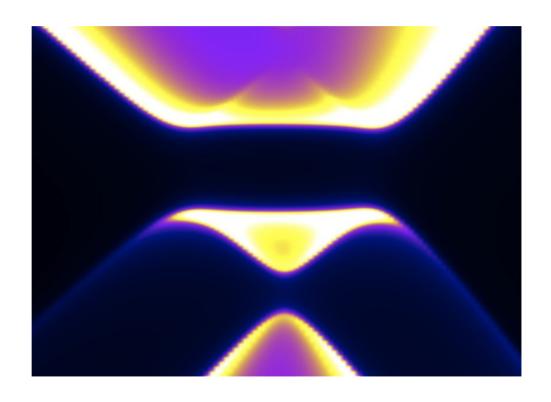
Symmetries, reciprocal space and Bloch's theorem



March 8th 2021

Today's learning outcomes

- We can classify quantum matter according which symmetries it breaks
- Symmetry allows to simplify quantum problems
- Non-interacting systems with translational symmetry can be solved using Bloch's theorem

Bonus: the tiniest movie in the history of humankind

A reminder from session #1

Hamiltonians can be described in a second quantized formalism

$$H = \sum_{ij} c_i^\dagger c_j$$
 Annihilation operator

And can be diagonalized

$$H = \sum_n \epsilon_N \Psi_n^\dagger \Psi_n$$
 Eigenenergy

Complexity in nature

How can we extract robust conclusions from complex systems?

The key idea of symmetry

Symmetries allow to "guess" solutions without explicitly solving a problem

even without understanding the microscopic mechanism governing the system

The key idea of symmetry

The underlying laws of physics are symmetric But the real system may or may not be symmetric

No symmetry
Spontaneous symmetry breaking

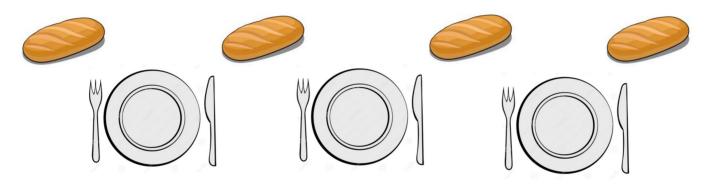
Symmetry

Mathematical constrained solution

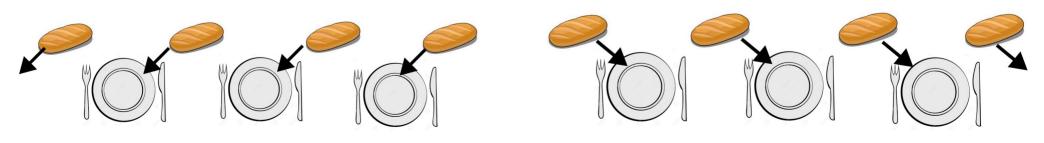
Symmetry breaking

An example of symmetry breaking

Pick your bread in a group meal



Solution #1



Spontaneous symmetry breaking

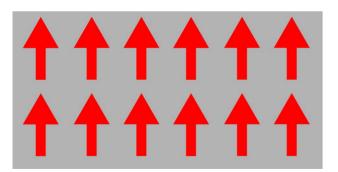
Central idea: a ground state can break the symmetry of a Hamiltonian

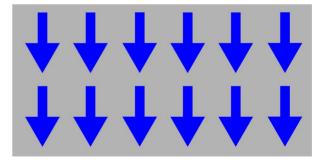
It can happen in the thermodynamic limit (infinite particles)

Hamiltonian for a ferromagnet $H = -\sum_{i} \vec{S}_{i} \cdot \vec{S}_{j}$

$$H = -\sum \vec{S}_i \cdot \vec{S}_i$$

Solution #1



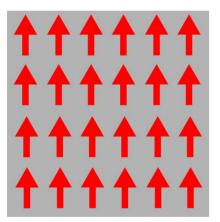


Nature (fluctuations) will choose one of the ground states as the macroscopic one

