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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise
problems on the topics of week 11.:

O Quantities and equations of classical elasticity
O Constitutive equation of linearly elastic isotropic material
O Principle of virtual work in solid mechanics

O Derivation of engineering models by using the principle of virtual work, integration by

parts, and the fundamental lemma of variation calculus
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PREREQUISITE I: Tensor definitions and identities

—_ — —
>

Conjugate tensor d.: a-b=b-&, Vvb

-

Second order identity tensor I: 1-a=8-1=3 Vva

Fourth order identity tensor I: 1:4=4d:1 =48 V&

—

Associated vector a of an antisymmetric tensor &: b-&=4dxb, when d = -4,

Scalar triple product a- (b x¢) =(axb)-¢

(d-b)

Ol

Vector triple product ax(bx¢)=b(a-c)-
Symmetric-antisymmetric double product &=-4, ja b=b., = &:b=0

. Y I U,
Symmetric-antisymmetric division a =4 + 3, = E(a +4;) +E(a —-a.)
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PREREQUISITE II: Integration by parts

0 Domain Qc R", boundary 69, and a subset of the boundary 6, 6Q,,, etc.

O Fundamental theorem of calculus ae CO(Q)

jQ v-adQ:jaQ i-adT ae{x,y,z}

O Kelvin-Stokes theorem a e CO(Q)

jQ Vxé-dﬁ\:cﬁm ids =

| [(Vo-8)~(Vo &)@ -&)IdA= [  (fi-a)ds
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https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Kelvin%E2%80%93Stokes_theorem

Integration by parts is the basic tool to transform between the local and variational forms
of a boundary value problem. In one-dimension and in connection with continuous

functions a,b e CO(Q).

d
IQ &(ab)dx:z(3Q nab < n=—1/ ] \nzl

Qad—dx > . (nab)- j b—dx X

Summing is over the boundary points and the unit normal to the boundary n =+1. What

kind of modification Is needed if the functions are discontinuouson | c Q?

The generic form of the integration by parts formula is given by (2 means domain and
oQ its boundary)
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j a dQ j (n,ab)d - j b—ndQ ne{xv,z,..}

In one-dimension, the first integral on the right-hand side should be interpreted as a sum.

The well-known Gauss divergence theorem follows from the generic form:
jQ (V-3)dV = j@Q 5 AdA

As a generic vector identity, Gauss theorem is valid also when a thin body has curved
mid-surface geometry. However, all surfaces need to be accounted for correctly.

Assuming that vector @ does not depend on the transverse coordinate n, one obtains

jv v-advzjav i-4dA <
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J, [V0-8)~(Vo-8)(@-&)ldA= [ (7-2)ds.

In the latter form, the area integral is over the mid-surface and the boundary integral over
the boundary of the mid-surface and V=V, +€,0/0n. Term V€, Is twice the mean
curvature of the mid-surface or the trace of curvature tensor £ : 1 (one may consider the

outcome also as a version of the Kelvin-Stokes theorem).
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PREREQUISITE Ill: Fundamental lemma of variation calculus

O abelR - ab=0 Vb & a=0
0 {a},{bleR" : {a} {b}=0 V{b} < a=0
O 4beR® - 4-b=0 Vb & d4=0

0 abec?Q) : jQ abdQ=0 Vb < a=0 inQ
O a,beCZ(Q):jQ Va-vhdQ=0 Vb < V2a=0in QQ,a=aorn-Va=0on oQ

In connection with principle of virtual work, b is taken to be kinematically admissible

variation ou of displacement U (vanishes whenever U is known).
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3.1 CLASSICAL LINEAR ELASTICITY

Balance of mass (def. of a body or a material volume) Mass of a body is constant. €

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. €

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume. €
Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)

3-9



BALANCE LAWS

Given the solution 6°, U° (usually G°=0) on the initial geometry V°, the goal is to find a

new solution &, U on V, when, e.g., external given forces are changed.
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A constitutive equation f(&,0) =0 brings the material details into the model. For an unique

solution, a displacement boundary condition is needed somewhere on oV .
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TRACTION AND STRESS

—

In continuum mechanics, traction &=AF /AA (a vector) describes the surface force
between material elements of a body. Cauchy stress & describes the surface forces acting

on all edges of a material element. Traction and stress are related by 6 =1i-&.

