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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise
problems on the topics of week 10:

O Material coordinate system. Vectors, basis vector derivatives, and gradient operator in

the polar, cylindrical, and spherical material coordinate systems.

O Basis vectors, basis vector derivatives, and gradient operator in the beam and shell

material coordinate systems.

O Curvature of curves and surfaces.
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2.1 COORDINATE SYSTEMS

In solid mechanics, particles of a body (a closed system of particles) are identified by
coordinates of the initial geometry. Equilibrium equations etc. can be written for any

selection of the material coordinates, but a clever selection may simplify the setting.

A Cartesian (X, Y, z) coordinate system with known derivatives of the basis vector, gradient

operator etc. is always needed as a reference system.
2-3



CURVILINEAR MATERIAL COORDINATE SYSTEM

\
—_— =
J

(X(a,,B,yf)\T i h, (o | 0ar |
Position vector: F(a,B,7)=1Y(@.B.7)¢ {i¢ 3 ﬁﬂ =10 10p =[H];
z(a, B.y) | \E) ﬁy |or [ Oy | k
s | Ny /N, 1 & . B
Basis vectors: €z (=1 ﬁﬂ/hﬂ -=[F 3 ?, %< €5 >=(%[F])[F]_l< €4
ké}/) ﬁﬂ//h]/ kk) ké}/) ké}/)
e \T . |
€, 0/ o
Gradient: V=18 [F]'[H]18/8p¢,
§7 0/0y
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BASIS VECTORS

The basis vectors of a Cartesian coordinate system are constants. Starting with the position
vector (e, B3,7) =x(a, B, 7)) + y(a, B,7)] + z(a, B,¥)k of particle («,f,7) and using
definitions h, =oF /6, hy=ar/0B, h,=or /oy (h,, hg, h, are the lengths or, later,
the scaling coefficients)

N

r
—

6,| |[ha!hg ] i €y
Basis vectors: <éﬂ>:<ﬁﬂ/hﬂ>=[F]<i> = <T>:[F]_1<éﬂ>.
kéy) kﬁ]//h]/) kk) “k) ké}/)
éa éa
Basis vector derivatives: i< €5 >=(£[F])[F]_l< €3¢ nef{a,pr}
on | on !
&% &
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https://en.wikipedia.org/wiki/Cartesian_coordinate_system

The starting point is the position vector of a material point in the reference system

Fla,B,7)=x(a, B, )T +y(a, B,7)] + z(a, B,¥)k expressed in terms of (&, /3, 7)
Identifying the particles. Basis vectors of the curvilinear («, £, 7) — system

r

il rorree) (7] [e] [Rethe] (1) (F s,
<ﬁﬂ > = < 8!7/8,B>:[H]< j ! and 1€5 =1 ﬁﬂ/hﬁ >:[F]< il e T>:[F]_l<§ﬂ S
- orlo ﬁ ) n K K g
khy) ) 7/) kk) \ey) khy/hy) kk) kk) \eyz

where h,, =‘ﬁa‘ =\h, -, , hy =‘ﬁﬂ‘, and h, :‘ﬁy‘ are the scaling coefficients.

As basis vectors of the Cartesian reference coordinate system are constants, the

derivatives of the basis vectors of the curvilinear («, £, 7) coordinate system with respect
to n e{a, [, y} become
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6, ) ©,
%< €4 >:%[F]< i>:(%[F])[F]_1< €z, €
ké}/) kk) \_»7

In the last form, the relationship between the basis vectors is used the other way around

to have the derivatives in the basis of the curvilinear system.
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GRADIENT OPERATOR

As a vector gradient in invariant with respect to the coordinate system. Change of the basis

and the gquantities used for particle identification affects, however, the representation

( \T ' N

€ | [O/0Ox 5 5 "
(X,y,2): V=16 (0/0y =€ —+€ —+€—,

OX oy 0z

g 010z

L Z) \ J

e \T ~ N _ _

€, 0l o0 ox!/oa oyloa 0zldc
(@,B.7): V=185 ([H][F]T)‘1<8/8,B>Where [H|=|0ox/0p oylop ozlop |.

g, | 0/0y | | Ox/oy oyloy orloy

Notice that [F | and [H | differ only in the scaling of the rows!
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Using the chain rule, the relationships between coordinates and basis vectors and the

(coordinate system) invariance of the gradient operator (it is a vector)