Classifying quantum matter according to symmetries

Broken time-reversal symmetry

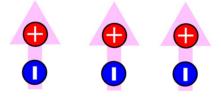
Classical magnets

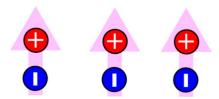


$$\mathbf{M} o -\mathbf{M}$$

Broken rotational symmetry

Ferroelectrics





$$\mathbf{r} \to R\mathbf{r}$$

Broken gauge symmetry Superconductors

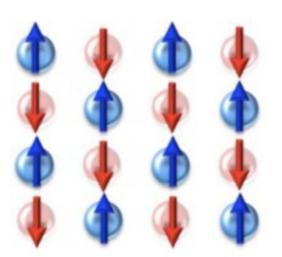
$$\langle c_{\uparrow}c_{\downarrow}\rangle \to e^{i\phi}\langle c_{\uparrow}c_{\downarrow}\rangle$$

How is symmetry related with quantum materials?

(Broken) symmetries allow to classify matter

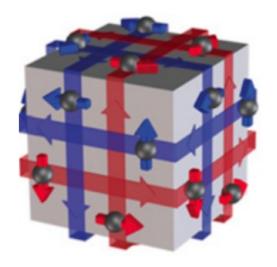
Symmetry classification

Ferromagnets
Superconductors
Ferroelectrics



Topological classification

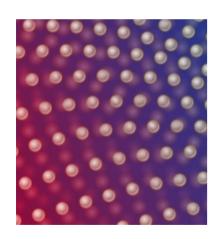
Trivial insulators
Topological insulators
Topologically ordered matter



Emergent excitations when symmetries get broken

Phonons

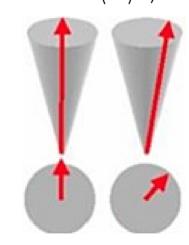
Crystals $\langle \vec{R} \rangle \neq 0$



Spin 0 Charge 0 Gapless

Magnons

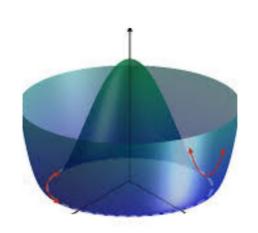
Magnets $\langle \vec{S} \rangle \neq 0$



Spin 1 Charge 0 Gapless/Gaped

Higgs mode

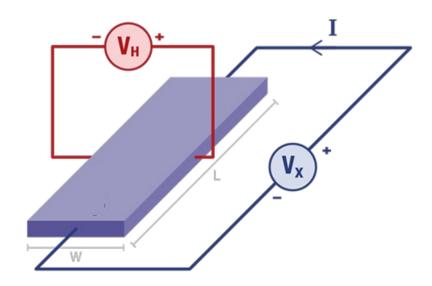
Superconductors $\langle c_{\uparrow}c_{\downarrow}\rangle \neq 0$



Spin 0 Charge 0 Gaped

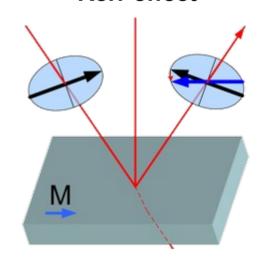
How to know if a material is magnetic?

Measure its Hall conductivity



Current generated perpendicular to a bias voltage

Measure its magneto-optical Kerr effect



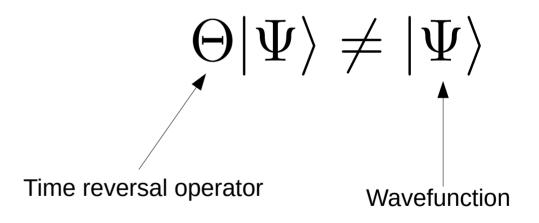
Different reflection for left-handed and right-handed polarized light

What a material being "ferromagnetic" means?