—

\Uz

The first index of a stress component refers to the direction of the surface normal and the

second that of the force component.
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LINEAR STRAIN

Linear strain & =[VU +(VU).]/2 is a measure of material element shape deformation. The

components of the (invariant) tensor quantity depend on the selection of the coordinate

system. In a Cartesian (X, Y, z) —coordinate system

i’ ] WJ»"‘F Exy

i i
52%[VU+(VU)C]:<T> Eyx €y Eyz <T>:<ﬁ><gyy>+<j7lz+ﬁ><gyz>.
K | fx fzy fn | KKk (&2 kkiﬁ+iﬁk) [ €2x )
ou
Normal strains: &y, :au_x’ Eyy =—2, &g _ Oz
OX oy 0z
ou ou 0
Shear strains: &y, =1( L auX), £y :1(8“2 +—2), &y :l(auz n Ux)
2 OX oy 2 oy oz 2 OXx 0z
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LINEARLY ELASTIC MATERIAL

Assuming that the material coordinates coincide with symmetry (orthotropy) coordinates,

the generalized Hooke’s laws for the isotropic and orthotropic materials can be expressed

in forms:
O yx Exx
Component: oy, r=[E]{&yy ¢
Oz €72

Tensor: &=E:Vi where E =

ny\ 5xy\ Ty
, 10yz (=2[G]{ &y, ¢y and {0,y = 2[G]:
(O zx ) [ €2x ) (O xz |
r_,_,\T e ) e —.—.—>\T ( = - )
T T I+ JI 1 + Ji
]T> [E]<]T>+<TIZ+IZJ7> [G]< TIZ+IZJ?>
Kk Kk | | kT +ik ki +ik

in which the symmetric elasticity matrices [ E] and [G | depend on material type.
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The tensor form can be obtained from the component form by writing

Exx I Exy I Eyx J
1y (=41 (i€, ey p=qKipiéand Jep o=k iE
&) (KK | & | \Ik) | &y7 | \kl )
r__,__,\T r 3 f.—>.->“T s 3 f—.».—ﬂT s 3

I Oyy 1) Oxy J Tyx

\

i+ <GW>+<TE> 10y ¢t Kl ¢ oy =5

Kk | ki |

Therefore, using the constitutive equations in their component forms

o e (> —.>.—>“T s rad
i) (i) [T+ ij + i

=Tt [E]dit+ 0k+kj¢ [Glijk+kj}):é=E:&=E:Vi
KK Kk ] | ki +ik ki +ik
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CONSTITUTIVE EQUATION VARIANTS

Stress-displacement relationship of linearly elastic material model can be expressed in
various equivalent forms depending on the symmetry conditions imposed on the fourth order

elasticity tensor E:

(b) G=E:Vi and =6, and E:éc « Last index pair conjugate!
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Also, other kinetic conditions like o,, =0 can be satisfied ‘a priori’ by the selection of

elasticity tensor. The conditions of (c) are called as the minor and major symmetries.
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ISOTROPIC MATERIAL

The generalized Hooke’s law for an isotropic material follows with the elasticity matrices

_ --1 _ _

1 v —v . 1-v v 1%
[E]=E|—v 1 —v| = v 1-v v |,
1+v)1-2v)

-V -V l_ v 1% l—v_
G 0 0] . (1 0 0]
[G]z 0 G 0= 0 1 0

2(1+v)

_O 0 G_ _0 0 1_

In which the material parameters E and v are the Young’s modulus and the Poisson’s ratio,
respectively, and G =E/(2+2v) the shear modulus. Using these, one may deduce the

elasticity matrices for the engineering models.
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In the coordinate system invariant form &=I§:§=I§:VU, the elasticity tensor

