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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 11:

  Quantities and equations of classical elasticity

  Constitutive equation of linearly elastic isotropic material

  Principle of virtual work in solid mechanics

  Derivation of engineering models by using the principle of virtual work, integration by

parts, and the fundamental lemma of variation calculus



3-3

PREREQUISITE I: Tensor definitions and identities

Conjugate tensor ca : ca b b a b   
   

Second order identity tensor I


: I a a I a a    
    

Fourth order identity tensor I


: : :I a a I a a  
     

Associated vector a  of an antisymmetric tensor a : b a a b  
   , when ca a 

 

Scalar triple product ( ) ( )a b c a b c    
    

Vector triple product ( ) ( ) ( )a b c b a c c a b     
       

Symmetric-antisymmetric double product ca a 
    ja cb b

 
 : 0a b 



Symmetric-antisymmetric division c c
1 1( ) ( )
2 2s ua a a a a a a     
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PREREQUISITE II: Integration by parts

Domain , boundary , and a subset of the boundary , , etc.

Fundamental theorem of calculus

Kelvin-Stokes theorem

a dA a ds
 

    
   

0 0[( ) ( )( )] ( )n na e a e dA n a ds
 

        
     

 n  t u

 0( )a C 

ad n ad
 
     
   { , , }x y z 

 0( )a C 

https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Kelvin%E2%80%93Stokes_theorem
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Integration by parts is the basic tool to transform between the local and variational forms

of a boundary value problem. In one-dimension and in connection with continuous

functions 0, ( )a b C  .

( )d ab dx nab
dx 

 

( )db daa dx nab b dx
dx dx 

  

Summing is over the boundary points and the unit normal to the boundary 1n   .  What

kind of modification is needed if the functions are discontinuous on I  ?

 The generic form of the integration by parts formula is given by (  means domain and

 its boundary)

x





1n 1n  
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( )b aa d n ab d b d   

 
   

    { , , , }x y z  .

 In one-dimension, the first integral on the right-hand side should be interpreted as a sum.

The well-known Gauss divergence theorem follows from the generic form:

( )a dV a ndA
 

   
   .

As a generic vector identity, Gauss theorem is valid also when a thin body has curved

mid-surface geometry. However, all surfaces need to be accounted for correctly.

Assuming that vector a  does not depend on the transverse coordinate n, one obtains

V V
adV n adA
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0 0[( ) ( )( )] ( )n na e a e dA n a ds
 

        
      .

In the latter form, the area integral is over the mid-surface and the boundary integral over

the boundary of the mid-surface and 0 /ne n    
 . Term 0 ne 

  is twice the mean

curvature of the mid-surface or the trace of curvature tensor : I
  (one may consider the

outcome also as a version of the Kelvin-Stokes theorem).
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PREREQUISITE III: Fundamental lemma of variation calculus

 ,a b : 0ab  b  0a 

    , na b  :    T 0a b   b  0a 


 3,a b
  : 0a b 

 b


 0a 


 0, ( )a b C  : 0abd


  b  0a     in 

 2, ( )a b C  : 0a bd

    b  2 0a   in  , a a  or 0n a 

  on 

In connection with principle of virtual work, b  is taken to be kinematically admissible

variation u   of displacement u  (vanishes whenever u  is known).
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3.1 CLASSICAL LINEAR ELASTICITY

Balance of mass (def. of a body or a material volume) Mass of a body is constant. 

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. 

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular

momentum within a material volume equals the external moment resultant acting on the

material volume. 

Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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BALANCE LAWS

Given the solution  , u   (usually 0u  ) on the initial geometry V, the goal is to find a

new solution  , u  on V ,  when, e.g., external given forces are changed.

0m    : J   in V

p F
   : 0f  

   in V

p F
 : n t   

   on tV

L M
   : c   in V

A constitutive equation ( , ) 0f u 
 

 brings the material details into the model. For an unique

solution, a displacement boundary condition is needed somewhere on V .

P

X,x

Z,z

Y,y
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TRACTION AND STRESS

In continuum mechanics, traction /F A   
  (a vector) describes the surface force

between material elements of a body. Cauchy stress   describes the surface forces acting

on all edges of a material element. Traction and stress are related by n  
   .

The first index of a stress component refers to the direction of the surface normal and the

second that of the force component.

x

z

y
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LINEAR STRAIN

Linear strain c[ ( ) ] / 2u u    
    is a measure of material element shape deformation. The

components of the (invariant) tensor quantity depend on the selection of the coordinate

system. In a Cartesian ( , , )x y z coordinate system

T

c
1[ ( ) ]
2

xx xy xz xyxx

yx yy yz yy yz

zx zy zz zz zx

ij jii i ii
u u j j jj jk kj

k k kk ki ik

   
     

    

           
                           
                     

   
       

     
.

