Band-structure theory

March 15th 2021

A reminder from session #2

One dimensional tight binding chain

The Hamiltonian commutes with the translation operator

$$T: c_i \to c_{i+1} \qquad [H, T] = 0$$

$$[H,T]=0$$

$$T|\Psi_{\phi}\rangle = e^{i\phi}|\Psi_{\phi}\rangle$$

$$\phi \equiv$$
 Bloch phase of the wavefunction

$$\phi \in [0, 2\pi)$$

Today's learning outcomes

The spectra of non-interacting infinite periodic systems can be folded to a collection of finite systems

$$H=\sum_k H_k$$
 Bloch Hamiltonian

Today's plan

- Single band 1D band-structures
- Multi-band 1D band-structures
- Single band high dimensional band-structures
- Key properties of electronic dispersions
- ARPES

The physics of band-structures

Dirac fermions

Weyl semimetals

Topological insulators

Artificial band-structures with cold-atoms

Atoms trapped with lasers allow to realize artificial band structures

The world of cold atoms

https://www.youtube.com/watch?v=1hkFELI6mK0

Electronic band-structures

We will focus on the band-structures associated to electronic states

Band-structures in materials beyond electrons

Magnons

Magnets

Phonons

Any crystal

BdG quasiparticles

Superconductors

Single orbital band-structures

Basis of our Hamiltonian

Atomic orbital (non-orthogonal between different sites)

We will take as basis orthogonalized orbitals (Wannier states)

$$\langle n|n+1\rangle = 0$$

$$\int \Psi_n(\mathbf{r})\Psi_{n+1}^*(\mathbf{r})d^N\mathbf{r} = 0$$

From the finite to the infinite limit

We take a periodic large system, and then the limit when the sites are infinite

L= 7 sites

$$\Psi_{\phi}^{\dagger} = \frac{1}{\sqrt{L}} \sum_{n=0}^{n-L} e^{in\phi} c_n^{\dagger}$$

$$L=\infty$$
 sites

We will take this notation
$$\Psi_\phi^\dagger = \sum_n e^{in\phi} c_n^\dagger$$
 (for simplicity)

$$\Psi_{\phi}^{\dagger} = \sum_{n} e^{in\phi} c_{n}^{\dagger}$$

One dimensional band structure

We know that for an infinite 1D periodic system

The Hamiltonian is diagonalized as

$$H = \sum_{\phi} \epsilon_{\phi} \Psi_{\phi}^{\dagger} \Psi_{\phi} \qquad \qquad \Psi_{\phi}^{\dagger} \sim \sum_{n} e^{i\phi n} c_{n}^{\dagger} \qquad \qquad \langle \Psi_{\phi} | \Psi_{\phi'} \rangle = \delta_{\phi, \phi'}$$

How do we compute the Hamiltonian eigenvalues ϵ_{ϕ} ?

One dimensional band structure

Hamiltonian 1D periodic system

Direct and inverse transformation

One dimensional band structure

Hamiltonian 1D periodic system

$$H = \sum_{n} c_n^{\dagger} c_{n+1} + h.c.$$

$$H = \sum_{\phi} \epsilon_{\phi} \Psi_{\phi}^{\dagger} \Psi_{\phi}$$

$$\phi \in [0, 2\pi)$$

Bloch wavefunctions

$$\Psi_{\phi}^{\dagger} \sim \sum_{n} e^{i\phi n} c_{n}^{\dagger}$$

Question: one dimensional band-structure

What is the band-structure of the following Hamiltonian?

$$H = \sum_{i=-\infty}^{\infty} c_i^{\dagger} c_{i+1} + \eta c_i^{\dagger} c_{i+2} + h.c.$$

Option A

$$\epsilon_{\phi} = 2\cos\phi + 2\eta\cos2\phi$$

Option B

$$\epsilon_{\phi} = 2\cos\left(\phi + \eta\right)$$

Question: one dimensional band-structure

What is the band-structure of the following Hamiltonian?

$$H = \sum_{i=-\infty}^{\infty} c_i^{\dagger} c_{i+1} + \eta c_i^{\dagger} c_{i+2} + h.c.$$

Solution:

Option A

$$\epsilon_{\phi} = 2\cos\phi + 2\eta\cos2\phi$$

index of the orbital in the unit cell

Index of the unit cell

$$H = \sum_{n,\alpha,\beta} t_{\alpha\beta} c_{\alpha,n}^{\dagger} c_{\beta,n} + \sum_{n,\alpha,\beta} \gamma_{\alpha\beta} c_{\alpha,n}^{\dagger} c_{\beta,n+1} + h.c.$$

Unitary transformation

$$\Psi_{\phi,\alpha}^{\dagger} \sim \sum_{n,\beta} e^{i\phi n} U_{\alpha\beta} c_{n,\beta}^{\dagger} \qquad H = \sum_{\phi,\alpha} \epsilon_{\phi,\alpha} \Psi_{\phi,\alpha}^{\dagger} \Psi_{\phi,\alpha}$$

 $\epsilon_{\phi,\alpha}$ are the eigenvalues of the matrix

$$h(\phi) = t_{\mu\nu} + \gamma_{\mu\nu}e^{i\phi} + h.c.$$

Question: one dimensional multi-orbital band-structure

What is the band-structure of the following Hamiltonian?

$$H = \sum_{i=-\infty}^{\infty} c_{A,i}^{\dagger} c_{B,i} + \eta c_{B,i}^{\dagger} c_{A,i+1} + h.c.$$

Option A

$$\epsilon_{\phi} = \pm |1 + \eta e^{-i\phi}|$$

Option B

$$\epsilon_{\phi} = 2\cos\phi + 2\eta\cos\phi$$

Question: one dimensional multi-orbital band-structure

What is the band-structure of the following Hamiltonian?

