Plasma Heating

Dr. Timo Kiviniemi & Prof. Dr. Mathias Groth Aalto University School of Science, Department of Applied Physics

Outline

- Physics and technology of plasma heating systems in fusion-relevant devices
 - Ohmic heating
 - Neutral beam heating
 - Radio frequency heating
- Advantages and limitations
- Application and specifications of heating systems in existing devices and ITER

Plasma heating provides initial heating to reach break-even and ignition

- Internal heating via fusion α's (> 1 MeV)
 ⇒ beyond ignition sole heating source
- (Fusion output power in neutrons)
- Up to self-sustained burn, auxiliary heating required to offset radiative and transport losses ⇒ P_{aux} fraction of P_{fusion}

A minimum heating power is required to ionize the plasma, and to overcome radiation

• For medium-size tokamaks (e.g., ASDEX Upgrade) 1 MW is needed to fully ionize, and 5 MW to offset radiation

Depending on the heating method, auxiliary power is either deposited on ions or electrons

- Some of the total input power is lost via electric conversion or may not be absorbed by plasma
- E.g., beam shine-through
- Coupling between ions and electrons making T_e ≈ T_i

The primary heating schemes are ohmic heating, neutral beam heating, and radio frequency heating

Heating leads to an increase of the kinetic energy of plasma ions and electrons

Scheme	Absorbing particles	Limitations
Ohmic heating	Electrons	Temperature < 2 keV
Neutral beam injection	lons (electrons)	MeV beam energies needed for large plasmas and high densities
lon cyclotron resonance	lons	Coupling efficiency, transients
Electron cyclotron resonance	Electrons	Cut-off densities, localized power
Lower hybrid	Electrons	Mainly for current drive
α-particle heating	Electrons	20% of total fusion power

Example: W7-X plans to use combination of ECRH, NBI and ICRH

Three heating systems developed and will be operated:

- ECRH: main heating system and already capable for steady-state (over 30 minutes). A total power of up to 15 MW planned (now 7.5MW)
- NBI: not (yet) steady-state. Total NBI heating power will be 7 MW (now 1.7 MW) using H-atoms (D: 10 MW)

• ICRH: planned for next campaign with goals:

 Direct ion heating in high-n where ECRH fails, and
 Creation of fast ions which allow study of optimized fast-particle confinement

• No plasma current → no Ohmic heating!

Additional considerations of applied heating scheme(s)

- Neutral beam heating is also a particle source (D vs T)
- Minority heating schemes can lead to high energies in minority particles and departure from Maxwellian energy distribution
 - Hydrogen and helium
 - Attempt not to make minority species too non-Maxwellian to allow energy transfer to main plasma
- Heating is often coupled to non-induction current drive for extending pulse duration and manipulation of safety factor profile (performance)
 - Neutral beam, lower hybrid, electron cyclotron heating

Fusion energy gain Q>1 gives scientific breakeven but...

"Engineering" breakeven: takes into account that

- 1) only a fraction (1-f_{ch}) of fusion energy goes to blanket
- 2) cooling fluid of blanket drives steam turbines with efficiency η_{elec} = 35-40 %
- 3) fraction f_{recirc} of P_{elec} recirculated back into the heaters
- 4) η_{heat} is the efficiency that power supplied to the heating systems is turned into heat in the fuel

$$P_{heat} = (1-f_{ch}) \eta_{elec} f_{recirc} \eta_{heat} P_{fus}$$

Ohmic Heating

Ohmic heating is established by driving an e⁻ current in a plasma and subsequent collisions between e⁻ and ions

- Local power density: $P_{ohmic} = \eta_{\parallel} j^2$
- Total ohmic power given by total plasma current and loop voltage U_I (resistance R_p): $P_{ohmic} = U_I I_P = R_P I_P^2$
- Scheme cannot be used in stellarators

Aalto University

Ohmic heating is limited to 1-2 MW/m³ and 2 keV (in the center) by Spitzer (electric) resistivity

$$\eta_{Spitzer} = \frac{\pi Z^2 e^2 m^{\frac{1}{2}} \ln \Lambda}{(4\pi \varepsilon_0)^2 k_B T^{\frac{3}{2}}}$$

• Power balance: $\eta_{\parallel}j^2 = 3nT / \tau_E$

 \Rightarrow For $\tau_{F} \approx 1$ s, maximum T ≈ 2 keV \Rightarrow too low for ignition