Normal strains: x
xx

u
x

 



, y

yy
u
y







, z
zz

u
z

 




Shear strains: 1 ( )
2

y x
xy

u u
x y


 

 
 

, 1 ( )
2

yz
yz

uu
y z




 
 

, 1 ( )
2

xz
zx

uu
x z
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LINEARLY ELASTIC MATERIAL

Assuming that the material coordinates coincide with symmetry (orthotropy) coordinates,

the generalized Hooke’s laws for the isotropic and orthotropic materials can be expressed

in forms:

Component:  
xx xx

yy yy

zz zz

E
 
 

 

   
   

   
   
   

,  2
xy xy

yz yz

zx zx

G

 

 

 

   
   

   
   
   

,  and  2
yx yx

zy zy

xz xz

G

 

 

 

   
   

   
   
   

Tensor: :E u  
   where    

TT ij ji ij jiii ii
E jj E jj jk kj G jk kj

kk kk ki ik ki ik

       
                

               

    
          

        

in which the symmetric elasticity matrices  E  and  G  depend on material type.
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The tensor form can be obtained from the component form by writing

:
xx

yy

zz

ii
jj

kk


 



   
      
   

  


 


, :
xy

yz

zx

ji

kj

ik



 



  
  

   
   
   


 


 and :
yx

zy

xz

ij

jk

ki



 



  
  

   
   
   


 


T TT
xy yxxx

yy yz zy

zz zx xz

ij jiii
jj jk kj

kk ki ik

 
   

  

        
                      

           
          

 
    

   
.

Therefore, using the constitutive equations in their component forms

 

TT

( [ ] ) : : :

ij ji ij jiii ii
jj E jj jk kj G jk kj E E u

kk kk ki ik ki ik

       
                   

               

    
              

        
   . 
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CONSTITUTIVE EQUATION VARIANTS

Stress-displacement relationship of linearly elastic material model can be expressed in

various equivalent forms depending on the symmetry conditions imposed on the fourth order

elasticity tensor E


:

(a) c
1: [ ( ) ]
2

E u u   
     and c

   

(b) :E u 
       and c

     and cE E
  



(c) :E u 
       and c c ccE E E E   

      


Also, other kinetic conditions like 0zz   can be satisfied ‘a priori’ by the selection of

elasticity tensor. The conditions of (c) are called as the minor and major symmetries.

Last index pair conjugate!



3-16

ISOTROPIC MATERIAL

The generalized Hooke’s law for an isotropic material follows with the elasticity matrices

 

1 1
1

(1 )(1 2 )

1
1

1 1

EE E
   

    
 

   

 




    
         
      




,

 
0 0 1 0 0

0 0 0 1 0
2(1 )

0 0 0 0 1

G
EG G

G


   
       
      

in which the material parameters E and  are the Young’s modulus and the Poisson’s ratio,

respectively, and / (2 2 )G E    the shear modulus. Using these, one may deduce the

elasticity matrices for the engineering models.

https://en.wikipedia.org/wiki/Hooke's_law
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In the coordinate system invariant form : :E E u  
     , the elasticity tensor

(satisfying the major and minor symmetries) is given by

TT 11 0 0
1 0 0

1 0 0

ij ji ij jiii ii G
E jj E jj jk kj G jk kj

Gkk kk ki ik ki ik

            
                                              

    
          

        

 
 
 

.

Elasticity tensor of plate model ( 0zz  )

TT

2

1 0 0 0
1 0 0 0

1 0 0 0 0 0

ij ji ij jiii ii G
EE jj jj jk kj G jk kj

Gkk kk ki ik ki ik






          
                                           

    
          

        
.

Elasticity tensor of the beam model ( 0yy zz   )
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TT
0 0 0 0

0 0 0 0 0
0 0 0 0 0

ij ji ij jiii E ii G
E jj jj jk kj G jk kj

Gkk kk ki ik ki ik

          
                                           

    
          

        
.

