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Learning goals

« Understand the idea behind robot learning

« Understand the formulation of dynamic movement primitives: its

benefits.
usability.
etc.
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Introduction:
Background, motivations and challenges
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Introduction:
Challenges of robot learning
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Introduction:
Challenges of robot learning
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Introduction:
Challenges of robot learning

ke How to find?

N~ How to structure?
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Introduction:
Challenges of robot learning

Reward

Reinforcement Learning
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Introduction:
Challenges of robot learning

Learning from Human Demonstration
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Introduction:
Learning from Demonstration

Develop new robot behavior through intuitive teaching

T hing Separator
Bgec o vien U

Teleoperation uses a magnetic tracker attached

_ Kinesthetic guiding uses the robot’s gravity
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Introduction:
Dynamical Systems as Trajectory Generators

« Dynamical systems can be used to represent trajectories:
* Integrating the dynamical system results in a trajectory. y = f(y)
* Mimics physical systems.
 Build-in Smoothness.
« Linear differential equations:
 well-defined behavior.

o But: limited class of movements.
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Introduction:
Dynamical Systems as Trajectory Generators

» First order linear dynamical system:

y=a(g-—-y)

« Second order linear dynamical system:

y=aB@g-y) -y

g goal attractor

T
oo ©O0

 af spring constant (stiffness)

s «a damping
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Dynamic Movement Primitives (DMPs)

« Dynamic movement primitives (DMPs): are non-linear dynamic
systems (Stefan Schaal’s lab, 2002, updated in 2013 by Auke ljspeert),
and then updated to include Cartesian space by Abu-Dakka et al. 2015,
then updated to include Symmetric Positive Definite (SPD) matrices by

Abu-Dakka et al. 2020.

« DMPs provide a comprehensive framework for the effective imitation
learning and control of robot movements.
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DMPs

« A DMP for a single degree of freedom trajectory y is defined by a set of
nonlinear differential equations:

[ TZ = az(ﬁz(g - y) - Z)}-l_ f(X),

Ty = Z,

. ,d |
(§
X state variable of the system that makes equation (1) a L

time-independent system.
Z is a scaled velocity of y.
7 IS the time constant.
a, and 8, > 0 define the behavior of the 2" order system.
>0, a, =4 f,and a, > 0, the convergence of the underlying dynamic system to a unique
attractor pointaty =g, z=0is ensured.

lispeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computations, 25(2), 328-373.
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DMPs:

Trajectory representation

Forcing Term

—

N N
fx) = Liy wLLPLp(L(;C) (g — yo), \&—f: 0.5
RBF s =
¥;(x) = EXP(—hi(X —c)?), 0 r —
f(X) is: 30 Time [<]
a linear combination of N nonlinear radial basis functions, &
 encodes the desired additional acceleration profile, = o
» learnable function, '91
 enables the robot to follow any smooth trajectory from the S
Initial position y, to the final configuration g. 0 0.6 1.2
Time [s]

h;, c; and N are width, centers and no. of Gaussian functions. \

w; Weight parameters adopted to reconstruct the recorded

DMP

motion, %7

TN
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DMPs:

Learning from Demonstration

 Given:

- Adesired trajectory and its derivatives {y,y, y}_,

- Aqgoal attractor g

- Constant positive parameters a,, ,, a,

- Temporal Scaling : Adjusted to movement duration.

« The weights w can be learned by linear regression:

- Compute desired values for each time step
d _ . .
fE=t*Ye—a, (B (g — y) —TY0)
- Compute shape parameters by linear regression
w=(®Td + o) 1pTf?
& is a matrix of ¥,
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DMPs
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Position

time

Velocity

s
time

Robustness against perturbation:
Phase stopping

= The time evolution of phase can
also be modulated online.