(0/0a) |oxloa oyloa o6zlda|(0]0X) (010X
1a10B}=|oxIop oylop eziop |{oloyr=[H[{aldy} =
0/0y| |oxloy oyloy orloy ||0]doz] 0ldz
AT . (T ; S
i (o/ox) |8, 010
V=7 1010y =185+ [F]_T[H]_l<8/8ﬂ> =
k| lorez) e, 8loy
- ONT ) 8T ) .
€, 0/ o €, 0/ o
v=legst [F] T [H] HaraB;=1¢8; (H][F]) Horep;. €
& 0107, & 10107,
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https://en.wikipedia.org/wiki/Chain_rule

Matrices [H | and [F | differ only in scaling of the rows. Denoting the diagonal matrix
of the scaling coefficient by [h]=diag{h,,hs,h,} it holds [h][F|=[H]. Further, in an

orthonormal coordinate system [F]_1 = [F]T SO

\ T

K 01 0o (i 1 6 1 0
V=<§IB> ([H][F]T)_l<a/aﬂ>:§ah—a—+éﬁh—a—+§7h—a—
3 810y ] «O0 Thgof Ty 0y

Therefore, it is enough to know the scaling coefficients.
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POLAR COORDINATES (r,¢)

In a curvilinear rectangular Polar coordinate system, a particle is identified by its distance r

from the origin and angle ¢ from a chosen line. Basis vectors, their derivatives, and the

gradient operator are given by mapping 7 (r,¢) =rcosgi +rsingj:

€| [ cosg sing|(i T R
=l Co=[Fli - €
€s| |—SINg COSY || ] j ) ~ / &

él’ 9¢ .
5 [ = (otherwise zeros), r

r

; i
ol or < O _ 10 O¢— -
e e e

2-11



https://en.wikipedia.org/wiki/Polar_coordinate_system

The derivatives follow from the generic expression or in a more clear manner from steps

(just to emphasize the idea)

S 2 - [ -
€s| |—SINg COSY || ] | | sing cos¢ ||€ €9

& | COS ¢ sm¢) il [-sing cosg |[T

\ ¢J>_(_¢ sing cosg | || |-cosg —sing||]

i; 1_ —sing cos¢ |[cosg —sing|[& | [0 17[& )| [ & «

0¢ (84| |—cosg —sing | sing cosg ||€] |-10]|&] |-&]

In writing the gradient expression, one needs the relationships between basis and partial

)
M| @D
-

M| @D
-

derivatives in a Cartesian and polar coordinate systems:
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olor| |oxlor oylor|[olox| | cosg sing |[O/ox| H 0 | OX
olog| |oxlog oylog||lolay| |-rsing rcose ||olay =[H] oloy|

Using the vector (operator) invariance with respect to the coordinate system used
o [T [orax) _[& T[][]) a1 ar

il lerey) & 010¢
v € T( CoS¢ Sing || cos¢g —sing )_1 olor -

|€] | -rsing rcosg || sing cosg 010¢

~ T
€ 1 0 |{dlor

V=< =aﬁ+%19< €
€| |0 1/r||0/0¢ or r 0¢
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EXAMPLE Derive the component forms of the balance law V-&+ f =0 in the polar

coordinate system when stress and distributed force

T _ T
&:{fr} {Grr Gr¢}{?r} and F:{fr} {:r}’

6] | Tgr Ogp |50 ) g
respectively. Derivatives of the basis vectors and the gradient operator of the polar

coordinate system are

_ _ N T
g e 2 olor
9 LI U gnd v=d " :@rﬁ+§¢ii.
09 | €y —€; €s| (01 (rog) or r og

0 o(r 0
Gr—0¢¢]+frzo and E ( Gr¢)+ G¢¢+G¢r]+f¢=0
@ r or ol
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In polar coordinate system basis vectors depend on the angular coordinate. First, let us
expand the stress divergence and consider the terms one-by-one by keeping the order of

the basis vectors and position of the inner product:

V.-6= (era *18

or r a¢) (Grre er +(7r¢e e¢ +G¢re¢er +G¢¢e¢e¢) =

. .. 0 _.. - ° .. - 0 L. - 0 @ ..
V-o= er -aarrerer +er '50r¢er9¢ +er '50¢re¢er +er EG¢¢e¢e¢ +