Representation in some other system can be obtained from the Cartesian ( , , )x y z 

system representation by using the relationships between the basis vectors. For example,

in the cylindrical ( , , )r z coordinate system

   

TT
r r r rr r r r

z z z z

z z z z z r r z z r r z

e e e e e e e ee e e e
E e e E e e e e e e G e e e e

e e e e e e e e e e e e

   

       

       
      

          
               

          
            

           
.
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EXAMPLE The cross section of the column is square of side length h . Density  , Young’s

modulus E , and Poisson’s ratio  are constants. The column is loaded by a constant traction

of magnitude 2/P h  at its free end. Determine stress   and displacement u  starting from

the generic equations for linear elasticity. Assume that the transverse (to the axis)

displacement is not constrained by the support.

Answer 2 ( )Pu xi yj zk
Eh

    
  , 2

P ii
h
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The component forms of the equilibrium equations and constitutive equations of a

linearly elastic isotropic material in a Cartesian ( , , )x y z coordinate system

/ / /

/ / / 0

/ / /

xx yx zx x

xy yy zy y

xz yz zz z

x y z f

x y z f

x y z f

  

  

  

         
            
           

,

1
1 1

1

xx

yy

zz

u x
v y

E
w z

  
  
  

       
                        

, and
xy yx

yz zy

zx xz

u y v x
G v z w y

w x u z

 

 

 

         
                
             

.

Let us assume that the only non-zero stress component ( )xx x  and displacement

components ( )xu u x , ( )yu v y  and ( )zu w z . The axial stress follows from the

equilibrium equation and traction is known at the free end x L . Therefore
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0xxd
dx


 0 x L     and 2( )xx
PL
h

    2( )xx
Px
h

   .

Generalized Hooke’s law written for the uniaxial stress implies that

2
xxdu P

dx E Eh


    , 2xx
dv P
dy E Eh

     , 2xx
dw P
dz E Eh

     .

Axial displacement vanishes at the support and the transverse displacement at the axis:

2
du P
dx Eh

  0 x L    and (0) 0u   2( ) Pu x x
Eh

  , 

2
dv P
dy Eh

 1 1
2 2

h y h      and (0) 0v   2( ) Pv y y
Eh

 , 

2
dw P
dz Eh

 
1 1
2 2

h z h      and (0) 0w   2( ) Pw z z
Eh

 . 
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3.2 PRINCIPLE OF VIRTUAL WORK

Principle of virtual work int ext 0W W W     u U 
  is just one representation of

the balance laws of continuum mechanics. It is important due to its wide applicability and

physical meanings of the terms.

int int
c( : )VV V

W w dV dV   
   

ext ext ( )V VV V
W w dV f u dV     

 

ext ext ( )A AA A
W w dA t u dA     

 

The details of the expressions vary case by case, but the principle itself does not!

V P

P’

A
virtual work density

https://en.wikipedia.org/wiki/Virtual_work
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In what follows, we skip some of the technical details and assume that displacement

boundary conditions are satisfied ‘a priori’. The local and variational forms of elasticity

problem are equivalent, i.e., the local form implies the variational form and the other

way around. Let us consider first the derivation of the variational form:

0f   
   and c     in V ,

0u u 
     or 0n t  

    on   V .

Multiplication of the momentum equation by virtual displacement u , integration over

the solution domain, and integration by parts with c( ) ( ) : ( )a b a b a b       
    

(selections a 
   and b u

  ), and division of the displacement gradient into its

symmetric and anti-symmetric parts according to u    
 give

local form
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( ) 0
V

f udV   
   u U 




c( : ) ( ) ( ) 0
V V V

dV f u dV n u dA    


        
     u U 

 .

The boundary conditions of the local form imply that either 0u 
  or n t 

   at all

points of V . Therefore, one ends up with

c( : ) ( ) ( ) 0
V V V

W dV f u dV t u dA    


        
    u U 

 .

The derivation assumes that c    (where exactly?). In practice, symmetry of stress is

satisfied ‘a priori’ by the form of the constitutive equation.

In derivation to the reverse direction (with the assumption c    for consistency), the

starting point is the variational form. One substitutes first division u   
  to get

variational
form
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c[ : ( ) ] ( ) ( ) 0
V V V

W u dV f u dV t u dA    


         
     u

  .

Integration by parts with c( ) ( ) : ( )a b a b a b       
     (selections a 

   and b u
  )

gives an equivalent but more convenient form

( ) ( ) 0
V V

W f udV n t udA    


          
      u 

 .

The variational form, together with the assumed symmetry of stress and the conditions

for the function set U , implies equations

0f  
 and c 0  

    in V ,

0n t  
  or 0u u 

   on V .

