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•  Physics and technology of plasma heating systems in  
   fusion-relevant devices

  
– Ohmic heating
– Neutral beam heating
– Radio frequency heating

• Advantages and limitations
• Application and specifications of heating systems in 

existing devices and ITER



Plasma heating provides initial heating to reach 
break-even and ignition

• Internal heating via 
fusion α’ss (> 1 MeV)⇒ beyond ignition 
sole heating source

• (Fusion output power in 
neutrons)

• Up to self-sustained 
burn, auxiliary heating 
required to offset 
radiative and transport 
losses ⇒ Paux  fraction of
PfusionPaux

Prad Ptrans

n, T
P

α

Pfusion
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A minimum heating power is required to ionize 
the plasma, and to overcome radiation

• For medium-size tokamaks (e.g., ASDEX Upgrade) 1 MW 
is needed to fully ionize, and 5 MW to offset radiation
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Depending on the heating method, auxiliary 
power is either deposited on ions or electrons

• Some of the total 
input power is 
lost via electric 
conversion or 
may not be 
absorbed by 
plasma

- E.g., beam 
shine-through

• Coupling between 
ions and 
electrons making 
Te  ≈ Ti

Mathias Groth. Fusion Technology PHYS-E0463 “Plasma Heating “, Aalto University 5



The primary heating schemes are ohmic heating, 
neutral beam heating, and radio frequency heating
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Heating leads to an increase of the kinetic energy of 
plasma ions and electrons



Example: W7-X plans to use combination of 
ECRH, NBI and ICRH 
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Three heating systems developed and will be operated:

• ECRH: main heating system and already capable for 
steady-state (over 30 minutes). A total power of up to 
15 MW planned (now 7.5MW)

• NBI: not (yet) steady-state. Total NBI heating power 
will be 7 MW (now 1.7 MW) using H-atoms (D: 10 
MW)    

• ICRH: planned for next campaign with goals: 

1) Direct ion heating in high-n where ECRH fails, and         
2) Creation of fast ions which allow study of optimized 
fast-particle confinement

• No plasma current → no Ohmic heating! 



Additional considerations of applied heating 
scheme(s)
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• Neutral beam heating is also a particle source (D vs T)

• Minority heating schemes can lead to high energies in 
minority particles and departure from Maxwellian 
energy distribution

- Hydrogen and helium

- Attempt not to make minority species too non- 
Maxwellian to allow energy transfer to main plasma

• Heating is often coupled to non-induction current drive 
for extending pulse duration and manipulation of safety 
factor profile (performance)

- Neutral beam, lower hybrid, electron cyclotron heating



Fusion energy gain Q>1 gives scientific 
breakeven but... 
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“Engineering” breakeven: takes into account that 
• 1) only a fraction (1-fch) of fusion energy goes to blanket
• 2) cooling fluid of blanket drives steam turbines with 

efficiency ηelec= 35-40 %
• 3) fraction frecirc of Pelec recirculated back into the heaters  
• 4) ηheat is the efficiency that power supplied to the heating 

systems is turned into heat in the fuel

            Pheat = (1-fch) ηelecfrecirc ηheat  Pfus 



Ohmic Heating

Mathias Groth. Fusion Technology PHYS-E0463 “Plasma Heating “, Aalto University 1
1



Ohmic heating is established by driving an e-  current in 
a plasma and subsequent collisions between e-  and ions

• Local power density:

• Total ohmic power given by total plasma 
current and loop voltage Ul  (resistance Rp):

• Scheme cannot be used in stellarators
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Pohmic  =Ul IP  =RPIP

10

2

Pohmic = η|| j
2



Ohmic heating is limited to 1-2 MW/m3  and 2 keV 
(in the center) by Spitzer (electric) resistivity

• Power balance:

⇒ For τ 
E ≈ 1 s, maximum T ≈ 2 keV ⇒ too low for ignition

η|| j
2 = 3nT / τ

E
 

ηSpitzer  =
πZ 2e2 m½ lnΛ 

(4πε 
0
)2

3

kBT  2
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Neutral Beam Heating
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Fast (50k – 1 MeV) hydrogen neutrals are injected 
as beams transferring their energy to the plasma

• Heating is achieved by collisions with plasma electrons 
and ions (charge-exchange) generating fast ions

- Hf
0  + e-  → Hf

+  + 2 e-  (Tplasma  < 1 keV)

- Hf
0  + H+  → Hf

+  + H0  (Eb  < 90 keV)

- Hf
0  + H+  → Hf

+  + H+  + e-  (Eb  > 90 keV)
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● Neutral particles 
are suitable 
because they not 
affected by 
electromagnetic 
fields



A neutral beam penetrating a plasma is 
attenuated along the beam line

Ibeam (x) = Ibeam,0 exp(-x/λ)λ))

σ
Σ  

= total cross section

σ
i
 v  = rate coefficients 

vbeam  = beam velocity

with λ= 
 

1
nσ

Σ 

and
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σ
Σ
 = ∑ σ

i
 v   / v

beam



The beam penetration depth determines the 
power deposition profile

• 100 keV D beam and ne  ≈
5x1019  m-3  ⇒ λ=0.5 m

• Beam energy determines 
transfer to electrons and 
ions

- Critical energy; for pure-D 
plasma 18.5 Te

• Beam shine-through and 
prompt ion losses to wall

18n
e

[10 m  ]     19 -3 
λ ≈

Ebeam [keV] /λ) A [amu]
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Tangential neutral beams are also used to control 
the current profile

• Tangential beams 
increase beam- 
plasma interaction 
length

• Flow of fast ions in 
beam direction

• Counter current due 
to electrons colliding 
with impurities

I NBCD  = I NB  + Icounter =I NB    1- G             Zbeam (   Zeff , plasma   )  
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Neutral beams can drive currents, in ITER of up 
to 2 MA

• Current drive efficiency saturates at high beam energies, 
but increases with plasma temperature

ηCD  =
I NBCDne Rmajor

Pdep
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High neutral energies and beam power can be extracted 
from tandem ion-source/neutralizer systems

• Generation of beam ⇒ ion source + accelerator system

• Neutralization of beam ions ⇒ collision with (H) gas

• Transport of neutral beam ⇒ ion + gas removal
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Extraction of hydrogen ions from a uniform 
plasma source and acceleration to high energies

• Required power: several 
MW ⇒ positive and 
negative ions

• Beam energies: tens of keV

• Beam current: tens of A

• Beam cross-section: 100s 
of cm2

• Beam is typically 
subdivided into many 
beamlets to avoid ion 
optics aberration
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Fast ions are neutralized due to charge-exchange 
collisions with cold hydrogen molecules

• Neutralization efficiency is 
limited:

- Plasma generation inside 
accelerator

- Dependence of 
neutralization cross- 
section on energy

⇒ Positive and neutral ions

- Negative ions have a 
higher neutralization 
efficiency at high energy
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ITER’ss neutral beam system is based on negative 
ions because of the high beam energy required

• Positive ions 
(AUG and JET)

Low 
neutralization 
efficiency for 
energies >  
100 keV/amu

- Production of
    molecular ions  
     (H

2
+, H

3
+)

- High current 
densities

• Negative ions (ITER)
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- High neutralization efficiency

- Co-extracted electrons

- Low current densities



After neutralization, residual fast ions are 
removed by a magnetic or electrical filter system

• Deflection of residual fast 
ions to a water-cooled 
surface (ion dump)

⇒ May represent up to 30% 
of the total beam power

• Other losses mainly in 
transmission on beamlet 
apertures, lesser so at 
source and by re- 
ionization

+   Neutralization efficiency!
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Present neutral beam systems include both 
positive and negative beam sources
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* two stage construction planned and numbers still changing, see next slide



Neutral beam injection in W7-X
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• Two injector boxes with four ion sources each are 
planned

• Not yet capable for steady state operation (as some 
components will heat up) → 10 seconds lasting pulses 
are planned every 5 minutes during the otherwise 
ECRH heated plasmas

• Total NBI heating power will be 7 MW (now 1.7 MW 
i.e. 1 box w/ 2 sources) using hydrogen atoms with a 
particle energy of 55 keV (with deuterium →  60 keV 
and 10 MW).
 



