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1 Noise in quantum circuits (Lecture 3)
Previously we have assumed that our quantum system evolves over time isolated from
its surroundings. The Schrödinger equation captured the full system dynamics, mean-
while the Born rule provided an operational method to calculate the probabilities of
different measurement outcomes. However, we are mostly interested in situations
where our system carries an information to be processed and then finally retrieved.
Furthermore, practical measurements are continuous in nature, in the sense that we
gain information about our system gradually over time. In both situations a coupling to
the environment is inevitable and should be incorporated somehow into our description
of any quantum information processing task. Although a rigorous derivation of the
dynamics of an open quantum system is beyond the scope of our course, we can still
develop a solid understanding of a noisy process with the concepts we have already
learned in the previous lectures.
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Figure 1 – Quantum information processing

Not surprisingly, the environment comes into play as a bath of infinitely many
harmonic oscillators, such that each one of them is endowed with its own pair of
creation and annihilation operators

∑
k ~ωkb

†
kbk. The net effect of theses modes is to

exert a drag force on our quantum system to damp its motion.
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Figure 2 – Damping of a simple harmonic oscillator

Furthermore, we will assume that the interaction with the environment over some
time interval T is continuous. That is, we divide T into infinitesimal increments ∆t
then take the limit as ∆t→ 0. Moreover, during each of these small increments a new
arbitrary version of the environment interacts with the system. Thus the environment
always looks unchanging from the system’s perspective. This arbitrariness, reflecting
our incomplete knowledge of the vast degrees of freedom of the environment, can be
modelled as a Random process . That is a source that picks, according to some prob-
ability distribution, an erratic function (sample) from its associated sample space to
interact with the system. Meanwhile the ”unchanging” property of the environment
translates into two interesting characteristics of our random process, namely, staionar-
ity and ergodicity. The former means that the signal statistics are invariant under time
translations, whereas the later implies that when we observe the random process ”long
enough” , we witness a kind of ”concatenation” of all the possible samples from the
event space. In other words, we realize the entire same sample space over some long
time interval instead of running the same process infinitely many times in parallel. So
if we thought of the average of these ∆t interaction intervals as preparing parallel en-
vironments chosen from the same random process to act on the system, ergodicity tells
us that we can instead carry out an equivalent time average to measure the system. We
now give a more rigorous definition of each of the previous concepts and explain their
role in relating the noise present in some signal to its frequency description.

1.1 Random processes
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Figure 3 – Some sample functions of a random noise source.
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In probability theory a random process is a description of the output of a system that
appear to vary randomly over time 1. We can think of the depicted noise source in Fig.3
as an event space N = {Ei}n. Then each event Ei ∈ N is mapped to a time-varying
waveform x(t, Ei) denoted as a sample function. The set of all possible sample func-
tions {Ei}n is called the ensemble and defines the random process x(t) that describes
the noise source N . Thus each observed output generated by the noise source real-
izes one of the sample functions. Furthermore, as shown in Fig.3 we can define a set
of random variables x1 = x(t1), x2 = x(t2), ..., xn = x(tn), such that x(t) is the
random process. Here the random variable xj = x(tj) takes on values described by
the set of constants {x(tj , Ei),∀i} obtained by fixing a time tj inside the observation
interval. To summarize, a random process is characterized by two domains, namely,
amplitude and time. When time is fixed, for some value ti, the amplitude distribution
follows some probability density function (PDF). Generally speaking different PDFs
at different times are not equal, although when they are, we say the process possesses
a special property as we will see shortly. On the other hand, we characterize the time
behaviour of the random process when we consider evolving this PDF over time.

1.2 Stationarity
A random process x(t) is called N-order stationary if the N random variables joint
probability density function (PDF) is invariant under time translations

PN
[
x(t1), x(t2), ..., x(tN )

]
= PN

[
x(t1 + t0), x(t2 + t0), ..., x(tN + t0)

]
where t0 is a constant. Thus it is straight forward to conclude that a first order stationary
process is time-independent.

1.3 Ergodicity
Before giving a definition of ergodicity, we first introduce two notions of averages
regarding a random process.

1.3.1 Ensemble average

This is the kind of average obtained when we fix time at some value ti

x(t) =

∫ ∞
−∞

x P (x, ti) dx (1)

where P (x) is the PDF of the random variable x(tj , Ei)∀i. It is clear that for a station-
ary process we can drop the time label.

1In general, the system can be parametrized by any other parameter than time.
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1.3.2 Time average

Observing a particular realization of the random process for a sufficiently long time
produces what is known as the time average

〈x(t)〉 = lim
T→∞

1

T

∫ T/2

−T/2
x(t, Ei) dt (2)

For a periodic sample function the time average can be written as

〈x(t)〉 =
1

T0

∫ T0/2

−T0/2

x(t, Ei) dt

Thus, a random process is said to be ergodic if all time averages of any sample function
chosen from the ensemble are equal to the corresponding ensemble averages (expecta-
tions). In other words, observing any realization of an ergodic process for a sufficiently
long time produces the same statistical properties (moments) as observing simultane-
ously infinitely many outputs of the same random process.