The starting point
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EXAMPLE Principle of virtual work for a Bernoulli beam problem is given by: find w U

such that w U 

2 2
int ext

2 2( ) 0d w d wW W W EI wb dx
dx dx
   


     

in which (0, )L  , 4{ ( ) : / 0  at  0}U w C w dw dx x       and the bending stiffness

( )EI x  and ( )b x  are given. Deduce the underlying boundary value problem by using

integration by parts and the fundamental lemma of variation calculus.

Answer
2 2

2 2( ) 0d d wEI b
dx dx

     in (0, )L ,
2

2( ) 0d d wEI
dx dx

  at x L ,

2

2 0d wEI
dx

  at x L , 0dw
dx

 at 0x  , and 0w  at 0x 
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Integration by parts twice in the first term gives an equivalent form (notice that w U 

and therefore / 0w d w dx    at 0x  )

2 2

2 2( )d w d wW EI wb dx
dx dx
 


   

2 2

2 2[ ( ) ] [ ( )]x L
d w d d w d w d wW EI wb dx EI
dx dx dxdx dx
   

   

2 2 2 2

2 2 2 2[ ( ) ] [ ( ) ( )]x L
d d w d w d w d d wW EI b wdx EI w EI

dx dxdx dx dx dx
   

     .

According to principle of virtual work 0W  w U  . Let us first consider a subset

0U U  for which / 0w d w dx    at x L so that the boundary terms vanish. The

equilibrium equation follows from the fundamental lemma of variation calculus:
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2 2

2 2[ ( ) ] 0d d wW EI b wdx
dx dx

 


    
2 2

2 2( ) 0d d wEI b
dx dx

      in (0, )L . 

After that, let us consider U with restriction / 0d w dx   first and then with 0w   at

x L  and simplify the virtual work expression by using the equilibrium equation already

obtained. The natural boundary conditions follow from the fundamental lemma of

variation calculus

2

2[ ( )] 0x L
d d wW w EI
dx dx

    
2

2( ) 0d d wEI
dx dx

    at x L , 

2

2[ ( )] 0x L
d w d wW EI
dx dx
    

2

2 0d wEI
dx

     at x L  . 

Boundary conditions / 0w dw dx    at 0x    follow from assumption w U .
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3.3 DERIVATION OF ENGINEERING MODELS

First, write the virtual work expression by using the virtual work densities of an engineering

model. If not available, start with the generic virtual work expression, kinematical and

kinetic assumptions of the model, and integrate over the small dimensions.

Second, use the principle of virtual work, integration by parts, and the fundamental lemma

of variation calculus to deduce the field equation(s) and (natural) boundary conditions in

terms of stress resultants. Consider suitable subset of function space U  to deduce first the

equilibrium equation and thereafter the conditions at the boundaries.

Third, use the definitions of the stress resultants to derive the constitutive equations

corresponding to the material model required.
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THIN BODY ASSUMPTIONS

Bar: 0( , , ) ( )u x y z u x
   and 0yy zz xy yz zx        

String: 0( , , ) ( )u s n b u s
    and 0nn bb sn nb bs        

Straight beam: 0( , , ) ( ) ( ) ( , )u x y z u x x y z   
     and 0yy zz  

Curved beam: 0( , , ) ( ) ( ) ( , )u s n b u s s n b   
   and 0nn bb  

Thin slab: 0( , , ) ( , )u x y z u x y
  and 0zz yz zx    

Membrane: 0( , , ) ( , )u n u   
  and 0nn n n     

Plate: 0( , , ) ( , ) ( , ) ( )u x y z u x y x y z   
   and 0zz 

Shell: 0( , , ) ( , ) ( , ) ( )u z s n u z s z s n   
   and 0nn 
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BAR EQUATIONS

Bar is one of the loading modes of the beam model and it can be considered also as the

elasticity problem in one dimension. The model assumes that displacement and stress have

just axial components depending on the axial coordinate only. The bar boundary value

problem

0dN b
dx

 
 

  in     and 0n N F  
   or 0n u u  

   on ,

 where

N dA dA    
   , b fdA 

 
,  and F tdA 


.

For a closed equation system (number of equations and unknown functions should match)

a material model is also needed.
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The physical domain of the bar model is V  occupied by a body althought the solution

domain of the equations is the mid-line  . The starting point is the virtual work

expression written for the physical domain.

Let us consider the steps in the Cartesian ( , , )x y z coordinate system for clarity. The bar

model assumes that displacement and stress have just axial components depending on

the axial coordinate only. Representations of stress, displacement and gradient operator

are xxii 
  and ( ) ( )u x u x i

 , / / /i x j y k z         
 

y

z

x
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int
c( ) : ( )xxV

d u d uW u dV dA dx Ndx
dx dx
    

 
         

 

ext
V V

W u fdV u tdA ubdx uF     
       

  

in which

xxN dA  , xb f dA  , and xF t dA  .