An intuitive definition

"It sticks to your fridge"

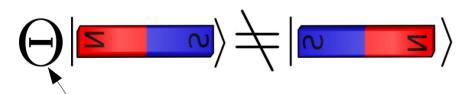
A formal definition



It breaks time-reversal symmetry

A physical definition of a magnet

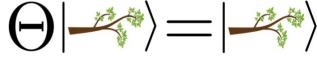
Magnet



Time reversal operator

Not a magnet

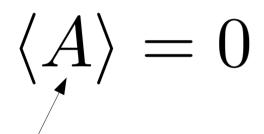




Magnetic materials are not invariant under time reversal symmetry

The role of symmetry

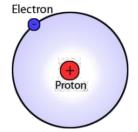
Symmetries enforce observables to vanish



Certain operator

Magnetic moment Electric dipole Hall conductivity

Symmetries constrain the mathematical solution of a problem



Hydrogen atom

$$\Psi(r,\theta,\phi) = Y_{lm}(\theta,\phi)R(r)$$



Periodic crystals

$$\Psi(\mathbf{R} + \mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{R}}\Psi(\mathbf{r})$$

Why is symmetry important?

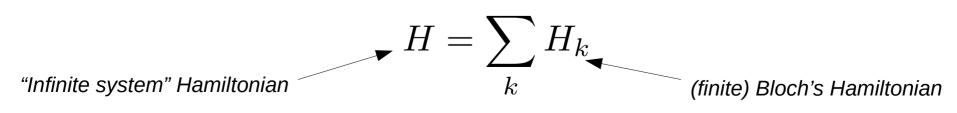
Symmetries help to characterize complex problems capturing their physics

New quantum excitations when symmetries are broken (Goldstone modes)

$$H = -\sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \\ \text{Symmetry breaking (ferromagnetism)} \\ \text{Interacting local magnetic moments} \\ \mathcal{H} = \sum_k \epsilon_k b_k^\dagger b_k \\ \text{Emergent bosonic excitations (magnons)}$$

Symmetries allow to greatly simplify quantum problems

Infinite systems can be "folded" to small systems (Bloch's theorem)



Simplifying problems using symmetries

A familiar example using symmetries

Back to electromagnetism

Imagine an infinite charged plane

Option #1



What is the direction of the electric field?

A familiar example using symmetries

Back to electromagnetism

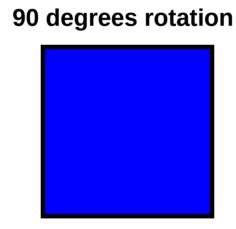
Imagine an egg-shaped charge

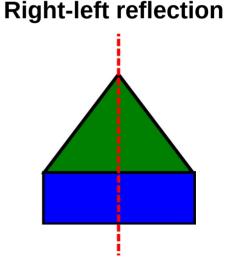
What is the direction of the electric field in position x?

The intuitive notion of symmetry

Symmetry: Transformation performed in a system, that keeps it invariant

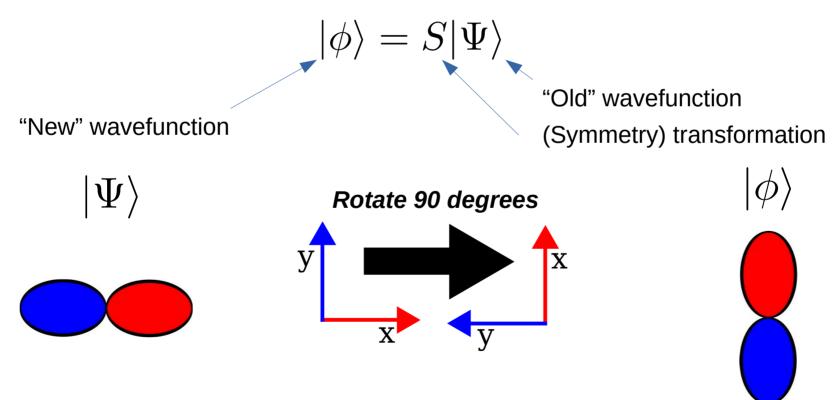
Arbitrary rotation





(Symmetry) transformations in quantum physics

How does a transformation affect a wavefunction?