= |f the robot cannot follow the
desired motion, a,,|y — y|

becomes large, which in turn

makes the phase change x small.
A, X

1+apx“3_’_yn
Ty =1 +apy(37_y)

X = —

lispeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computations, 25(2), 328-373.
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DMPs

Robustness against perturbation: h
. . . 0.8
+  Obstacle Avoidance: Spatial coupling |
. = 0.4,
Z=a,B,(g—y)—2)+f(x)+C, 0
Ty = 2Z, 29
Spatial Coupling C;, = yRy® exp(—£0) g;
where

((0 — y)TS'> 0.5 0
0 = arccos| ——————

lo —yllyl
r=(0—-y)Xxy. Y2
0 is the angle betweeny and (o — y) (Obstacle position — Current position)

Y4

[1] Hoffmann, H., et al (2009). Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance. In International Conference on
Robotics and Automation (pp. 2587-2592). Piscataway, NJ.
[2] ljspeert, A. J., et al (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computations, 25(2), 328-373.

Aalto University
School of Electrical 13.3.2021

Engineering o




DMPs

Goal switching:
« Adaptation to new goal attractor g 79 = adg(Gnew — 9)

08, 08 .
|—yl — Y y4| .

:’(— Tfinal

J

0
lk— Extra Time [s] —|

Time [s] Time [s]
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DMPs

Movement sequencing
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Geometry-aware DMPs:
Non-Euclidean Data
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Geometry-aware DMPs:
Riemannian Manifolds: Definition

“A smooth topological space that
locally resembles a Euclidean
space (e.g. R4, Sym¢%).”
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Geometry-aware DMPs:
Riemannian Manifolds: Tangent space

The metric in the tangent space
Is flat, which allows the use of
classical arithmetic tools.

To operate on tangent spaces, a
mapping system is required to
switch between 7', M and M.
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Geometry-aware DMPs:
Riemannian Manifolds: Exponential map
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Geometry-aware DMPs:
Riemannian Manifolds: Logarithmic map

) = Log, (h)

b= FExpy(h)

o University
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Geometry-aware DMPs:
Riemannian Manifolds

Re-interpretation of basic standard operations in a Riemannian manifold

Euclidean space Riemannian manifold

Subtraction ab=b—a AB = Loga(B)
Addition b=a+ab B = Exp,(AB)
Distance dist(a,b) = |[|b — a| dist(A, B) = ||AB|| A
Interpolation a(t) = a; + taja, A(t) = Expa, (tA;A)

X. Pennec, P. Fillard, and N. Ayache, “A riemannian framework for tensor computing,” International Journal of Computer Vision, vol. 66, no. 1, pp. 41-66, 2006.
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Geometry-aware DMPs:
Sphere manifold $¢: Unit quaternion S>

« Cartesian Space DMPs: in basic DMP equations, direct integration of unit
quaternions (used to represent 3-D orientation) does not ensure that the normal of
quaternions stays equal 1.

™ = a,(B,2log(g, *q) — M) + f,(x), | 8, € S> denotes the goal orientation.
1 q = v + u = v — u denotes the
Tq = En * (, quaternion conjugation.
_ q: * qz = (v +uy) * (v + uy)

TX = —QxX, = (v,v; —uiuy) + (vyuy + vouy + Uy X uy)
n € R3 is treated as quaternion with zero
scalar. u

. ) arccos(v)—, u#0
The quaternion logarithm log: $2 - R3, log(q) = log(v + u) = lFul

[0,0,0]T, otherwise

Abu-Dakka, F.J., Nemec, B., Jgrgensen, J. A., Savarimuthu, T. R., Kriiger, N., & Ude, A. (2015). Adaptation of manipulation skills in physical contact with the environment to reference force
profiles. Autonomous Robots, 39(2), 199-217.
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Geometry-aware DMPs:
Sphere manifold $¢: Unit quaternion S>

Quaternion logarithm can be used to specify the distance metric on the space of unit quaternion
S3 (Ude 1999)
log(q; *@)Il, 1 *q2 # —1+1[0,0,0]"
d(q., _ llog(q, * q; 1*4q2
(91, 92) {n, otherwise
Quaternion angular velocity: rotates quaternion q into g, within unit sampling time. Thus only
the application of the logarithmic map provides a proper mapping of the quaternion difference
g, * q onto the angular velocity. _
o = 2log(g, — 9