According to the principle of virtual work 0W  u U  . Integration by parts is used

first to obtain a more convenient form for deducing the bar equations.

( ) ( ) ( ) 0d uW N dx b u dx F u
dx
   

      

( ) ( ) 0dNW b udx nN F u
dx

  
      in which 1n   .
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 Let us consider first a subset of variations u U  with restriction 0u  on  and

use the fudamental lemma of variational calculus to deduce that

( ) 0dNW b udx
dx

 


   u U   0dN b
dx

    in  .  (1)

After that, we consider u U  without restrictions on the boundary (and use the

equilibrium equation to get rid of the first term of the virtual work expression) to deduce

( ) 0W nN F u     u U   0nN F    on  .

The boundary term vanishes also if 0u   on  which implies that u  is given on 

. Therefore, on the boundary either 0u u    or 0nN F   but not both.

The bar model boundary value problem combines the equations
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0dN b
dx

    in ,

0nN F  or 0u u  on .

For a unique solution, the displacement boundary condition should be given at least on

one boundary point. The constitutive equation for an elastic material follows from the

generalized Hooke’s law for the bar model /xx Edu dx   and the definition of stress

resultant

xx
duN dA EA
dx

  .

Local form
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THIN SLAB EQUATIONS

Thin slab model assumes that the transverse displacement (perpendicular to the mid-plane)

and stress components vanish and that the quantitities do not depend on the transverse

coordinate. Principle of virtual work gives

0N b  


   in  ,

0n N F  
     or 0u u 

      on ,

N dn 
  , b fdn 

 
,  and F tdn 

 
.

Constitutive equation ( , ) 0f N u 
  , which is needed for a closed system of equations,

follows form a material model and the stress resultant definition. Further calculations

require specification of the coordinate system.



3-37

The physical domain of the thin-slab model is a prismatic body althought the solution

domain of the equations is the mid plane. The starting point is virtual work expression

written for the physical domain.

If the external forces on the top and bottom surfaces vanish and stress is symmetric ‘a

priori’, virtual work expressions of the internal and external forces simplify to (volume

element dV dndA  and area element on the boundarydA dnds )

int
c c c: ( ) ( ) : ( ) : ( )W u dV dn u dA N u dA     

 
           

     ,
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ext ( )VW f udV fdn udA b udA   
 

        
     ,

ext ( )AW t udA tdn uds F uds   
 

        
   

in which the stress resultants

N dn 
  , b fdn 

 
,  and F tdn 

 
. integrals over the thickness!

Integration by parts with the vector identity c: ( ) ( ) ( )a b a b a b       
     in the

virtual work expression gives an equivalent but more convenient form for the next step

c: ( )W N u dA b udA F uds   
  

        
   



( ) ( )W N b udA n N F uds  
 

         
     .
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Principle of virtual work and the fundamental lemma of variation calculus imply the

local forms. Consider first a subset of variations u U 
 with restriction 0u 

 on 

to get

( ) 0W N b udA 


    
 

u U 
  0N b  


in  .

Now using the equilibrium equation, the first term of the virtual work expression

vanishes. Consider then u U 
 without restrictions on the boundary to get

( ) 0W n N F uds 


     
  

 0n N F   
  or 0u 

   on  .

Vanishing of variation 0u 
 on   implies that displacement is given, i.e., u u

  . The

boundary value problem implied by the principle of virtual work
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0N b  


in  ,

0n N F  
  or 0u u 

 
 .

NOTICE (1) Integration by parts of the derivation uses the Gauss theorem for a flat

geometry which may exclude domains of non-vanishing curvature (it turns out later that the

form is valid also in curved geometry). (2) A constitutive equation is needed for a closed

system of equations (here the number of unknown stress components is 3, whereas the

number of equilibrium equations is 2 in flat geometry). The additional equations are given

by the stress resultant definition when the stress expression of the material model is

substituted there.
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THIN SLAB EQUATIONS IN ( , )x y -COORDINATES

Component representation follows when the tensors of the equilibrium and constitutive

equations are expressed in the Cartesian ( , )i j 
 

basis. Assuming a linearly elastic isotropic

material, equilibrium and constitutive equations take the forms,

0

xyxx
x

yy xy
y

NN b
x y

N N
b

y x

 
      

  
    

,  where  
xx

yy

xy

u
xN
vN t E
y

N u v
y x



 
 

   
           
      

   

.