(satisfying the major and minor symmetries) is given by

P _ — 1 = e —.'.—>“T_ _ (== =)

i 1 —v =i j+ji | [ 0 o7|ij+]i
E={J! El-=v 1 —v| {'+idk+kj+ |0 G 0 Rjk+kj?.

kk| v —v 1] |kk| |ki+ik| [0 O Gj|ki+ik

Elasticity tensor of plate model (o,, =0)

N T _ — = s —.>.—>“T_ — (= =)
i [1 v o] [G+F] 6 o o[+
E=J] ¢ sV 1 ORJib+4jk+kib |0 G 04 jk+kjb.
| 1- - . e
K| " L0 0 Of|Kk| |Ki+ik| L0 0 GJ|ki+ik

Elasticity tensor of the beam model (oyy =0, =0)
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r__,__,\T_ —

i E 0 offii] |U+ii| [Gc o o7|ii+]i
E={J! |0 0 OJit+<jk+kil |0 G 011 jk+kj!.
kk] [0 0 OJ|kk| |ki+ik| [0 O GJ|ki+ik

Representation in some other system can be obtained from the Cartesian (X,y,z)—

system representation by using the relationships between the basis vectors. For example,

In the cylindrical (r,¢, z) —coordinate system
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EXAMPLE The cross section of the column is square of side length h. Density p, Young’s
modulus E, and Poisson’s ratio v are constants. The column is loaded by a constant traction
of magnitude P/h? at its free end. Determine stress & and displacement U starting from

the generic equations for linear elasticity. Assume that the transverse (to the axis)

|

displacement is not constrained by the support.

- P g - e - P g L
Answer U =——(—Xi +vyj+vzk), 6 =——Il
2 2
Eh h
0y
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The component forms of the equilibrium equations and constitutive equations of a

linearly elastic isotropic material in a Cartesian (X, Yy, z) —coordinate system

(003 | 0%+ 00y 1 3y + 003 | 02+ fy |
00yy | OX+ 0oy [0y +00,y 02+ Ty, ¢ =0,
00y, [ OX+00y, [ 0y +004, 07+ 1,

N\

(0u/ox | . 1 v ][0y ] oy | [ox] (0u/oy +0ov/ox)
<8V/8y>=E v 1 —v|jouy and <ayz>:<azy>:G<8V/az+8W/ay>.
ow/oz | v v 1]lg, Oy Gy | OW/ X +0u/dz |

Let us assume that the only non-zero stress component oy, (X) and displacement
components uy =u(x), uy =v(y) and u, =w(z). The axial stress follows from the

equilibrium equation and traction is known at the free end x = L. Therefore
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do P P
T"X:O O<x<L and chX(L):—h—2 = axx(x)z—h—z.

Generalized Hooke’s law written for the uniaxial stress implies that

du oy P dv 1% P dw v P
= = — :——O‘XX =V :——GXX =y —-

dx E En2’ dy E ER?2 dz E Eh?

Axial displacement vanishes at the support and the transverse displacement at the axis:

du P P

= — O<x<L and u(0)=0 = u(X)=——Xx, €
F— (0) (X) -
dv P 1 1 P

— ——h<y<=h and v(0)=0 = v(y)=v—Vy, €
d—W:—vL —1h<z<1h and w(0)=0 = W(Z)=VLZ. €
dz En2 2 2 Eh?
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3.2 PRINCIPLE OF VIRTUAL WORK

Principle of virtual work SW = oW™ + sW®' =0 Vi €U is just one representation of

the balance laws of continuum mechanics. It is important due to its wide applicability and

physical meanings of the terms.
/ virtual work density

swint — j \M,“tdv_—jv (6:58,)dV

SWEX = j WXty = j (f-su)dVv

SW X j sweXtda = j (T 50)dA

The details of the expressions vary case by case, but the principle itself does not!
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https://en.wikipedia.org/wiki/Virtual_work

In what follows, we skip some of the technical details and assume that displacement
boundary conditions are satisfied “a priori’. The local and variational forms of elasticity
problem are equivalent, i.e., the local form implies the variational form and the other
way around. Let us consider first the derivation of the variational form:

\

—h|

V-6+f=0and =6, iIn V,

Qt

. local form

=0 or A-6—-t=0 on oV.

