     

 


  








     

 

    


2 3/22 )
| |

(
y x x ye e

x y
 

 



 


 


   . 
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EXAMPLE Consider torus surface (donut) having distance  from the center of the tube

to the center of the torus and radius  of the tube. Derive the basis vectors, basis vector

derivatives, gradient expression, and curvature in ( , , )n  coordinate system. The mapping

defining the geometry, [0,2 ]   and [0,2 ]  , is

0 ( cos ) cos sin, ) si( ) ( nR r i j krr        
  

.

Answer:

1 1
( )cos nR n r n r

e e e
n  

  
   

   
    , cos 1

( )cosR n r
e

n r
e e e   





  

 
    

R

r

R
r
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Let us start with the relationship between the basis vectors. Definitions give

 
sin cos 0

cos sin sin sin cos
cos cos cos sin sinn

e i i
j F j

k ke
e




 
    
    

      
                     



   





 
 

 

 .

Since the basis is orthonormal i.e.    1 TF F  , the derivatives of the basis vectors are

given by

    1
0 sin cos

sin 0 0
co 0

( )
s 0n n n

e e e

e F F e e
e e e

  

  

 








      
                     


  



     

  

  
  

antisymmetric!
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    1
0 0 0
0 0( 1

010
)

n n n

e e e

e F F e e
e e e

  

   


      
                             

  

  
  

,   and 0

n

e

e
n

e





 
 

   
 






.

The gradient expression in concerned with a generic material point so that the mapping

between the curvilinear ( , , )n   coordinate system and the reference ( , , )x y z  coordinate

system is written as 0 nr r ne 
    (the mapping needs to define positions of all the

particles of body not just those on the mid-surface). With /h r   
    etc.

 
[ ( )cos ]sin [ ( )cos ]cos 0

( )cos sin ( )sin sin ( )cos
cos cos cos sin sinn

h i i
h j

R n r R n r
n r n r

h

n r H j

k k





   
    

    

                     
     



    
 



  
      

  
  
  

The generic formula for the gradient operator gives (Mathematica is handy in this step)
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T

T 1 1 1
(

/
( )

/
)cos

/ n

n

e

e H F e e e
n

n
R n r

e
n r



  
 






    
                     

  
 



   


. 

Finally, curvature of the torus geometry becomes (at the mid-surface 0n  )

0
1 1
cos

n n n
n n

e e ee e e
nr

e
R r   

  
  

  

     


c0
cos 1(

co
)

sn R r r
e e e e e   
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