Boundary conditions define usually either displacement or traction in the normal and

tangential directions to the boundary.
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Representations in the Cartesian system (notice that the second form of the gradient is

valid only when basis vectors are constants)

T T/ /

/ /

x xi i

y yj j

                         
               

 

  ,
T

xx xy

yx yy

N Ni i
N

N Nj j

            
        

 


   ,
T

x

y

b i
b

b j

          
     






TTT/
0

/

xx xy x

yx yy y

N N bx i i i i
N b

N N by j j j j

                                          
                         

   


   

TT/
( ) 0

/

xx xy x

yx yy y

N N bx i
N b

N N by j

                       
             




 . 

A constitutive equation is needed for a closed system of equations (here the number of

unknown stress components is 3, whereas the number of equations is 2. Assuming that
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the thin slab is made of isotropic homogeneous and linearly elastic material of thickness

t  (steel, aluminum etc.), stress-displacement relationship, kinematic assumption of the

model,  and elasticity tensor of the plane-stress case give

 

T
u
xii
vN dn jj t E
y

ij ji
u v
y x



 
 

  
              
   




 

    so  
xx

yy

xy

u
xN
vN t E
y

N u v
y x



 
 

   
           
      

   

. 
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THIN SLAB EQUATIONS IN ( , )r  -COORDINATES

Component representation follows when the tensors of the equilibrium and constitutive

equations are expressed in the polar ( , )re e 
  basis. Assuming a linearly elastic isotropic

material, equilibrium and constitutive equations take the forms,

2

( )1[ ]

0
( )1 1[ ]

rrr
r

r

NrN N b
r r

r N N
b

r r r




 






 
     

 
  

  
  

,  where   1 ( )

1 ( )

r

rr

r

r
r

u
rN

u
N t E u

r
N uu r

r r r


 








 
 

   
   

       
    

 
  

.

Boundary conditions define usually either displacement or traction in the normal and

tangential directions to the boundary.
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EXAMPLE Consider a disk [ , ]r R R  which is loaded by traction rt pe 
   on the outer

edge r R  ( p  is constant). Assuming rotation symmetry i.e. that all quantities depend only

on the distance r  from the center point, find the displacement components ( )ru u r  and

( )u v r   for a linearly elastic material when Young’s modulus E  and Poisson’s ratio 

are constants.

Answer
2 2 2

2
( ) 1

1 (1 )
R r pu

r E
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If the displacement and stress resultant components depend only on the radial coordinate,

the equilibrium equations and the constitutive equations of the polar coordinate system

simplify to (here 0rb b  )

1 1( ) [ ( ) ] 0rr
rr rr

dN dN N rN N
dr r r dr      , 2

2
2 1 ( ) 0r

r r
N

N r N
r r rr


 
 

  
 

and

2 ( )
1

rr
tE du uN

dr r



 


, 2 ( )

1
tE u duN

r dr 


 


, ( ) ( )r
dv v d vN tG tGr
dr r dr r    .

On the inner edge r R  displacement vanishes, i.e., 0ru u  . On the outer edge

r R , rn e 
, 0n N F  

  , and rF pte 
  . These conditions give the boundary value

problem,



3-47

1[ ( ) ] 0rr
d rN N

r dr   , 2 ( )
1

rr
tE du uN

dr r



 


, 2 ( )

1
tE u duN

r dr 


 


  in ( , )R R ,

0u    at r R    and rrN pt    at r R .

Elimination of the stress resultants from the equilibrium equation and boundary

conditions gives the boundary value problem for the radial displacement component

1 ( )[ ] 0d d ru
dr r dr

    in ( , )R R ,

0u    at r R    and 2 ( )
1

tE du u pt
dr r




  


  at r R .

The generic solution to the differential equation is /u a r br  . Thereafter, the

boundary conditions give the values of the integration constants and solution,
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2 2 2

2
( ) 1

1 (1 )
R r pu

r E
 

  
 


  

 . 

The boundary value problem for the displacement component in the angular direction

(in terms of displacement component and stress resultant) is given by,

2
2

1 ( ) 0r
d r N
drr

    and ( )r
d vN tGr
dr r     in ( , )R R ,

0v    at r R    and 0rN     at r R .

Equilibrium equation and the condition on the outer edge imply first ( ) 0rN r  . After

that, the constitutive equation, and the displacement boundary condition result into

0v  . 