JET has a 2 x 8-positive ion neutral beam injector 
system capable of injecting up to 32 MW

• Two neutral 
beam boxes

• Each PINI 
produces 
about 2 MW

• Radial and 
tangential 
neutral 
beams
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PINI = positive ion neutral injector



JET has a 2 x 8-positive ion neutral beam injector 
system capable of injecting up to 32 MW
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The JET neutral beam (drift) ducts have a height 
and width of about 0.8 m x 0.2 m
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The ITER neutral beam system is based on 
negative hydrogen ions (1 MeV, 40 A, 33 MW)
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The ITER neutral beam system is based on 
negative hydrogen ions (1 MeV, 40 A, 33 MW)
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Radio Frequency Heating
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RF heating: energy in electromagnetic waves is 
converted into kinetic energy of resonant particles

• Excitation of plasma 
waves (frequency ω) 
near plasma edge

• Transport of wave 
power into plasma

• Absorption near 
resonance layer

    (ω ≈ Ω
c
) ⇒ electrons      

    and ions

• Resonant particles 
subsequently 
thermalize with bulk 
plasma
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There are three primary classes of resonances 
with efficient wave power absorption
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• Landau cyclotron resonance

⇒ Maximum absorption when
ω ≈ multiple of Ω

s

k|| · v th
i /λ) Ω

s
«1

• Full derivation of wave equations is given in plasma 
physics course ⇒ lecture available on MyCourses

• Electrons: 28 GHz / B [T] ⇒ Electron Cyclotron Resonance 
Heating (ECRH)

• Hydrogen ions: 15 Mhz / B [T] ⇒ Ion Cyclotron Resonance 
Heating (ICRH)

• Landau resonance at electron thermal speed:
1.3 GHz √Te  [keV] / λ||  [cm] ⇒ Lower Hybrid Heating (LH)



The dispersion relation for ICRH has two solution 
for fast and slow waves
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• Fast wave 
heating (E ⊥ B0) 
with lower 
density limit 
(2x1019  m-3) ⇒ 
fast wave needs 
to tunnel 
through edge 
cutoff region

• Slow wave 
heating (E || B0) 
has an upper 
density limit 
(1x1019  m-3)



One of best absorption is achieved at the second 
harmonic resonance (due to polarization)

• Applied to single 
ion species, with 
tail of fast 
particles

• Magnetic field 
dependence 
allows focusing 
of wave power in 
large plasmas

• Requires high 
density and high 
temperature 
plasmas
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Wave absorption on plasma minority species is 
also very efficient

• Low (< 10%) of 
hydrogen in 
deuterium 
plasmas

• Landau cyclotron 
damping on H 
(favorable 
polarization wrt. to 
wave polarization)    ⇒ power absorbed    

   in H with strong tail   
   in distribution            
   function
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Fast waves near the plasma edge are excited by 
currents in poloidal conductors (straps)

• Launch frequency 
(ω) given by radio- 
frequency 
generator

• Fast waves travel 
almost ⊥ to 
magnetic field 
lines

• Slow-wave heating 
E and B fields are 
rotated by 90°

Mathias Groth. Fusion Technology PHYS-E0463 “Plasma Heating “, Aalto University 38



Wave propagation and absorption are calculated in 
full (magnetic) 3-D geometry using antenna design
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At JET, the power from the ICRH generators (4x2 
MW) is transmitted to arrays of in-vessel antennas

• For practical reasons, antennas installed at low-field 
side ⇒ low-loss coaxial transmission lines to tokamak
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JET Lower Hybrid and Ion Cyclotron Resonance 
Heating antenna