$$H = \sum_{i=-\infty}^{\infty} c_{A,i}^{\dagger} c_{B,i} + \eta c_{B,i}^{\dagger} c_{A,i+1} + h.c.$$

Solution:
$$h(\phi) = \begin{pmatrix} 0 & 1 + \eta e^{-i\phi} \\ 1 + \eta e^{i\phi} & 0 \end{pmatrix}$$
 Option A
$$\epsilon_{\phi} = \pm |1 + \eta e^{-i\phi}|$$

Higher dimensional band-structures

Translational symmetry

For any generic wavefunction

 $\text{Momentum} \quad \hat{p} = -i\partial_x$

For a Bloch wavefunction

$$\Psi(x+a) = e^{i\phi}\Psi(x)$$

 $e^{i\phi}$ symmetry eigenvalue

k Crystal momentum

a lattice constant

$$e^{i\phi} \equiv e^{ika}$$

Higher dimensional band-structures

 $T_{m{r}}$ Translation in x

Two possible symmetry operations

$$T_x |\Psi_{(\phi_x,\phi_y)}\rangle = e^{i\phi_x} |\Psi_{(\phi_x,\phi_y)}\rangle$$
$$T_y |\Psi_{(\phi_x,\phi_y)}\rangle = e^{i\phi_y} |\Psi_{(\phi_x,\phi_y)}\rangle$$
$$\phi_x \in [0,2\pi) \qquad \phi_y \in [0,2\pi)$$

The "phases" live in the reciprocal space

$$\vec{\phi} = (\phi_x, \phi_y) \in \begin{bmatrix} \phi_y \\ \phi_y \end{bmatrix}_{\phi_x = 2\pi}$$

Reciprocal space

The phase is associated to the Bloch wavevector \vec{k}

$$\phi_x \equiv \vec{a}_1 \cdot \vec{k}$$

$$\phi_y \equiv \vec{a}_2 \cdot \vec{k}$$

 \vec{k} Is a vector in the Brillouin zone

Two possible symmetry operations

$$T_x |\Psi_{(\phi_x,\phi_y)}\rangle = e^{i\phi_x} |\Psi_{(\phi_x,\phi_y)}\rangle$$
$$T_y |\Psi_{(\phi_x,\phi_y)}\rangle = e^{i\phi_y} |\Psi_{(\phi_x,\phi_y)}\rangle$$

$$\vec{\phi} = (\phi_x, \phi_y) \in \phi_y$$

$$0 \qquad \phi_x \qquad 2\pi$$

Exercise: two-dimensional band-structure

What is the band-structure of a single orbital in a square lattice?

$$H = \sum_{\langle ij \rangle} c_i^{\dagger} c_j$$

Sum over first neighbors

Exercise: two-dimensional band-structure

What is the band-structure of a single orbital in a square lattice?

$$H = \sum_{\langle ij \rangle} c_i^{\dagger} c_j$$

$$\epsilon(k) = 2\cos k_x + 2\cos k_y$$

Exercise: three-dimensional band-structure

What is the band-structure of a single orbital in a cubic lattice?

$$H = \sum_{\langle ij \rangle} c_i^{\dagger} c_j$$

Sum over first neighbors

Exercise: three-dimensional band-structure

What is the band-structure of a single orbital in a cubic lattice?

$$H = \sum_{\langle ij \rangle} c_i^{\dagger} c_j$$

$$\epsilon(k) = 2\cos k_x + 2\cos k_y + 2\cos k_z$$

Macroscopic properties

Properties of the electronic dispersion

From now on, lets work with a specific electronic dispersion $\,\epsilon_{\,ec{l}}\,$

Density of states
$$D(\omega) \sim \int \delta(\omega - \epsilon_{\vec{k}}) d^N \vec{k}$$

Group velocity

$$v_F = \frac{\partial \epsilon_{\vec{k}}}{\partial k_{\alpha}}$$

Effective mass

$$\frac{1}{m_{\alpha\beta}} = \frac{\partial^2 \epsilon_{\vec{k}}}{\partial k_{\alpha} \partial k_{\beta}}$$

Fermi surface

$$\{\vec{k}\}$$
 with $\epsilon_{\vec{k}} = \epsilon_F$

Three important electronic dispersions

Parabolic bands

Semiconductors, metals *Effective free-electrons*

Dirac dispersion

graphene

Topology & relativistic physics

Flat bands

Quantum Hall Topology & correlations

Parabolic dispersion

Small k expansion

$$\epsilon(k) = 2t \cos ka \approx 2t \left[1 - \frac{k^2 a^2}{2} \right]$$

$$\epsilon(k) \sim k^2$$

Conventional parabolic dispersion

Parabolic dispersion

Dirac dispersion

Dirac dispersion

Low energy Hamiltonian at K-points

$$H(k) = \begin{pmatrix} 0 & k_x + ik_y \\ k_x - ik_y & 0 \end{pmatrix} \quad \mathbf{\Xi}$$

Two-dimensional Dirac equation

$$\epsilon(k) = \pm \sqrt{k_x^2 + k_y^2}$$

Flat bands

Flat bands

Computing band structures interactively

An interactive program to compute electronic structures

https://github.com/joselado/quantum-honeycomp

Measuring band structures

Angle-resolved photoemission spectroscopy

Angle-resolved photoemission spectroscopy (ARPES)

Angle-resolved photoemission spectroscopy

Measuring band-structureswith ARPES

Measuring Fermi surfaces with ARPES

Take home

- The spectra of periodic system can be computed with bandstructure theory
- The electronic dispersion determines the electronic properties of a compound
- Read pages 127-137 from Steven Simon's book, and pages 32-40 from Titus' notes

In the next session

 How to predict collective responses using bandstructure theory