Neutral Beam Heating

Fast (50k – 1 MeV) hydrogen neutrals are injected as beams transferring their energy to the plasma

- Neutral particles are suitable because they not affected by electromagnetic fields
- Heating is achieved by collisions with plasma electrons and ions (charge-exchange) generating fast ions
- $H_{f^{0}} + e^{-} \rightarrow H_{f^{+}} + 2 e^{-} (T_{plasma} < 1 \text{ keV})$
- $H_f^0 + H^+ \rightarrow H_f^+ + H^0$ (E_b < 90 keV)
- $H_{f^{0}} + H^{+} \rightarrow H_{f^{+}} + H^{+} + e^{-} (E_{b} > 90 \text{ keV})$

A neutral beam penetrating a plasma is attenuated along the beam line

$$I_{beam}(x) = I_{beam,0} \exp(-x/\lambda)$$

 $\sigma_{\Sigma} = \text{total cross section}$ $\langle \sigma_i V \rangle = \text{rate coefficients}$ $v_{\text{beam}} = \text{beam velocity}$

The beam penetration depth determines the power deposition profile

$$\lambda \approx \frac{E_{beam} [keV] / A [amu]}{18n_e [10^{19}m^{-3}]}$$

- 100 keV D beam and n_e ≈ 5x10¹⁹ m⁻³ ⇒ λ=0.5 m
- Beam energy determines transfer to electrons and ions
 - Critical energy; for pure-D plasma 18.5 $\rm T_e$
- Beam shine-through and prompt ion losses to wall

Tangential neutral beams are also used to control the current profile

- Tangential beams increase beamplasma interaction length
- Flow of fast ions in beam direction
- Counter current due to electrons colliding with impurities

$$I_{NBCD} = I_{NB} + I_{counter} = I_{NB} \left(1 - G \frac{Z_{beam}}{Z_{eff, plasma}} \right)$$

Neutral beams can drive currents, in ITER of up to 2 MA

• Current drive efficiency saturates at high beam energies, but increases with plasma temperature

High neutral energies and beam power can be extracted from tandem ion-source/neutralizer systems

- Generation of beam \Rightarrow ion source + accelerator system
- Neutralization of beam ions \Rightarrow collision with (H) gas
- Transport of neutral beam \Rightarrow ion + gas removal

Extraction of hydrogen ions from a uniform plasma source and acceleration to high energies

- Required power: several MW ⇒ positive and negative ions
- Beam energies: tens of keV
- Beam current: tens of A
- Beam cross-section: 100s of cm²
- Beam is typically subdivided into many beamlets to avoid ion optics aberration

Fast ions are neutralized due to charge-exchange collisions with cold hydrogen molecules

- Neutralization efficiency is limited:
 - Plasma generation inside accelerator
 - Dependence of neutralization crosssection on energy
- \Rightarrow Positive and neutral ions
 - Negative ions have a higher neutralization efficiency at high energy

ITER's neutral beam system is based on negative ions because of the high beam energy required

 Positive ions (AUG and JET)

> Low neutralization efficiency for energies > 100 keV/amu

- Production of molecular ions (H⁺₂, H⁺₃)
- High current densities

Energy / (keV/amu)

- Negative ions (ITER)
 - High neutralization efficiency
 - Co-extracted electrons
 - Low current densities

After neutralization, residual fast ions are removed by a magnetic or electrical filter system

- Deflection of residual fast ions to a water-cooled surface (ion dump)
- \Rightarrow May represent up to 30% of the total beam power
- Other losses mainly in transmission on beamlet apertures, lesser so at source and by reionization
- + Neutralization efficiency!

Present neutral beam systems include both positive and negative beam sources

Fusion device	AUG		W7-X*	JET	LHD	JT-60U		ITER
Beam species	H ⁺ /D ⁺	H+/D+	H+/D+	H⁺/D⁺	H-	H ⁺ /D ⁺	H ⁻ /D ⁻	H ⁻ /D ⁻
Type of source	Arc	RF	RF	Arc	Arc	Arc	Arc	RF
Extraction area (cm²)	390		390	300	1150	128	1660	2000
Max. energy (keV)	55/60	72/93	55/60 (72/100)	80/130	180	75/95	360/380	1000
Injected power per source (MW)	1.6/2.5	1.4/2.5	1.4/2.5	1.5/1.4	3.75	0.9/1.4	3.3/2.7	16.7
Sources per beamline	4		1 (4)	8	2	2	2	1
Number of beamlines	1+1		2	3	3	14	1	2
Total power (MW)	12/20		2.8/5 (11.2/20)	36/32	15	27/40	13.2/10.8	33
Pulse duration (s)	4/8	4/8	10	10	10	5	10	3600
Max. current density (mA/cm ²)	250/200	160/160	250/200	160/160	35	270/210	13/9	24/20