élaaee+e 18 €€, +€ lﬂaee+ela € .6
¢ra¢ rr=r=r ¢ a¢ r¢ ¢ /. a¢ preger ¢ a¢ PP P= ¢

Next, by considering the terms one-by-one by keeping the order of the basis vectors,
position of the inner product, and taking into account the non-zero derivatives
6§r /8(15 = §¢ and 8§¢ /8(15 = —ér,
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& aarrérér:aa—”(ér-ér)ér:%ér, (basis vectors are orthonormal)
r r
.0 ___ Oopy . 00p
€ -— 04664 = € -6 )€, = €,,
rar ro~r=g¢ ar(r r)¢ or @
_ 0 o Oog
€ r orCpr :?(er -€4)8 =0,
0 Ooygy
€ - — 0448464 = € -€,)€; =0,
r = O = (€ -€4)€;
10 . 1ldoy 1 o 1 o8, 1
€~ I‘8¢ Orr€r&r = Y (€ er)er"‘rarr(e(/ﬁ a¢)er"‘r‘7rr(e¢ )8¢ ?Grrer’
s 10 o 100y o .1 1 1
9¢ ra¢ e ¢ " a¢ (e er)e¢+?0r¢(e¢ ¢)e¢+ O'r¢(e¢ )—¢:?O'r¢9¢,
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& 18 & & 1aar 1 8 1

€4 — ; a¢ sr€48r = Y (€5 -€4)8 +— a¢r (€ Y )er += a¢r (€5 ¢) ¢
_%agzr € —I—%G¢re¢,
_ 0 10044 1 084 1 08
% g T = (6818 + 0y a—¢)e¢+ (€ e¢) oy
1o Loy
Finally, by combining the terms
V-&= agr” € + agrr¢ € "'larrér +£ar¢e¢ +%%er + iaquéqj +%agz¢
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1 oo olej 1, Oc 004,
V'G:?(r a;r+o-rr+72r—0'¢¢)er+?(r " +O'r¢+0¢r+ )e¢ =
. 1 .0(roy) or - 1.0(royg) 0Ooyy ~
V-6= rr — - + e
T v ow g ool

With the distributed force f = f &, + f4€4, the local form of the momentum balance

V-&+ f =0 in the polar coordinate system

0 o(r 0
E[G(I‘Grr)_i_ O gr - 1.9( Gr¢)+ O 4¢ + Oy +rf¢]§¢ —0. €
r or ol ol
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EXAMPLE The small strain measure is obtained as the symmetric part of displacement

gradient (a tensor then). Use the definition to find the components of the strain tensor (a) in

Cartesian coordinate system and (b) in the polar system.

ou 8u
Answer (a) EXX:% y Eyy T —~, and Exy = €yx 1( )
OX oy 2 OX 8y
ou 10Uy 1,18u, Uy Ouy
b) ., =—F, £,, ==(—=+U,),and &, = ¢ r +
B) e =" Eo r(a¢ r) T TN 8 1 or

2-19



In Cartesian system, V =i0/6x+ jo/dy and G =u,i +uy j, therefore

0 ~ OUy ou .. ou

Vi=0—+] a)(U|+ ]) i—= 4+ T—y+ra— JJ—y) =
OX 8y OX OX oy oy
~ wau *au _»a _.ou
(‘7U)c - + )l —+l]—+ ] "‘)L
ox ax 8y oy
giving
- _.ou, _.1 ou ou
=SV (Vi) =TT 26 L (e T+ T2 (BT, €
2 ox oy 2 0x oy Ox

In polar coordinates U =u, €& +u,€s, and V =€,0/0r +€;0/(rog), o€ /op=€, and
08y [ 0¢ =—€,. Otherwise, calculation follows the steps used with the Cartesian

coordinate system (one of the exercise problems).
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CYLINDRICAL COORDINATES (r,¢,2)

A particle is identified by its distance r from the z-axis origin, angle ¢ from the x-axis and

distance z from the xy-plane. Mapping F = rcosgi +rsingj + zk gives

§| [cosg sing 0 )
1€ =|-sing cosg 0 5]y,
kéz) — O O 1 - kE)
5 :r 0 1 0]|&

—1& = -1 0 O <é¢>otherwise ZEeros,
O¢

.0 .10 _ 0
Vzer—+e¢——+ez—.
or r o¢ 0z
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SPHERICAL COORDINATES (6,4,r)