S

u—

|y

Multiplication of the momentum equation by virtual displacement 60, integration over
the solution domain, and integration by parts with (V-&)-b=V-(&-b)—4:(Vb),
(selections &=& and b =40), and division of the displacement gradient into its

symmetric and anti-symmetric parts according to Vi = & + ¢ give
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jv (V-6+f)-60dV =0 VélieU =
jv (-6 1 58, )dV +jv (f-5U)dV+_[av (i-&-60)dA=0 VsieU.

The boundary conditions of the local form imply that either 6ti=0 or Ai-& =1t at all

points of oV . Therefore, one ends up with
variational

W =, (-6:85)dV +[, (f-omav+| (-o6u)dA=0 VsieU.  form

The derivation assumes that & = 6. (where exactly?). In practice, symmetry of stress is

satisfied ‘a priori’ by the form of the constitutive equation.

In derivation to the reverse direction (with the assumption ¢ = & for consistency), the

starting point is the variational form. One substitutes first division & = Vi — ¢ to get
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SW = jv [-6:(VSU), JdV + jv (f -50)dV + jav (T-50)dA=0 VU .

Integration by parts with (V-&)-b=V-(&-b)-4a:(Vb), (selections & =& and b = 5i)

gives an equivalent but more convenient form

(svvzjv (V-o-+f)-5udV+_[aV (-A-G+T)-60dA=0 VU .

The variational form, together with the assumed symmetry of stress and the conditions

for the function set U, implies equations

\

V-6+f=0 and 6-6.=0 inV, _ .
. Thestarting point

n-c—t=0 or U—-0=0 onoV.
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EXAMPLE Principle of virtual work for a Bernoulli beam problem is given by: find weU
such that Vow eU
d%sw _, d°w

W =W L swet = [ (- El —— + swh)dx =0
IQ( dx? dx?

in which Q=(0,L), U ={W€C4(Q)ZW=dW/dX=0 at x =0} and the bending stiffness
El(x) and b(x) are given. Deduce the underlying boundary value problem by using

Integration by parts and the fundamental lemma of variation calculus.

2
Answer—dz( dW)+b 0 in (O,L), —(Eld—W) 0 at x=1L,
dx dx? dx?
2
—Eld—\évzo at x=1L, d—W:O at x=0,and w=0 at x=0
dx dx
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Integration by parts twice in the first term gives an equivalent form (notice that ow U
and therefore ow=dow/dx =0 at x=0)

d2sw _. d°w
é\/\/:jQ (- 2 El " +owb)dx <
dow d d2w dow d2w
avvzj [W&(EIdT) swb]dx~[=_ = (EI XZ)]X=|— =
d? _ d?%w dow . d%w d _ d%w
OW = [ [-—(El =) +b]owdx —[—(EI—) Sw— (EI Moo, -
IQ dx? dx2 dx dx? dx dx2 .

According to principle of virtual work oW =0 YoweU . Let us first consider a subset
Uy cU for which ow=dow/dx =0 at x=L so that the boundary terms vanish. The

equilibrium equation follows from the fundamental lemma of variation calculus:
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SW = jQ [—j—zz(El @)m]gwdx =0 = —d—zz(EI dz—‘év)m =0 in(0,L). €

X dx dx dx
After that, let us consider U with restriction dow/dx =0 first and then with oéw=0 at
X = L and simplify the virtual work expression by using the equilibrium equation already
obtained. The natural boundary conditions follow from the fundamental lemma of
variation calculus

d _ d%w d _ d%w
oW =[ow—(El —)]._, =0 El =0 at x=L, €&
[ dX( X2 )]X—L = dX( 2 )

dx
&N——[@(Eldz—w)] =0 = —Elﬂ—o at x=L . €
d dx2 dx? |

Boundary conditions w=dw/dx=0 at x=0 follow from assumption weU .
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3.3 DERIVATION OF ENGINEERING MODELS

First, write the virtual work expression by using the virtual work densities of an engineering
model. If not available, start with the generic virtual work expression, kinematical and

Kinetic assumptions of the model, and integrate over the small dimensions.