(Symmetry) transformations in quantum physics

A generic symmetry transformation

$$|\phi\rangle = S|\Psi\rangle$$

By definition, any symmetry transformation must leave any wavefunction normalized

$$\langle \phi | \phi \rangle = \langle \Psi | S^{\dagger} S \Psi \rangle = \langle \Psi | \Psi \rangle$$
 \longrightarrow $S^{\dagger} \equiv S^{-1}$

The Hermitian of a symmetry is its own inverse

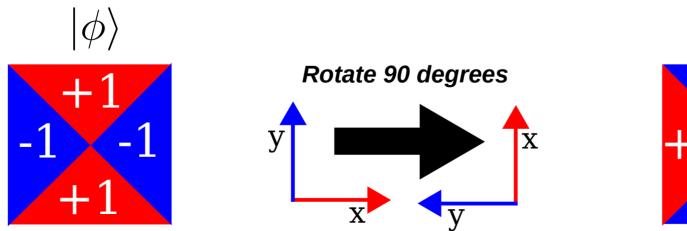
Symmetry transformations

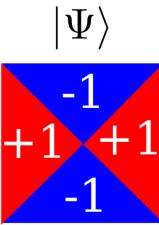
A wavefunction is symmetric under a transformation if

$$S|\Psi\rangle = \lambda |\Psi\rangle$$

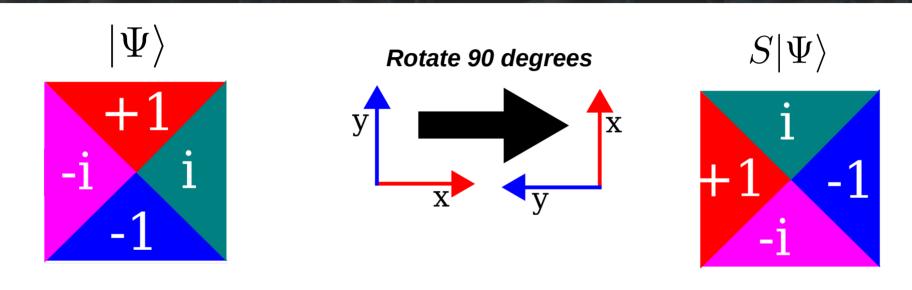
 λ is the eigenvalue of the transformation

What is the eigenvalue of this transformation?





A symmetry transformation

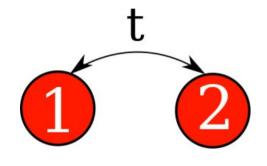


What is the eigenvalue λ of this transformation?

$$S|\Psi\rangle = \lambda |\Psi\rangle$$

Symmetry transformation in a wavefunction

Hamiltonian



$$H = t[c_1^{\dagger}c_2 + c_2^{\dagger}c_1]$$

Eigenfunctions
$$H=t\Psi_{lpha}^{\dagger}\Psi_{lpha}-t\Psi_{eta}^{\dagger}\Psi_{eta}$$

$$\Psi_{\alpha}^{\dagger} = \frac{1}{\sqrt{2}} [c_1^{\dagger} + c_2^{\dagger}] \qquad \Psi_{\beta}^{\dagger} = \frac{1}{\sqrt{2}} [c_1^{\dagger} - c_2^{\dagger}]$$

What are their eigenvalues λ_{γ} under mirror symmetry?

$$c_1 \xrightarrow{c_2} c_2 \\ c_2 \xrightarrow{c_1} S|\Psi_{\gamma}\rangle = \lambda_{\gamma}|\Psi_{\gamma}\rangle$$

Symmetries in a Hamiltonian

A Hamiltonian is invariant under a transformation if

$$SHS^{-1} = H$$
$$[S, H] = SH - HS = 0$$

$$S$$
 Symmetry transformation H Hamiltonian

A reminder from linear algebra

If two linear operators commute, there is a common basis of eigenstates

$$H|\Psi_n
angle=E_n|\Psi_n
angle$$

Hamiltonian eigenvalue

$$S|\Psi_n\rangle = \lambda_n |\Psi_n\rangle$$

Symmetry eigenvalue

Eigenvalues of symmetry operations

Recall the property of symmetry operations

$$S^{\dagger} = S^{-1}$$

Question: proof that all the eigenvalues of symmetry operations are complex numbers in unit circle