A particle is identified by its distance r, angle ¢ from the x-axis, and angle & from the z-
axis. Mapping F(6,4,r) =r(sin@cosgi +sindsingj +cosok), gives

)| |[cosfcosg cos@sing —sind || i

1€50=| -sing COS¢ 0 |Kj¢,

S | sindcosg singsing  cosé | JZ,

) &y CosO€, ] & 6,

—<8,+=<-SINPE, —C0SHE, ;, —<€E,r=< 0 ¢,

o | ? r ("o
&) | S|n9e¢ ) & | | € |
.10 _ 1 o0 _ O

V=g-— Z

+9¢ - + €, .
r oo rsiné o¢ or
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According to the generic recipe (here ¢ ~cos and s ~sin)

&) 6| [0
0 Ja 0 F])[F]_l<§> 10
—< B, =(— = :
or _¢ (ar[ jj
ker- L r kO)
S [ea] & 0 co 0 ][g COE
a_¢<§¢>:(a_¢[|:])[|:]-1<§¢>: —cO 0 —sO {6, =1-S08 —CO&,
kér) kér) — O Se O - kérJ ~ Seé¢
S [ea] l”é’éf 0 0 -1][6,] (-8
£<§¢>:(£[F])[F] <§¢>: 0O 0 O <§¢>:< 0 ;. €
g e 1 0 O e é@
LT T — S | h
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2.2 CURVES AND SURFACES

The solution domain € of an engineering (beam or plate) model has usually lower
dimension than the body V eR3. The representation of the domain embedded In R3 may

be mid-line or mid-curve of curve of beam or mid-plane or mid-surface of plate)

Curve: f(a)=x(a)i+y(@)j+z2(a)k aecQcR 1parameter
Surface: Ty(a, fB) = xX(a, Bl +Y(a, B)j +2(a, BK (&, B) e QcR? 2 parameters

Shape of a mid-curve is defined by a one-parameter mapping and a mid-surface by a two-
parameter mapping. In MEC-E8003, the coordinate curves of surfaces (defined by constant

values of « or f) are assumed to be orthogonal (just to simplify the setting).
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SOME MAPPINGS
Coil i (¢) = iIRcosg+ JRsing + Eh%,
Cylinder Ih(z,4) = R(i cosg+ jsing)+kz
Cone Th(z,5) = R(z)(i cosg+ jsing)+kz
Sphere Iy (¢,0) = R(isin@cos ¢+ jsin@dsin ¢+ kcoso)

Ellipsoid Iy (¢,0) = R(isin@cos ¢+ jsin@sin ¢ + ekcosH)

Hyperboloid F,(¢,6) = R(isinh@cos¢ + jsinh@sin ¢ — skcosh @)

Torus Ty(4,0) =1 cosg(R+rcosd) + jsing(R+rcosd)+krsind
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BEAMS AND PLATES

Mid-curve or mid-surface mapping identifies the particles on the mid-curve or mid-surface.

Identification of all particles (P in the figure) of a thin body requires also the relative position

vector p: relative

A
r )

Beam mapping: r(a,n,b)=ry(a)+nE,(a)+be, ()

Shell mapping: F(a,3,n) = (e, B) +nE,(a, B)
relative

The mapping for the mid-curve or surface is used to define the basis vectors. In MEC-E8003
basis vectors are orthonormal to keep the setting as simple as possible (curved geometry

induces some complications anyway)!
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BEAM COORDINATES (s,n,b)

Particle is identified by distance S along the mid-curve and distances (n,b) from the curve.

Mapping r(s,n,b) =1y(s) +ne,(s) +be,(s) gives

&) oFy 1 65 (7| (oF/és) i
<§n>:<(8§S/88)/|8§S/88|>:[F]<T>, <8F/8n>:[H]<j7>
ké’b, k éS X én ) IZ ﬁf / ab) IZ

fé,\ ( K.é
i<§S>—<—K§ :ré >
s Qn sﬁ b (

keb) \ —Ten

1 0 0 0 0 0

V= 2] +7(b——n +6,—+ 6, —.