* two stage construction planned and numbers still changing, see next slide

Neutral beam injection in W7-X

- Two injector boxes with four ion sources each are planned
- Not yet capable for steady state operation (as some components will heat up) → 10 seconds lasting pulses are planned every 5 minutes during the otherwise ECRH heated plasmas
- Total NBI heating power will be 7 MW (now 1.7 MW i.e. 1 box w/ 2 sources) using hydrogen atoms with a particle energy of 55 keV (with deuterium → 60 keV and 10 MW).

JET has a 2 x 8-positive ion neutral beam injector system capable of injecting up to 32 MW

- Two neutral beam boxes
- Each PINI produces about 2 MW
- Radial and tangential neutral beams

PINI = positive ion neutral injector

JET has a 2 x 8-positive ion neutral beam injector system capable of injecting up to 32 MW

The JET neutral beam (drift) ducts have a height and width of about 0.8 m x 0.2 m

The ITER neutral beam system is based on negative hydrogen ions (1 MeV, 40 A, 33 MW)

Heating Beam <u>Multi-Aperture Multi-Grid Accelerator (200 kV steps)</u> RF driven negative hydrogen ion source 100000 10000 bellows calorimeter Gate valve Residual neutraliser Ion Dump MaMuG accelerator **RF** ion source

The ITER neutral beam system is based on negative hydrogen ions (1 MeV, 40 A, 33 MW)

Radio Frequency Heating

RF heating: energy in electromagnetic waves is converted into kinetic energy of resonant particles

- Excitation of plasma waves (frequency ω) near plasma edge
- Transport of wave power into plasma
- Absorption near resonance layer (ω ≈ Ω_c) ⇒ electrons and ions
- Resonant particles subsequently thermalize with bulk plasma

There are three primary classes of resonances with efficient wave power absorption

- Full derivation of wave equations is given in plasma physics course ⇒ lecture available on MyCourses
- Landau cyclotron resonance

$$k_{\parallel} \cdot \mathbf{v}_{th}^{i} / \Omega_{s} \ll 1$$

- ⇒ Maximum absorption when ω ≈ multiple of Ω
- Electrons: 28 GHz / B [T] ⇒ Electron Cyclotron Resonance Heating (ECRH)
- Hydrogen ions: 15 Mhz / B [T] ⇒ Ion Cyclotron Resonance Heating (ICRH)
- Landau resonance at electron thermal speed: 1.3 GHz $\sqrt{T_e}$ [keV] / λ_{\parallel} [cm] \Rightarrow Lower Hybrid Heating (LH)

The dispersion relation for ICRH has two solution for fast and slow waves

- Fast wave
 heating (E ⊥ B₀)
 with lower
 density limit
 (2x10¹⁹ m⁻³) ⇒
 fast wave needs
 to tunnel
 through edge
 cutoff region
- Slow wave heating (E || B₀) has an upper density limit (1x10¹⁹ m⁻³)

One of best absorption is achieved at the second harmonic resonance (due to polarization)

- Applied to single ion species, with tail of fast particles
- Magnetic field dependence allows focusing of wave power in large plasmas
- Requires high density and high temperature plasmas

Wave absorption on plasma minority species is also very efficient

- Low (< 10%) of hydrogen in deuterium plasmas
- Landau cyclotron damping on H (favorable polarization wrt. to wave polarization)
 ⇒ power absorbed in H with strong tail in distribution function

Fast waves near the plasma edge are excited by currents in poloidal conductors (straps)

- Launch frequency
 (ω) given by radiofrequency
 generator
- Fast waves travel almost ⊥ to magnetic field lines
- Slow-wave heating E and B fields are rotated by 90°

Wave propagation and absorption are calculated in full (magnetic) 3-D geometry using antenna design