Second, use the principle of virtual work, integration by parts, and the fundamental lemma
of variation calculus to deduce the field equation(s) and (natural) boundary conditions in
terms of stress resultants. Consider suitable subset of function space U to deduce first the

equilibrium equation and thereafter the conditions at the boundaries.

Third, use the definitions of the stress resultants to derive the constitutive equations

corresponding to the material model required.
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THIN BODY ASSUMPTIONS
Bar: U(X,y,z)=Uy(X) and oyy =04, =0y =0y, =0, =0
String: U(s,n,b)=Uy(s) and o, =0Opy =05y =Opp = Ops =0
Straight beam: G(x,y,z)=Ug(X)+8(X)x 5(y,z) and oy =0, =0
Curved beam: 0(s,n,b) =y (s)+8(s)x 5(n,b) and o, = opp =0
Thinslab: U(x,y,z)=Up(X,y) and o, =0y, =0, =0
Membrane: U(a,f,n)=Uy(a,f) and opy =0, =0p, =0
Plate: G(x,Y,2)=Ug(X y)+0(x,y)xp(z) and c,, =0

Shell: G(z,s,n) =0g(z,8)+0(z,5)xp(n) and o, =0
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BAR EQUATIONS

Bar is one of the loading modes of the beam model and it can be considered also as the
elasticity problem in one dimension. The model assumes that displacement and stress have

just axial components depending on the axial coordinate only. The bar boundary value

problem

Cil—N+6=O in Q and A-N-F=0 or A-G-u=0on oQ,
X

where

N:j &.dli:j GdA, 6=j fdA, and F:j fdA.

For a closed equation system (number of equations and unknown functions should match)

a material model is also needed.
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The physical domain of the bar model is V occupied by a body althought the solution

domain of the equations is the mid-line €. The starting point is the virtual work

expression written for the physical domain.

Let us consider the steps in the Cartesian (X, Y, z) —coordinate system for clarity. The bar
model assumes that displacement and stress have just axial components depending on
the axial coordinate only. Representations of stress, displacement and gradient operator

are & =oy, i and G(X)=u(X)i, V=i0/06x+]jo!/oy+kd/ oz
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dou

d5”(j G dx = ~ Nl

sw Nt —jv (VS0), : 6dV = —j

ext _ - T A —
WS = [ ou-fdv+|  ou-fdA= | subdx+ . SUF
In which

N =[ oxdA, b=] f,dA, and F = [ t,dA.

According to the principle of virtual work sW =0 ¥ éu €U . Integration by parts is used

first to obtain a more convenient form for deducing the bar equations.

:-jQ (Nd5“)dx+j (bsu)dx+Y " (FSu)=0 <

dN : :
oW :jQ (&+b)5udx+zm(—nN +F)ou=0 inwhich n=+1.
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Let us consider first a subset of variations ou e U with restriction éu =0 on 0Q and

use the fudamental lemma of variational calculus to deduce that

ész (d—N+b)5udx:O Vouel < d—N+b=0 in Q. (1)
Q “dx dx

After that, we consider oueU without restrictions on the boundary (and use the

equilibrium equation to get rid of the first term of the virtual work expression) to deduce

éW:zaQ(—nNJrF)&u:O VéueU < nN-F=0 on 8Q.

The boundary term vanishes also if ou =0 on 0Q which implies that u is given on 0Q

. Therefore, on the boundary either u—u=0 or nN —F =0 but not both.

The bar model boundary value problem combines the equations
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d—N+b:O in Q,

dx Local form

NN-F=0 or u—-u=0 on 0q.