T |
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Beam (s,n,b) coordinate system is curvilinear and orthonormal. Therefore the matrix of

the basis vector derivatives is anti-symmetric (why?) and expressible in form

pe én>:(E[F])[F]_ € t=|-Kkp O g [{€,=1{—KB +76
\é»b) ké»b) B Kn _KS O ] \é»b) L _Tén )

containing geometrical quantities x; =7, x,=0, and xy,=x=1/R. Explicit

expressions for curvature x and torsion z require an explicit form of fy(s) or [F]

The gradient operator at a generic point in terms of the basis vectors at the mid-curve is
based on I =1y + ng, +be,, the beam is given by ([H | follows from r and [F| follows

from 1
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[1—xn —zb 7n| i
0 1 0 [F]< J7>:[H]<
0 0 1 K

- - \ J

(or/os| [1-xn —zb zn]
or/on;= 0 1 0 |§
or/eb) | 0 0 1

\
(D)
w
J

i
.
—_— =
J

-~

DCDl
9
I

D
o
N\
p
~|
N\

r

As the curvilinear coordinate system is orthonormal so [F]T :[F]_l, the generic

formula for gradient gives

T

(&, (0/os| (6| [1-xn —zb zn] " (d/6s)
V=<8, ([H][F]T)‘1<8/8n>=<§n> 0 1 0] s0/lont.
€ | olob) (&) | O 0 1] [d/db
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SHELL COORDINATES (a, 3,n)

A particle is identified by mid-surface position («, £) (generalized coordinates) and distance

n in the normal direction. Mapping r(«, 5,n) =Th(«, B) +n€,(a, f) gives

6, | [(@F/oa)l|of!oa| 7] (or/oa) )
165 1=+ (8?0/8,8)/|8F0/8,B| >:[F]< jt, orlop >:[H]< it
én \ éa, Xéﬂ ] kIZ) kaF/an ) kIZ)
F N T ) .
€, €, €, 0/doa
i< €3 >:(i[F])[F]_1< €sr nefa,p.,n} and V=1€5 ([H][F]T)_l< olop
on on
&, cy &, | 0/on |

In MEC-E8003, the mapping fp(«, 5) is restricted by orthogonality condition €, -€5 =0.
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CYLINDRICAL SHELL (z,¢,n)

A particle is identified by mid-surface coordinates (z,¢) and distance n in the normal

direction (inwards). Mid-surface mapping ty(¢,2) = iRcos¢ + jRsin ¢ +kz gives

s T o o 1] 0
1€5=|—sing cosg O <T>=[F]<T>,
kén) —_COS¢ _Sin¢ O— klzz \lZJ
a réz\ ' O A
%< €5 =9 €y ¢ zeros otherwise,
ké»n, k_é¢)
Vg, 0 R 1.0 . 0

e + —e¢—+en .
0z R—-nR " 0¢ on
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SPHERICAL SHELL (4,6,n)

A particle is identified by mid-surface position (¢, ) and distance n in the normal direction
(inwards). Mid-surface mapping t,(¢,6) = R(isin@cos¢ + jsin@sin ¢ + kcoso):

r

6 —sing coS ¢ 0 ||T
1€y t =| cos@dcosg cosésing —sind e 11_3
€,| |-sindcosg —sindsing —cosd | |k
. €| |sinde, —cosoe, ] | [0
—J 8 ¢ =1 COS@§¢ 1€ =19 €
og | o 00 | .
) —singe, &) =B
R 1 o R 1. 0 _ 0

= - é¢ + —99—+en .
R-nRsind "¢ R-nR ~ 060 on
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2.3 CURVATURE

Curvature is the amount by which surface or curve embedded in R® deviates from being

flat or straight. The radius of curvature R =1/ x of a curve is given by the best fitting circle.

Curvature of a surface at a point depends on the direction of a curve through that point.

Curvature: k. =Vy€, Gradient at the mid-curve or mid-surface !
Principal curvatures: (xp,M) and (x5,M,) such that <-n =«

Gaussian curvature: K =det[x]=x1xp  Curvature measure!

1 1~ _ 1 Another curvature
Mean curvature: H==V-g,==1 Kk =—(x3 +x>)
2 2 2 measure!
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https://en.wikipedia.org/wiki/Curvature

CURVATURE AND TORSION OF BEAM
The radius of curvature R =1/« at a point is given by the best fitting circle. Torsion ¢

describes the rate of rotation of &, and &, around the mid-curve (change of rotation angle

divided by change of the mid-curve coordinate s)

Circular: K:% and 7=0
- 27
Twisted beam: x=0 and T:T

and 7 =

Coil: «=
h? + R? h? +R?
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A circular beam of radius R has zero torsion. The basis vectors of (x,Yy,z) and (s,n,b)

coordinate systems differ by rotation with respect to the normal direction to the plane of

circle (z here). With distance s along the mid-curve and ¢=s/R

r

|

&) [-sing cosg 07[f) ) .

