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 What are the tritium issues?
 What are the other environmental impacts of fusion reactors?

« Are there sufficient materials to build fusion reactors?
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Deuterium-tritium reaction is favored since it has the

highest reaction rate at the lowest temperature
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* AED-T—>4He =17.6 MeV

* Energy in neutrons (~80%,
14.1 MeV) for energy
production (e.g., heating of
blanket, also tritium
production)

® 4He (fast o particles) for
internal, self-sustained

“He + 3.5 MeV heating of the fusion

process
n + 14.1 MeV
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Deuterium-tritium reaction is favored since it has the

highest reaction rate at the lowest temperature
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Reactant nuclei have to
overcome electrostatic
repulsion = heating to
increase thermal velocity

Reaction rates have a
maximum, depending on
reactants

At (engineering feasible)

10 keV, D-T reaction three
orders of magnitude higher
than D-D
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A wide range of reactants may be used besides hydrogen

isotopes, at the cost of higher plasma temperatures

D+T He (3.5 MeV) + n (14.1 MeV)

D+D 50%: T (1.01 MeV) + p (3.02 MeV)

50%: 3He (0.82 MeV) + n (2.45 MeV)

D+3He 4He (3.6 MeV) + p (14.7 MeV)
T+T 4He + 2n + 11.3 MeV
SHe+3He “He + 2p

3He+T 51%:4He + p+n+12.1 MeV

43%: *He (4.8 MeV) + D (9.5 MeV)

6%: 4He (0.5 MeV) + n (1.9 MeV) + p (11.9 MeV)

D-+6Li 4He (1.7 MeV) + 3He (2.3 MeV)
3He+6Li 24He + p + 16.9 MeV
p+1B 3 4He (1.7 MeV) + 8.7 MeV
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Tritium is a radioactive isotope of hydrogen with a

half-life of 12.3 years

« T — He + e (B) + v, (antineutrino)

« No natural tritium available: trace amounts due cosmic rays (g to kg per
year), and 10s of kg due to atmospheric nuclear testing between 1945-80

« 1 GW fusion power reactor predicted to require about 56 kg tritium /
year, some sources say 100-200 kg T / year

- Due to low power and duty cycle, ITER startup 3 kg, JET 20 g
« Tritium is produced in Canadian CANDU reactors by neutron
absorption in deuterium: in 2003, 1.5 kg tritium / year recovered from all
CANDUs = total inventory 19 kg

- Cost of tritium: 2004 Canada — 30 M$/kg, US — 100 M$/kg*

*Willms LANL Report LA-UR-05-1711 (2004)
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In fusion reactors tritium is planned to be bred by

using 14.1 MeV fusion neutrons

Deuterium / Tritium reaction (plasma) Tritium production (Breeding Blanket)
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« n+6Li - “He (2.05 MeV) + 3H (2.75 MeV) (exothermic reaction)
* n+7Li—>4He+3H+n (endothermic react.: -2.5 MeV)

» Neutron multiplication in beryllium or lead = pebbles consisting of lithium
bearing ceramics including Li,TiO; and Li,SiO,4

www.euro-fusion.org: picture KIT-ITeP-TLK
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http://www.euro-fusion.org/

Tritium release to the environment is one incentive to

keep the plant tritium inventory as low as possible

Aalto University
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Initial cost of tritium and material embrittlement of structures are the
other two primary reasons

Fusion power plants would need to reduce initial 10-20 kg to 1-2 kg

Radiological impact on humans, in particular through tritiated water
(T,0, THO, TDO), is significant to require containment / control

- Annual personal dose of the order 1-2 mSv (natural background,
medical x-rays, inhalation of radioactive mater.)

< Dose from ingestion of 1 mg of tritium 15 Sv

Tritium is may leave reactor through vacuum pumping system,
coolant system, blanket tritium removal system, material
permeation, outgassing from removed components = stringent

containment: tritium release to air at site boundary approx. 50 uSv / year
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Tritium can be removed from vacuum system by

cryogenic distillation or diffusion through membranes
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Radioisotopes are generated in any areas of

significant neutron fluxes

« Activation of surrounding materials (e.g., vanadium) = R&D on
reduced-activation and martensitic steel

* In (potential) molten salt blankets stored heat, generation of
chemical toxins (e.g., LiF), and radioisotopes (e.g., 18F, 3H)

« Plan for structural radioactivity to decay sufficiently within 100 years
= storage of materials onsite, reprocessing of them afterward

« Decommissioning, dissembly and disposition of plant and its
radioactive materials = entombment and/or removal and cleanup of
site (like any other power plant)
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Material shortages: elements in short supply also

include He, Li, Cu, Cr, Mo, No, Nb, Pb and W

Helium is vital, non-renewable resource

- Superconducting motors, generator, transmission lines, energy
storage systems

Lithium: competing with other sectors, such as Li car batteries, re-use ’Li
after usage in fusion reactors

Beryllium: rare material in bertrandite and beryl

- Beryllium in helium-cooled pebble bed DEMO approx. 120 t,
annual burnup 0.2t/ year = 100 DEMO-type reactor = 12,000 t /

year & 15% of world resources
Niobium: used in steel and superconductors, estimated reserves: 3 Mt

Lead: DEMO-type reactor approx. 4,000 t, annual burnup 3 t/ year,
estimated reserves: 1.5 Gt

Tungsten: adequate supplies, estimated reserves 3 Mt

A
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Environmental and other hazards for fusion power

* Routine and
accidental
tritium release

STRIP MINE

« Disposal of
activated
structures

‘ masussovwes © Chemical and
thermal

discharges to

water or air

« Stored energy

release
g - AN
| PSS ““‘ : + Plant
decommission
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Benefits of fusion reactors for environmental impact

outweigh those of fission reactors

« Adverse impact: increased use of some scarce materials

« Neutral: biological effect of long-term exposure to low magnetic fields not
an issue outside plant = oscillating fields in power lines more significant

« Unchanged: assured fuel supply, waste water, radioactive structure
 Positive:

- Safety against accidental criticality, prompt criticality, loss-of-
coolant accidents

- (Non)proliferation (in pure-fusion plant): no sources of fissile
materials (e.g., uranium, thorium, plutonium)

- Lower routine chemical releases (e.g., through mining)

- No high-level radioactive wastes, lower biological hazard

« Extensive safety analyses for plant operation and accidents
performed
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Summary

« Main hazard of fusion power are tritium (release) and radioactive
structures, including dust

« Fusion reactors after ITER need adequate in-situ tritium breeding
ratios (of > 1.2 T per fusion neutron = beryllium or lead neutron
multiplier)

« Shortages of He and Nb may develop, widespread use of Li in
batteries potentially increases costs of fusion energy

« Extensive safety analyses of fusion plant operation and potential
accidents were performed = plants are designed for public not
needed to be evacuated in case of accident

« Fusion facilities are nuclear facilities = nuclear regulations of host
countries (and IAEA) apply
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