For a unique solution, the displacement boundary condition should be given at least on
one boundary point. The constitutive equation for an elastic material follows from the
generalized Hooke’s law for the bar model o, = Edu/dx and the definition of stress

resultant

du
N = dA=EA—.
j O xx dx
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THIN SLAB EQUATIONS

Thin slab model assumes that the transverse displacement (perpendicular to the mid-plane)

and stress components vanish and that the quantitities do not depend on the transverse

coordinate. Principle of virtual work gives

V.-N+b=0 in Q,

-

=0 or G—-U=0 on 0Q,

T

>

sz &dn, Ezj fdn, and Ifzj fdn.

Constitutive equation f(N,d) =0, which is needed for a closed system of equations,

follows form a material model and the stress resultant definition. Further calculations

require specification of the coordinate system.
3-36



The physical domain of the thin-slab model is a prismatic body althought the solution

domain of the equations is the mid plane. The starting point is virtual work expression

written for the physical domain.

s s T L

\ S
o€

If the external forces on the top and bottom surfaces vanish and stress Is symmetric ‘a

priori’, virtual work expressions of the internal and external forces simplify to (volume

element dV =dndA and area element on the boundarydA = dnds)

W™ =—| &:5(vu)cdvz—jQ ([ &dn):&(VU)CdA:—_[Q N : 5(VT), dA,
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WM = | F.(SUdvsz ([ Fdn).(SUdA:jQ b - STUA,
ext £ S A — g CSiide — = S
WK = j f-S50dA = jaQ (j fdn) - Stds = jaQ F . 5uds

In which the stress resultants

sz &dn, sz fdn, and If:j fdn. integrals over the thickness!

Integration by parts with the vector identity &:(Vb),=V-(d-b)—(V-&)-b in the

virtual work expression gives an equivalent but more convenient form for the next step

awz—jQ N :5(VU)CdA+jQ b-auolA+jaQ F.olds <

SW :jQ (V-N +b)-5udA+jaQ (=ii-N + F)- 5uds.
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Principle of virtual work and the fundamental lemma of variation calculus imply the
local forms. Consider first a subset of variations ou €U with restriction G =0 on oQ

to get

awsz (V-N+b)-8GdA=0 VséieU < V-N+b=0 in Q.

Now using the equilibrium equation, the first term of the virtual work expression

vanishes. Consider then i € U without restrictions on the boundary to get

W =] (-i-N+F)-stds=0 = —-A-N+F=0 or §ti=0 on oQ.

Vanishing of variation 6t =0 on 6Q implies that displacement is given, i.e., G =0. The

boundary value problem implied by the principle of virtual work
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V-N+b=0 in Q,

—

A-N—-F=0or 0-0=00Q. )

NOTICE (1) Integration by parts of the derivation uses the Gauss theorem for a flat
geometry which may exclude domains of non-vanishing curvature (it turns out later that the
form is valid also in curved geometry). (2) A constitutive equation is needed for a closed
system of equations (here the number of unknown stress components is 3, whereas the
number of equilibrium equations is 2 in flat geometry). The additional equations are given
by the stress resultant definition when the stress expression of the material model is

substituted there.
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THIN SLAB EQUATIONS IN (x,y)-COORDINATES

Component representation follows when the tensors of the equilibrium and constitutive
equations are expressed in the Cartesian (i, j) —basis. Assuming a linearly elastic isotropic

material, equilibrium and constitutive equations take the forms,

-

( oN “ o
al\Ixx_i_ Xy+bx (Nxx\ OX
OX oy oV
) -=0, where (N, >:t[E]G< — .

