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Noise in quantum circuits (Lecture 3)

(1) Let a random process be given by
x(t) = A sin (ω0t+ φ)

where A and ω0 are constants and φ is a random variable that is uniformaly distribute over [0, 2π]. Discuss
whether x(t) is a stationary process.

(2) Suppose that a random process is described as x(t) = At, such that A is a random variable uniformly distributed
over [−2, 2].

a Sketch a few sample function from the ensemble.

b Calculate the auto-correlation function Rx(t1, t2) of the random variable x(t).

c Is the process stationary? Check whether it is ergodic.

(3) Determine the power and the rms value for each of the following signals:

(a)5 cos (300πt+ π
6 ) (b)5 sin 55t sinπt (c)ejαt sinω0t (d) 10 sin 5t cos 10t · u(t)

where u(t) is the unit step function.

(4) Show that y(t) = e−αt starting at−∞ is neither an energy nor a power signal for any real α. Nonetheless, when
α is purely imaginary, it is a power signal with power equal to 1 regardless of the value of α

(5) Let x(t) be a superposition of two sinusoidal signals oscillating at different frequencies

x(t) = A1 cos (Ω1t+ φ1) +A2 cos (Ω2t+ φ2)

(a) Calculate the power of x(t).

(b) Assume now that Ω1 = Ω2, calculate again the power of x(t) and discuss the difference between the two
cases.

(6) An RC circuit has two parallel resistors R1, and R2. Calculate the rms value of the thermal noise voltage V0
across the capacitor in the following two cases:

(a) We treat each resistor independently with respective thermal noise voltages of PSD 2KTR1, 2KTR2.

(b) We consider the equivalent resistor of their parallel combination with its thermal noise voltage of PSD
2KTReq.
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Superconductivity (Lecture 4)

In a Josephson Junction (JJ) the super current inside each superconducting lump is characterized by the number of
cooper pairs n and a macroscopic phase. Thus the super-current wave-function in each region is written as Ψi =√
nje

iθi .

´

(1) Define now an operator N =
∑
n n |n〉 〈n| representing the number of cooper pairs on one side of the junction,

such that
N |N〉 = n |N〉

where n = 0,±1,±2, ... Similarly, define a set of eigen-states representing the phase difference between the
super current wavefunctions. Both sets are related via the following pair of transformations

|N〉 =
1

2π

∫ 2π

0

dϕ e−inϕ |ϕ〉

|ϕ〉 =

∞∑
n=−∞

einϕ |N〉

(a) Verify the previous relation by inserting the definition of |ϕ〉 into |N〉
(b) Calculate the inner product between two different phase states 〈ϕ|ϕ′〉, where {|N〉} constitute an orthogo-

nal set of states.

(2) Define now the following operator

eiϕ̂ =
1

2π

∫ 2π

0

dϕ′ eiϕ
′
|ϕ′〉 〈ϕ′|

(a) Show how eiϕ̂ acts on on a phase state |ϕ〉
(b) What happens when we act with eiϕ̂ on a number stateN? Does the relation between |N〉 and |ϕ〉 resembles

something we have encountered before? Explain.

(c) Derive a number state representation for both eiϕ̂ and its Hermitian conjugate.

When Cooper pairs start to tunnel between the two superconducting regions, the Hamiltonian describing the tunneling
process can be written as

HT =
−EJ

2

∑
n

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|)

where EJ is the Josephson energy we derived in lecture 4.

(3) Show that |ϕ〉 is an eigenstate of the HT with eigen value −EJ cosϕ.

(4) Now define the current operator as I = 2edNdt . Derive a number state representation of the operator I . Hint:
Recall the Heisenberg equation of motion for operator evolution.

(5) Show that I |ϕ〉 = Ic sinϕ |ϕ〉, where Ic = 2e
~ EJ.
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