Multiple current straps

At JET, the power from the ICRH generators (4x2 MW) is transmitted to arrays of in-vessel antennas

 For practical reasons, antennas installed at low-field side ⇒ low-loss coaxial transmission lines to tokamak

JET Lower Hybrid and Ion Cyclotron Resonance Heating antenna

Lower hybrid typically drives off-axis current, but also heats the plasma

- Lower hybrid frequency resides between ion and electron resonance frequencies: $\Omega_i \ll \omega_{LH} \ll \Omega_e$
- Dispersion relation has two solutions: slow and fast waves
- Minimum density required to launch wave into plasma (10^{17} m^{-3}) , minimum k_{\parallel} for propagation into center

Lower hybrid waves typically penetrate the plasma to half-radius

 For k_{||} > critical value, LH group and phase velocities are independent of k_{||} ⇒ all launched power flows in the same direction

Lower hybrid waves are generated in klystrons and transmitted to antenna via transmission lines

JET Lower Hybrid and Ion Cyclotron Resonance Heating antenna

Electron cyclotron heating can be accomplished in ordinary (E || B_0) or extraordinary mode (E $\perp B_0$)

- High-density cutoff, but no low-density cutoff
 - Localized heating scheme!
- Acceleration

 of electrons
 ⇒ energy
 transfer to
 plasma

Electron cyclotron heating can be accomplished in ordinary (E || B_0) or extraordinary mode (E \perp B_0)

- X-mode heating from high-field side (second harmonic also from low-field side)
- High-density cutoff

For certain plasma densities and launch angles, OXB mode conversion takes place

- O-mode → X-mode at X-mode cutoff
- ⇒ X-mode converts
 into electrostatic
 electron wave
 (Bernstein waves)
- ⇒ Bernstein waves absorbed by electron cyclotron damping
- Scheme has no upper density limit

EC waves also drive (highly local) currents used for general current drive and mode suppression

- Steerable mirrors to 'catch and subdue' neo-classical tearing modes
- Modular system and fast power modulation

Electron cyclotron waves are generated in gyrotrons (110-170 GHz, 1-2 MW per tube)

ECRH in W7-X

- Main heating system and the only system which is already capable operating continuously. B=2.5 requires 140GHz.
- Each gyrotron is capable to provide nearly 1 MW heating power (1.5MW planned) over 30 minutes.
- A total power of up to 15 MW with 12 gyrotrons planned (in last campaign 7.5MW/ 10 gyrotrons)

Waveguide and steerable mirrors in the DIII-D tokamak

ITER plans for 24 gyrotrons at 170 GHz, up to 2 MW per tube = 25-45 MW (cost ≈ 150 M Euros)

Each of ITER's 24 gyrotrons will generate a microwave beam over a thousand times more powerful than a traditional microwave oven. www.iter.org.

Also ITER has combination of ECRH, NBI and ICRH

Neutral beam injection (right) and two sources of high-frequency electromagnetic waves ion and electron cyclotron heating (left, blue and green launchers). www.iter.org.

Auxiliary power by means of neutral beams and radio frequency heating of 50 MW is foreseen

System	Power
NBI –ve ion, 1 MeV	33 MW
ECH & CD 170 GHz	20 MW
ICRH & CD 40 – 55 MHz	20 MW

- P_{aux} for $Q_{DT} = 10$ about 40-50 MW
- Modular for upgrades (potentially 50 for NBI and 40 for EC/IC but limit for total 110 MW*)
- No provision for LH

*Singh PPCF2017

Recommended tutorial video about heating

Tutorial video "How do you heat a fusion machine?" (26 min) which roughly covers the topics of this lecture. Recommended especially for those who missed the lecture:

https://www.youtube.com/watch?v=xYxuh3w0IEI

Summary

Scheme	Advantages	Limitations
Ohmic heating	Efficient	Cannot reach ignition conditions, not suitable for stellarator
Neutral beam injection	Reliable	Close to torus, large ports, negative ions necessary
lon cyclotron resonance	Central heating	Antenna close to plasma, coupling efficiency
Electron cyclotron resonance	Reliable, flexible, localized heating + current drive	Cutoffs, electron heating ⇒ needs strong coupling to ions
Lower hybrid	Efficient current drive	Antenna close to plasma, off-axis heating only

• All medium and large-size tokamaks and stellarators have a mix of these heating systems; also ITER