$$S|\Psi\rangle = \lambda |\Psi\rangle$$

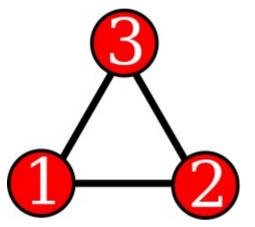
Complex eigenvalue

Real number

$$\lambda = e^{i\phi}$$

Guessing the form of wavefunctions

Take this Hamiltonian



$$H = c_1^{\dagger} c_2 + c_2^{\dagger} c_3 + c_3^{\dagger} c_1 + h.c.$$

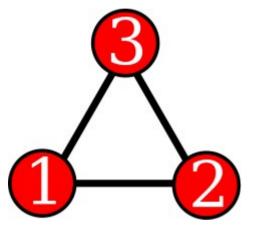
We know that 120 degrees rotation leaves the Hamiltonian invariant

What are the eigenvalues under the rotation symmetry operation?

Rotation operator $R|\Psi\rangle = e^{i\phi}|\Psi\rangle$ Symmetry eigenvalue

Guessing the form of wavefunctions

Take this Hamiltonian



Possible phases

$$\phi = \frac{2n\pi}{3} \quad n = 0, 1, 2$$

$$R|\Psi\rangle = e^{i\phi}|\Psi\rangle$$

Rotating three times brings the system back to itself

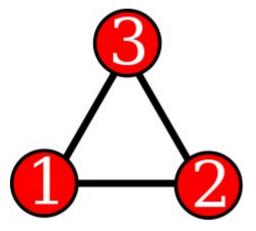
$$R^3 = I$$

$$(e^{i\phi})^3 = 1$$

$$n = 0, 1, 2$$

Guessing the form of wavefunctions

Take this Hamiltonian



$$\phi = \frac{2n\pi}{3} \quad n = 0, 1, 2$$

$$R|\Psi\rangle = e^{i\phi}|\Psi\rangle$$

The possible form of an eigenstate

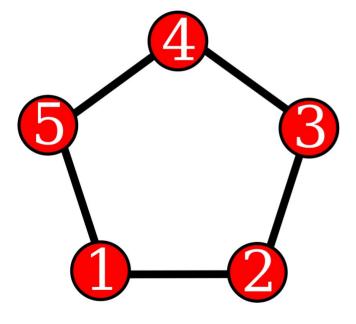
$$\Psi^{\dagger} = \alpha_1 c_1^{\dagger} + \alpha_2 c_2^{\dagger} + \alpha_3 c_3^{\dagger}$$

 $lpha_i$ Complex number

What are the exact coefficients of the wavefunction?

Guessing a harder wavefunction

Take this Hamiltonian



$$H = \sum_{\langle i\, j
angle} c_i^\dagger c_j^{}$$

What are the symmetry eigenvalues?

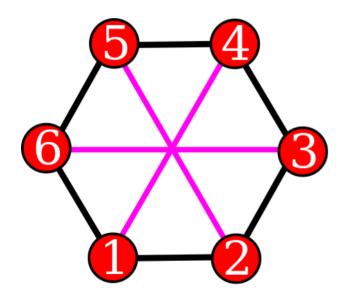
$$R|\Psi\rangle = e^{i\phi}|\Psi\rangle$$

For the ground state, what is the value of

$$|\langle \Omega | c_1 \Psi_{GS}^\dagger | \Omega \rangle|^2$$
 vacuum Ground state

Guessing a harder wavefunction

Take this Hamiltonian



$$H = \sum_{ij} t_{ij} c_i^{\dagger} c_j$$

What are the symmetry eigenvalues?

$$R|\Psi\rangle = e^{i\phi}|\Psi\rangle$$

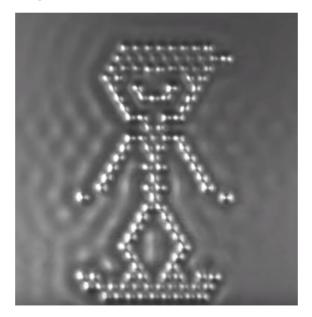
For the ground state, what is the value of

$$|\langle \Omega | c_1 \Psi_{GS}^\dagger | \Omega \rangle|^2$$
 vacuum Ground state

