Band-structure theory
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A reminder from session #2

One dimensional tight binding chain
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H = Z c,l-LcHl + h.c.

1=—00

The Hamiltonian commutes with the translation operator
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¢ — Bloch phase of the wavefunction O € [O, 27T)



Today’s learning outcomes

The spectra of non-interacting infinite periodic
systems can be folded to a collection of finite systems

H=> H,
/ zk: AN

Full Hamiltonian Bloch Hamiltonian



Today’s plan

e Single band 1D band-structures
* Multi-band 1D band-structures
* Single band high dimensional band-structures

* Key properties of electronic dispersions
* ARPES



The physics of band-structures
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Artificial band-structures
with cold-atoms

Atoms trapped with lasers allow to realize artificial band structures




The world of cold atoms

https://www.youtube.com/watch?v=1hkFELI6mMKO

Quantum
Physics

Micro Kelvin
gas



Electronic band-structures
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We will focus on the band-structures
associated to electronic states



Band-structures in materials

bevond electrons

Magnons Phonons BdG quasiparticles
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Magnets Any crystal Superconductors




Single orbital
band-structures



Basis of our Hamiltonian

Atomic orbital (non-orthogonal between different sites)

X X X X

2s 2p, 2p, 2p,

We will take as basis orthogonalized orbitals (Wannier states) e @
(nln +1) = 0 /qfn(r)q;;+1(r)dNr ~ 0




From the finite to the infinite limit

We take a periodic large system, and then the limit when the sites are infinite

L= 7 sites L= 11 sites L, = oo sites
R We will take this notation T neo .}
V= 7 2 e - Uy =) e
\/Z (for simplicity)

n=0 n



One dimensional band structure

We know that for an infinite 1D periodic system

o-0-0-0-0-9

H = Zc};cnﬂ + h.c.

The Hamiltonian is diagonalized as

H=Y eVL0, T~y el (| W) = 644
¢ n

How do we compute the Hamiltonian eigenvalues € ?



One dimensional band structure

Hamiltonian 1D periodic system Direct and inverse transformation

0:0:0-0.0.0 W~ Y0 e
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Plug it in the
Z ein(¢'—¢) _ 0.

Mogonaﬁty
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One dimensional band structure

Bloch wavefunctions

\I!:r]5 ~ Z el

Hamiltonian 1D periodic system

€y 0}

€p = 2COS P = Electronic dispersion
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Question: one dimensional

band-structure

What is the band-structure of the following Hamiltonian?

H = CIC@+1 + UCICHQ + h.c.
1=—00

Option A Option B
€p = 2COS @ + 2ncos2¢ ey = 2cos (¢ + 1)



Question: one dimensional

band-structure

What is the band-structure of the following Hamiltonian?

H = CIC@+1 + UCICHQ + h.c.
1=—00

Solution: Option A
€p = 2COS P + 2mncos2¢



Multi-orbital
band-structures



Multi-orbital band-structures
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index of the orbital in the unit cell Index of the unit cell



Multi-orbital band-structures

L L L L L

Cell #1 Cell #2 Cell #3 Cell #4 Cell #5

H = Z taﬁcjy’ncﬁ,n -+ Z ’Yaﬁcjx,ncﬁ,n—l—l + h.c.

naaaﬁ f naaaﬁ \

Intra-cell Inter-cell
hoppings hoppings



Multi-orbital band-structures

H = Z taﬁcL’nCB,n + Z VQBCL7nCB,n+1 + h.c.

n7a7/8 n7a7/8

Unitary transformation

Vo~ D€ Vapey s H=2 csa¥yaVoa
¢,

€p,o are the eigenvalues of the matrix

h(9) =t + Ve + h.c



Question: one dimensional

multi-orbital band-structure

What is the band-structure of the following Hamiltonian?

O

H = C;,ZCB,?; -+ ncg,iCA,i—l-l + h.c.

1=—00

Option A Option B
€¢::|:|1—|—776_i¢’ €p = 2COS P + 21 cos @



Question: one dimensional

multi-orbital band-structure

What is the band-structure of the following Hamiltonian?

O

H = C;,ZCB,?; -+ ncg,iCA,i—l-l + h.c.