{8, t=|-cosg —sing O3] = K=§n-a—§S=E. €
~ S

ké’b, i 0 0 1 k

- \ J

A twisted beam has zero curvature. The basis vectors of (x,y,z) and (s,n,b) differ by
rotation along the x —axis. With notation w =2¢/h

] [1 O 0 ||i

_ : . . 0. 2&m

€, r=|0 cosws sinws <], = rzeb-a—en:T. €
_ : ~ S

&) |0 —SInws cosws ||k
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EXAMPLE A planar curve of xy — plane is defined by mapping
(@) Th(a)=x(a)i +y(a)] (generic parametric form of a planar curve)
(b) H(X)=xi +y(x)]

Derive the curvature tensor k. = V&,.

I, " l”l

L X" — X
Answer: (a) K=-€,€, “,/2 ,2y3/2
(X'“+y")

(b) #=-68,
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To use the definition, one needs the derivatives of the basis vectors and also the gradient

operator of the curvilinear («,n,b) system at n=b =0. With the Lagrange’s notation of
derivative with respect to «

l

\
|
J

>

e ) [Mha/hy| [xih, yih, 0][7 i
(€ t=<h /h, t=|Fy/h, +x'/h, 0 Sir=[Flii¢
8] |€yx€| | O 0 £1||k k

" J " J
S J

I\, " NP4

yx =Xy

X2+y

where h, = \/x’2 +y'% and h, =

The derivatives of the basis vectors follow from the generic expression
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https://en.wikipedia.org/wiki/Notation_for_differentiation

; g, ; g, (0 10][€,) (&, )
— & b=(—[FDIFT &, t=h,|-1 0 0|46, t=h,{-E, }.
oa | oo ~ _

& | &) L0 O0](&) 0

At the mid-curve, where n=b =0, the gradient operator for a curvilinear orthonormal

coordinate system of a beam simplifies to (kx =h,/h,)

_g L O e g + & —
“h, o "on ob
. ~ ~ 1 aé’ o h o ’X”—X’ "
Kc=Ve€y = eah_ "= _eaeah_n = €€ | %/2 12y3/|2 <
(04 o a (X +y )
. o ,X”—X, "
Py Y YV e
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EXAMPLE Consider torus surface (donut) having distance R from the center of the tube
to the center of the torus and radius r of the tube. Derive the basis vectors, basis vector
derivatives, gradient expression, and curvature in (@, &,n) coordinate system. The mapping

defining the geometry, ¢ €[0,27] and 8 €[0,2x], is

i (¢,0) = (R+rcosd)(i cosg + jsing)+krsiné.

Answer:

1 0 18_6 cosé _ 1

9'________ -

K =¢€,6 +€
R+(n+r)cos@ ¢8¢ n+rod "on’ ¢¢R+(n+r)cos@ n+r
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Let us start with the relationship between the basis vectors. Definitions give

( A

N

|

p —sing oS ¢ 0o (T (i
189 r=| —cosgsing —sin@sing cosé |4 j=[F]< ]
€,| | cosdcosg cosdsing sind ||k Kk

Since the basis is orthonormal i.e. [F]_1 = [F]T, the derivatives of the basis vectors are

given by / antisymmetric!
] (€ ) €] [ 0 sing —coso](8]
a—<é9>:(a—[F])[F]_l<§9>: —sing 0 0 {1

? €, ? €| | cosd O 0 (&,
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g g 00 o01[8 g

¢ ¢ ¢ ¢
ﬂ<§ >:(£[F])[F]_l<§ »=10 0 —-1|{6, ¢, and i<§ =0
00| % ‘o0 i o on|?

€, €| |01 0 ||, €,

The gradient expression in concerned with a generic material point so that the mapping
between the curvilinear (¢4, 8,n) coordinate system and the reference (X, Yy, z) coordinate
system Is written as r =1, +n€, (the mapping needs to define positions of all the

particles of body not just those on the mid-surface). With ﬁ¢ =0r [ 0¢ etc.
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The generic formula for the gradient operator gives (Mathematica is handy in this step)
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Finally, curvature of the torus geometry becomes (at the mid-surface n=0)
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