                 ICRF
LH
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Lower hybrid typically drives off-axis current, but 
also heats the plasma

• Lower hybrid frequency resides between ion and 
electron resonance frequencies: Ωi «ωLH«Ωe

• Dispersion relation has two solutions: slow and fast 
waves

• Minimum density required to launch wave into plasma 
(1017  m-3), minimum k||  for propagation into center

Low k||: 
power 
stays 
near edge

k|| 

sufficiently
high: 
absorption 
at LH
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Lower hybrid waves typically penetrate the 
plasma to half-radius

top view

• For k||  > critical value, 
LH group and phase 
velocities are 
independent of k||  ⇒ all 
launched power flows in 
the same direction
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Lower hybrid waves are generated in klystrons and 
transmitted to antenna via transmission lines
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JET Lower Hybrid and Ion Cyclotron Resonance 
Heating antenna

                 ICRF
LH
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Electron cyclotron heating can be accomplished in 
ordinary (E || B0) or extraordinary mode (E ⊥ B0)

• High-density 
cutoff, but no 
low-density 
cutoff

• Localized 
heating 
scheme!

• Acceleration 
of electrons     ⇒ energy         

    transfer to
    plasma

text
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Electron cyclotron heating can be accomplished in 
ordinary (E || B0) or extraordinary mode (E ⊥ B0)

• X-mode 
heating from 
high-field side 
(second 
harmonic also 
from low-field 
side)

• High-density 
cutoff

text
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For certain plasma densities and launch angles, 
OXB mode conversion takes place

• O-mode → X-mode 
at X-mode cutoff

⇒ X-mode converts 
into electrostatic 
electron wave 
(Bernstein waves)

⇒ Bernstein waves 
absorbed by electron 
cyclotron damping

• Scheme has no 
upper density limit

text
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EC waves also drive (highly local) currents used 
for general current drive and mode suppression

• Steerable mirrors to 
‘catch and subdue’s 
neo-classical tearing 
modes

• Modular system and 
fast power 
modulation

text
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Electron cyclotron waves are generated in 
gyrotrons (110-170 GHz, 1-2 MW per tube)

electron gun
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resonator



ECRH in W7-X
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• Main heating system and the only system which is already 
capable operating continuously. B=2.5 requires 140GHz.

• Each gyrotron is capable to provide nearly 1 MW heating 
power (1.5MW planned) over 30 minutes.    

●  A total power of 
up to 15 MW with 
12 gyrotrons 
planned (in last 
campaign 7.5MW/ 
10 gyrotrons)



Waveguide and steerable mirrors in the DIII-D 
tokamak

mirror

wave guide

steerable 
mirrors
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ITER plans for 24 gyrotrons at 170 GHz, up to 2 MW 
per tube = 25-45 MW (cost ≈ 150 M Euros)
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Each of ITER's 24 gyrotrons will generate a 
microwave beam over a thousand times more 
powerful than a traditional microwave oven. 
www.iter.org.

X 1000



Also ITER has combination of ECRH, NBI and ICRH
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Neutral beam injection (right) and two sources of high-frequency electromagnetic waves—
ion and electron cyclotron heating (left, blue and green launchers). www.iter.org.



Auxiliary power by means of neutral beams and 
radio frequency heating of 50 MW is foreseen

• Paux  for QDT  = 10 about 40-50 MW

• Modular for upgrades (potentially 50 for NBI 
and 40 for EC/IC but limit for total 110 MW*) 

• No provision for LH

NBI systems
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*Singh PPCF2017



Recommended tutorial video about heating
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https://www.youtube.com/watch?v=xYxuh3w0IEI

Tutorial video “How do you heat a fusion machine?” (26 min) which 
roughly covers the topics of this lecture. Recommended especially for 
those who missed the lecture: 

https://www.youtube.com/watch?v=xYxuh3w0IEI
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Summary

• All medium and large-size tokamaks and stellarators have 
a mix of these heating systems; also ITER
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