Safety and Environment – Tritium Cycle

Dr. Timo Kiviniemi and Prof. Dr. Mathias Groth

Aalto University

School of Science, Department of Applied Physics

Outline

- What are the tritium issues?
- What are the other environmental impacts of fusion reactors?
- Are there sufficient materials to build fusion reactors?

Deuterium-tritium reaction is favored since it has the highest reaction rate at the lowest temperature

- $\Delta E_{D-T\to 4He} = 17.6 \text{ MeV}$
- Energy in neutrons (~80%, 14.1 MeV) for energy production (e.g., heating of blanket, also tritium production)
- 4He (fast α particles) for internal, self-sustained heating of the fusion process

Deuterium-tritium reaction is favored since it has the highest reaction rate at the lowest temperature

- Reactant nuclei have to overcome electrostatic repulsion ⇒ heating to increase thermal velocity
- Reaction rates have a maximum, depending on reactants
- At (engineering feasible)
 10 keV, D-T reaction three orders of magnitude higher than D-D

http://en.wikipedia.org

A wide range of reactants may be used besides hydrogen isotopes, at the cost of higher plasma temperatures

D+T	⁴ He (3.5 MeV) + n (14.1 MeV)
D+D	50%: T (1.01 MeV) + p (3.02 MeV)
	50%: ³ He (0.82 MeV) + n (2.45 MeV)
D+3He	⁴ He (3.6 MeV) + p (14.7 MeV)
T+T	⁴ He + 2n + 11.3 MeV
³He+³He	⁴ He + 2p
³He+T	51%: ⁴ He + p + n + 12.1 MeV
	43%: ⁴ He (4.8 MeV) + D (9.5 MeV)
	6%: ⁴ He (0.5 MeV) + n (1.9 MeV) + p (11.9 MeV)
D+6Li	⁴ He (1.7 MeV) + ³ He (2.3 MeV)
³He+6Li	2 ⁴ He + p + 16.9 MeV
p+11B	3 ⁴ He (1.7 MeV) + 8.7 MeV

5

Tritium is a radioactive isotope of hydrogen with a half-life of 12.3 years

- T \rightarrow He + e⁻ (β) + ν_e (antineutrino)
- No natural tritium available: trace amounts due cosmic rays (g to kg per year), and 10s of kg due to atmospheric nuclear testing between 1945-80
- 1 GW fusion power reactor predicted to require about 56 kg tritium / year, some sources say 100-200 kg T / year
 - Due to low power and duty cycle, ITER startup 3 kg, JET 20 g
- Tritium is produced in Canadian CANDU reactors by neutron absorption in deuterium: in 2003, 1.5 kg tritium / year recovered from all CANDUs ⇒ total inventory 19 kg
 - Cost of tritium: 2004 Canada 30 M\$/kg, US 100 M\$/kg*

*Willms LANL Report LA-UR-05-1711 (2004)

In fusion reactors tritium is planned to be bred by using 14.1 MeV fusion neutrons

- n + 6 Li \rightarrow 4 He (2.05 MeV) + 3 H (2.75 MeV) (exothermic reaction)
- $n + {}^{7}Li \rightarrow {}^{4}He + {}^{3}H + n$ (endothermic react.: -2.5 MeV)
- Neutron multiplication in beryllium or lead ⇒ pebbles consisting of lithium bearing ceramics including Li₂TiO₃ and Li₄SiO₄

www.euro-fusion.org: picture KIT-ITeP-TLK

Tritium release to the environment is one incentive to keep the plant tritium inventory as low as possible

- Initial cost of tritium and material embrittlement of structures are the other two primary reasons
- Fusion power plants would need to reduce initial 10-20 kg to 1-2 kg
- Radiological impact on humans, in particular through tritiated water (T₂O, THO, TDO), is significant to require containment / control
 - Annual personal dose of the order 1-2 mSv (natural background, medical x-rays, inhalation of radioactive mater.)
 - ⇔ Dose from ingestion of 1 mg of tritium 15 Sv
- Tritium is may leave reactor through vacuum pumping system, coolant system, blanket tritium removal system, material permeation, outgassing from removed components ⇒ stringent containment: tritium release to air at site boundary approx. 50 μSv / year

Tritium can be removed from vacuum system by cryogenic distillation or diffusion through membranes

- Removal from blanket and coolant challenging, requires very low T pressure
- ITER will use electrolysis and catalysis:
- HT (gas) + H_20 (liquid) \rightarrow HTO (l) + H_2 (g)
 - Another technique permeation into PbLi

Radioisotopes are generated in any areas of significant neutron fluxes

- Activation of surrounding materials (e.g., vanadium) ⇒ R&D on reduced-activation and martensitic steel
- In (potential) molten salt blankets stored heat, generation of chemical toxins (e.g., LiF), and radioisotopes (e.g., ¹⁸F, ³H)
- Plan for structural radioactivity to decay sufficiently within 100 years
 ⇒ storage of materials onsite, reprocessing of them afterward
- Decommissioning, dissembly and disposition of plant and its radioactive materials ⇒ entombment and/or removal and cleanup of site (like any other power plant)

Material shortages: elements in short supply also include He, Li, Cu, Cr, Mo, No, Nb, Pb and W

- Helium is vital, non-renewable resource
 - Superconducting motors, generator, transmission lines, energy storage systems
- Lithium: competing with other sectors, such as Li car batteries, re-use ⁷Li after usage in fusion reactors
- Beryllium: rare material in bertrandite and beryl
 - Beryllium in helium-cooled pebble bed DEMO approx. 120 t, annual burnup 0.2 t / year ⇒ 100 DEMO-type reactor ≈ 12,000 t / year ⇔ 15% of world resources
- **Niobium:** used in steel and superconductors, estimated reserves: 3 Mt
- Lead: DEMO-type reactor approx. 4,000 t, annual burnup 3 t / year, estimated reserves: 1.5 Gt
- Tungsten: adequate supplies, estimated reserves 3 Mt

Environmental and other hazards for fusion power plants

- Routine and accidental tritium release
- Disposal of activated structures
- Chemical and thermal discharges to water or air
- Stored energy release
- Plant decommission

Benefits of fusion reactors for environmental impact outweigh those of fission reactors

- Adverse impact: increased use of some scarce materials
- Neutral: biological effect of long-term exposure to low magnetic fields not an issue outside plant ⇒ oscillating fields in power lines more significant
- Unchanged: assured fuel supply, waste water, radioactive structure
- Positive:
 - Safety against accidental criticality, prompt criticality, loss-ofcoolant accidents
 - (Non)proliferation (in pure-fusion plant): no sources of fissile materials (e.g., uranium, thorium, plutonium)
 - Lower routine chemical releases (e.g., through mining)
 - No high-level radioactive wastes, lower biological hazard
- Extensive safety analyses for plant operation and accidents performed

Summary

- Main hazard of fusion power are tritium (release) and radioactive structures, including dust
- Fusion reactors after ITER need adequate in-situ tritium breeding ratios (of > 1.2 T per fusion neutron ⇒ beryllium or lead neutron multiplier)
- Shortages of He and Nb may develop, widespread use of Li in batteries potentially increases costs of fusion energy
- Extensive safety analyses of fusion plant operation and potential accidents were performed ⇒ plants are designed for public not needed to be evacuated in case of accident
- Fusion facilities are nuclear facilities ⇒ nuclear regulations of host countries (and IAEA) apply