The logarithmic map becomes one-to-one and continuously differentiable if we limit its domain
to $3/(—1 + [0,0,0]T. Thus, we can define its inverse, i.e. the exponential map R3 — §3, as

r

cos(||r|]) + sin(||r|]) r+0

exp(r) = lIrll’
1+ [0,0,0]7, otherwise

[1] Ude, A. (1999). Filtering in a unit quaternion space for model-based object tracking. Robotics and Autonomous Systems, 28(2-3), 163-172.
[2] Abu-Dakka, F. J. et al. (2015). Adaptation of manipulation skills in physical contact with the environment to reference fore profiles. Autonomous Robots, 39(2), 199-217.
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Geometry-aware DMPs:
Sphere manifold $¢: Unit quaternion S>

* Phase Stopping:

- In the context of Cartesian space.
1 -
4 =5 (N +ap2log@- D) * q
- In the context of force feed back.

_ 1
q = 5(‘1 — “quqeq(x)) *q

Abu-Dakka, F.J., Nemec, B., Jgrgensen, J. A., Savarimuthu, T. R., Kriiger, N., & Ude, A. (2015). Adaptation of manipulation skills in physical contact with the environment to reference force
profiles. Autonomous Robots, 39(2), 199-217.
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Geometry-aware DMPs:
Special orthogonal manifold SO(d): Rotation matrix SO(3)

Original formulation

12 = a,(B,(g —y) —2) + f(x),
Ty = Z,

™ = a,(B,log(R,RT) — 1) + £, (x)

TR = [n]«R
N 0]
0 = | X
N Wilx) R(t + At) = exp <At ) R(t)
T
-1 ; T
D, (Tnj + an; — azB, (log(Rg Rj )
[1] Ales Ude, Bojan Nemec, Tadej Petric, and Jun Morimoto (2014). Orientation in Cartesian Space Dynamic Movement Primitives. ICRA, 2997-3004, Hong Kong, China.
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Applications:
Peg-in-Hole

A classical assembly problem.

» Requires position and force control
 Solutions: "

- Hard-coding.
- Learning.
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Applications:

Peg-in-Hole: Learning procedure with DMPs

Data Acquisition.

Encode data using Cartesian DMPs for orientation, and original DMPs
for position.

Adapt to a new situation and overcome errors coming from inaccurate
pose estimation and other uncertainties.

Integrate Iterative Learning Control to help in a successful peg insertion
Iteratively.

Triger phase stopping mechanism to slow down the robot whenever it
sense high forces.

A

Aalto University
School of Electrical 13.3.2021
Engineering o 38



Applications:

Peg-in-Hole: Learning procedure with DMPs

« Slowing Down

- The proposed controller tracks simultaneously the desired position/orientations and

forces/torques.

- Force/torque adaptations requires low gains for stable and robust operation.
- Thus, force adaptation is usually slow.

- Slowing down the trajectory execution using DMP slow-down feedback, whenever the

force/torque error is above the predefined limit.

el { 0 if |lep|| < max, A ||| < max,
e|l =
Il

e, e,
: Oy
TE = —
1+O‘pm“e”’
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Applications:
Peg-in-Hole: Learning procedure with DMPs

 Control scheme

Abu-Dakka, F.J., Nemec, B., Jgrgensen, J. A., Savarimuthu, T. R., Kriiger, N., & Ude, A. (2015). Adaptation of manipulation skills in physical contact with the environment to reference force
profiles. Autonomous Robots, 39(2), 199-217.
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Applications:
Peg-in-Hole: Learning procedure with DMPs

13.3.2021
41




Applications:
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Summary

* Robot learning is essential in order to make robots to execute new tasks and avoid
hard-coding.

« Learning from demonstration provides a friendly way to teach robots from human.

« Dynamic movement primitive is one of the imitation learning techniques that can be
used to teach robots manipulation skills from single demonstration.

« Peg-in-Hole problem: application example.

Readings:

« Saveriano, Matteo, Fares J. Abu-Dakka, Aljaz Kramberger, and Luka Peternel.
"Dynamic Movement Primitives in Robotics: A Tutorial Survey" arXiv preprint
arXiv:2102.03861 (2021).
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