1=—00

0 1+ ne=®
Solution: (®) = (1 + ne'd 0 )

Option A €p = +[1 + ne—i¢|



Higher dimensional
band-structures



Translational symmetry

For any generic wavefunction

d(z +a) =eP*P(z) =

Momentum P = —i0,

For a Bloch wavefunction

U(z+a) = ePU(x)
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Taylor expansion

eiqb symmetry eigenvalue

k  Crystal momentum

(1 lattice constant

zqﬁE



Higher dimensional band-structures

Two possible symmetry operations

> To|¥ (5,.6,)) = €2 ¥(4,.0,))
= < Tyl (6,.0,0) = €1 ¥(,.0,)
e ¢z €(0,2m) @y € [0,2)
© :‘.r ________________ Y
Clz_v The “phases” live in the reciprocal space
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¢ — (¢x7 ¢y) - Py
Ta,/, Translation in x 0 o Dl



Reciprocal space

The phase is associated to the

Two possible symmetry operations

Bloch wavevector k Tw\\IJ(% %)) = e";% (s, 6,))
¢y — 62 - k
2m
. gb:(be,Qby) € Py
k 1s a vector in the Brillouin zone 0

bo 2



Exercise: two-dimensional

band-structure

What is the band-structure of a single orbital in a square lattice?

H = ZCTC]

(i3)

E

Sum over first neighbors




Exercise: two-dimensional

band-structure

What is the band-structure of a single orbital in a square lattice?

€(k) = 2cosky + 2cos k,



Exercise: three-dimensional

band-structure

What is the band-structure of a single orbital in a cubic lattice?

Sum over first neighbors




Exercise: three-dimensional

band-structure

What is the band-structure of a single orbital in a cubic lattice?

H = cl-L C;
(17)

€(k) =2cosky + 2cosk, + 2cosk,




Macroscopic properties



Properties of the electronic

dispersion

From now on, lets work with a specific electronic dispersion GE

—

Density of states  [)(w) ~ /5(w _ EE)de

Group velocity Effective mass Fermi surface
2
(P)’GE 1 _ 0 €x
mMag 6]6@8]{5

{k} with € = €F



Three important electronic

dispersions

Parabolic bands Dirac dispersion Flat bands

£l

-

0 Ky

Semiconductors, metals graphene Quantum Hall
Effective free-electrons Topology & relativistic physics Topology & correlations



Parabolic dispersion

Small k expansion G(k) = 2t cos ka ~ 2t |:1 —

e(k) ~ k°

AN

Conventional parabolic dispersion



Parabolic dispersion

Parabolic
dispersion




Dirac dispersion

Honeycomb lattice

Dirac points



Dirac dispersion

Low energy Hamiltonian at K-points

(0 ke tik,
H(k)_<kx—iky 0 ) s

Two-dimensional Dirac
equation Y

e(k) = :\/kg + k2

Dirac points



Flat bands

Lieb lattice

D | )

¢
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Flat band




Flat bands

Kagome lattice

Flat band



Computing band structures

Interactivel

Quantum Honeycomp: system selection 2D systems x Band structure

= Terms in the Hamiltonian Structure | Bands | DOSBands | DOS | LDOS | FS | QPI »
B A = 2
, 7 -( l ’ 1 ' -l l I’ l = zeamanye Sandstuciure
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l 1 f L] ) Kane-Mele 0.0
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LA~ r K M K r
Anti-Haldane 0.0 Geometry | Modify geometry
Anti Kane-Mele 0.0
Select the system you want to compute
Sublattice imbalance 0.0 -0.8 -04 0.0 0.4 0.8
A 50 Type of lattice | Honeycomb - Sz
i q pairing [0.0 supercell |1 Colormap RGB
Pairing kind Uniform B Ere Y sincon]
Islands Huge islands Offset
size
Ribbons Hybrid ribbons | Momentu resolved DOS ®
Surface Bulk
Sheets Multilayer graphene Max
0.5 0.5
Films Hybrid films =
> %]
5 0.0 0.0 S
Hofstadter butterflies 3D crystals g
w
Twisted multilayer graphene Single impurities. —0.5 —0.5 0
K-path [2r] K-path [2r1]
S
Update Quantum Honeycomp :‘m o
olor
Version 0.19.1

An interactive program to compute electronic structures
https://github.com/joselado/quantum-honeycomp



Measuring band structures



Angle-resolved photoemission

Specliroscor

-

Analyser

Angle-resolved photoemission spectroscopy (ARPES)



Angle-resolved photoemission

SPectroscor
Measuring band-structures Measuring Fermi
with ARPES surfaces with ARPES
=
Eo X
2:‘-‘




Take home

* The spectra of periodic system can be computed with band-
structure theory

* The electronic dispersion determines the electronic properties
of a compound

 Read pages 127-137 from Steven Simon’s book, and pages 32-
40 from Titus’ notes



In the next session

* How to predict collective responses using band-
structure theory

24

L
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