ONyy Ny oy

+——+by Ny | ou  ov

L ay OX J 54'8—

X

Boundary conditions define usually either displacement or traction in the normal and

tangential directions to the boundary.
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Representations in the Cartesian system (notice that the second form of the gradient is

valid only when basis vectors are constants)

T T 0 [ OX O | OX T r - T ! Nxx ny i - bx (i
V: - = - 1N: _ _ ) b: R
i) oloy) |oldy) (] 7] | Nyx Ny (] oy | 1]
. O | OX T r TT Nxx ny r bx (i
V-N+b = R e ¢=0
oloy) i) i) [Nyx Ny Q) (by] L
. (alax) T[Ny Ny T [b" (7
V-N+Db=( + )y ¢=0. €
010y] | Ny Ny | [by] ]

A constitutive equation is needed for a closed system of equations (here the number of

unknown stress components is 3, whereas the number of equations is 2. Assuming that
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the thin slab is made of isotropic homogeneous and linearly elastic material of thickness

t (steel, aluminum etc.), stress-displacement relationship, kinematic assumption of the

model, and elasticity tensor of the plane-stress case give

e A e A

au au
N:j gdn=< jj ¢ t[E] - a » 50 Ny =t[E] - o -, €
T a e (N Y
0y OX, oy ox
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THIN SLAB EQUATIONS IN (r,¢)-COORDINATES

Component representation follows when the tensors of the equilibrium and constitutive
equations are expressed in the polar (ér,é¢)—basis. Assuming a linearly elastic isotropic

material, equilibrium and constitutive equations take the forms,

( oN \ Ny
1oNy) DNyl by (N or
r or ol rr 1 ou
3 »=0, where 3N, >:t[E] 4 —(ur+—¢j .
2 o] r 0
rr o 0 ) s 1aur 9 By
r 0¢ or r

Boundary conditions define usually either displacement or traction in the normal and

tangential directions to the boundary.
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EXAMPLE Consider a disk r €[¢R,R] which is loaded by traction t =—pg, on the outer
edge r =R (p Is constant). Assuming rotation symmetry i.e. that all quantities depend only
on the distance r from the center point, find the displacement components u, =u(r) and

Uy =v(r) for a linearly elastic material when Young’s modulus E and Poisson’s ratio v

are constants.

(gR)Z—r2£ 1-v?
r El+v+e2(1l-v)

Answer U=
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If the displacement and stress resultant components depend only on the radial coordinate,
the equilibrium equations and the constitutive equations of the polar coordinate system
simplify to (here b, =bj =0)

dN, 1 1.d ONpy 2 10
drrr "‘?(Nrr_N¢¢):?[a(rNrr)_N¢¢]:O’ ar +_Nr¢— 28!‘( Nr¢) 0
and
tE du u tE u du dv v
N, = +v—=), N, = —+v—), —tG————tG——
rr 1_V2(dl’ Vr) dé = 1,2 (I’ le’) ( ) dr(r)

On the inner edge r =¢R displacement vanishes, i.e., u, =u=0. On the outer edge
r=R, =€, n-N-F =0, and F =—pté,. These conditions give the boundary value

problem,
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1.d tE du u tE
?[E(rNrr)_N¢¢]:O’ Nrr:l—vz(d +v=), Ngg = (—+Vd—) In (¢R,R),

u=0 at r=¢R and N, =-pt at r=R.

Elimination of the stress resultants from the equilibrium equation and boundary

conditions gives the boundary value problem for the radial displacement component

[—d(r“)] 0 in (¢R,R),
drr

du
dr

u=0 at r=¢R and tEZ(

+vE):—pt at r=R.
1-v r

The generic solution to the differential equation is u=a/r+br. Thereafter, the

boundary conditions give the values of the integration constants and solution,
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Elrv+ec(1-v)

The boundary value problem for the displacement component in the angular direction
(in terms of displacement component and stress resultant) is given by,

1 d, > d v, .
——(r“N,.,)=0 and N,., =tGr— (=) In (¢R,R),
r2 dl’( r¢) re ar (I’) (eR,R)
v=0 at r=¢R and N, ,=0 at r=R.

Equilibrium equation and the condition on the outer edge imply first Nr¢(r) =0. After

that, the constitutive equation, and the displacement boundary condition result into

v=0. €&
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