Lattice models in experiments

Manipulating individual atoms at the atomic scale

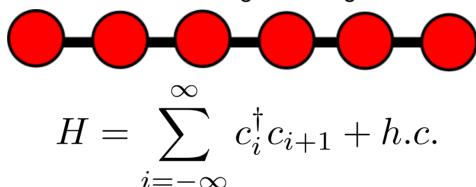
https://www.youtube.com/watch?v=oSCX78-8-q0



The smallest film created by humankind

Translational symmetry in chains

One dimensional tight binding chain



The Hamiltonian commutes with the translation operator → Bloch's theorem

$$T:c_i\to c_{i+1}$$

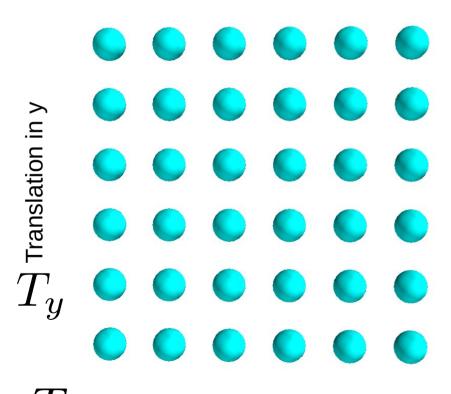
$$[H,T]=0$$

$$T|\Psi_{\phi}\rangle = e^{i\phi}|\Psi_{\phi}\rangle$$

$$\phi \equiv$$
 Bloch phase of the wavefunction

$$\phi \in [0, 2\pi)$$

Translational symmetry in lattices



Two possible symmetry operations

$$T_x |\Psi_{(\phi_x,\phi_y)}\rangle = e^{i\phi_x} |\Psi_{(\phi_x,\phi_y)}\rangle$$
$$T_y |\Psi_{(\phi_x,\phi_y)}\rangle = e^{i\phi_y} |\Psi_{(\phi_x,\phi_y)}\rangle$$
$$\phi_x \in [0,2\pi) \qquad \phi_y \in [0,2\pi)$$

The "phases" live in the reciprocal space

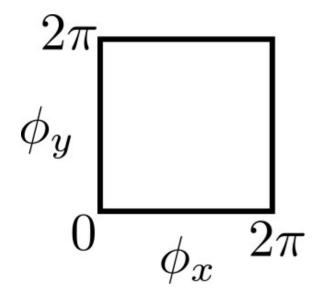
$$\vec{\phi} = (\phi_x, \phi_y) \in \begin{bmatrix} \phi_y \\ \phi_y \end{bmatrix}_{\phi_x = 2\pi}$$

 T_{x} Translation in x

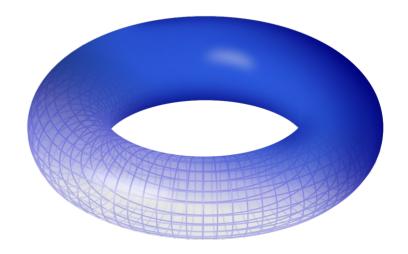
Reciprocal space

The symmetry eigenvalues live in the "reciprocal space"

$$T_x |\Psi_{(\phi_x,\phi_y)}\rangle = e^{i\phi_x} |\Psi_{(\phi_x,\phi_y)}\rangle$$
$$T_y |\Psi_{(\phi_x,\phi_y)}\rangle = e^{i\phi_y} |\Psi_{(\phi_x,\phi_y)}\rangle$$



Effectively, the 2D reciprocal space is a torus (periodic boundary conditions)



Take home

- Symmetries allow to
 - Classify quantum matter
 - Simplify quantum problems
 - Solve single-particle models with translational symmetry
- Read pages 26-29 from Titus Neupert lecture notes
- Read pages 99-105 from Steve Simon book

In the next session

 How to predict macrosopic properties of crystals from microscopic models