1.4 Example of an ergodic process
Consider now the experiment of measuring the voltage across many identical resistors.
Assume further that we are performing this experiment in finite temperature environ-
ment. This means that the electrons motion across the resistor is random which in turn
implies that the ensemble average is equal to the time average. Thus the whole experi-
ment can be simulated by observing one resistor for sufficiently long time. As we will
see later in our course, this how we usually model an environment bath in a quantum
circuit.

2 Autocorrelation and cross-correlation of a a random
process

2.1 Auto-correlation
The auto-correlation function captures the time behavior of a signal. Simply put, it is
the multiplication of the amplitudes at t1 and t2, then averaging over the ensemble. let
x(t) be a real random process. Its auto-correlation function is

Rx(t1, t2) = x(t1)x(t2) =

∫ ∞
−∞

x1x2P (x1, x2) dx1dx2

where x1, x2 are random variables as depicted in Fig.3, and P (x1, x2) is their joint
PDF.

If the process is second order stationary(mean and variance are constant) then

P (x(t1), x(t2)) = P (x(t1 + t0), x(t2 + t0))
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Setting t1 equals to t0 gives

Rx(τ) = x(t)x(t+ τ)

where τ = t2 − t1.
Thus in this case the auto-correlation function depends only on the time difference.

3 Energy and power signals
Throughout this course we will be concerned with physically realizable waveforms.
These are finite energy continuous signals. Mathematically they are objects of the
infinite dimensional L2 space. Thus by virtue of Fourier theory we can represent any
physically realizable signal as a linear combination of ”basis” signals.

3.1 Energy signal

The energy content of a random signal (process) x(t) is just its squared norm2. This
norm induces an inner product operation. Thus, when x(t) is a complex-valued func-
tion, the L2 space becomes our beloved Hilbert space. Similar to a valid wavefunction,
x(t) should satisfy some basic properties , such as square integrability, continuity and
the the well-definedness of its norm. For the purpose of this discussion we only con-
sider real-valued functions.”Formally” speaking, the energy content of a real-valued
random process x(t) is

E =

∫ ∞
−∞

x2(t) dt, where0 < E <∞

where the finiteness of the energy of the signal x(t) is mirrored by the well-definedness
property of its norm.
However, the energy of a random process, as a quantity, doesn’t tell us that much about
the rate of energy transfer during the measurement process. Afterall, E is just a ran-
dom variable that takes some constant values. We can think of the measuring device
as an analog voltmeter for example, where the energy absorbed by the meter moves
its pointer. Thus we are looking for a quantity that reflects the time taken to regis-
ter a pointer’s movement after absorbing the energy of the random process (gradual
acquisition of information ). For this purpose we define power signals.

3.2 Power signal

From classical mechanics power P is the rate of energy transfer per unit time P = E
T .

For our continuous real-valued random process x(t) we can define a similar quantity

P = lim
T→∞

1

T

∫ T
2

−T
2

x2(t) dt where0 < P <∞

2More precisely the L2 norm.
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where T is an observation window. According to the above definitions, a finite energy
signal has zero power when averaged over infinite time, whereas a finite power signal
has infinite energy when T →∞.
At this point one should worry about whether the mathematically convenient descrip-
tion of power yields measurable experimental effects. As we mentioned earlier, our
measuring device is a meter with a movable pointer. After absorbing the signal’s
energy, the pointer’s movement will start deteriorating according to its damping coef-
ficient. The damping coefficient determines an observation interval, such that outside
this interval the power tends to zero. This allows us to yield finite observable values
while taking the limit as T → ∞. We have developed a similar concept in the first
lecture when the problem of a particle trapped inside a potential well was considered.
The assumption that the particle’s wavefunction dies at the well’s boundaries was im-
posed to avoid mathematical subtleties.
In the frequency domain we can similarly define the energy and power of a random
process. First we define a Fourier pair as

X(f) =

∫ ∞
−∞

x(t)e−2jπft dt

x(t) =

∫ ∞
−∞

X(f)e2jπft df

Then after applying Parseval’s theorem we get

E =

∫ ∞
−∞

X2(f)

P = lim
T→∞

1

T

∫ ∞
−∞

X2
F (f) df

where

XT (t) =

{
X(t) |T | < T

2

0 otherwise

is a truncated version of the random process selected over a specific period, andXF (f)
is its Fourier transform.

4 Power spectral density
Power spectral density (PSD) is a function that relates the power of a signal to its
frequency domain representation. In other words, it is the power per unit bandwidth.
The PSD can be written as

S(f) = lim
T→∞

[
X2
F (f)

T

]
Thus the average power of the random process in the frequency domain can be written
in terms of the PSD after exchanging the limit operation and integration.
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4.1 Transmission of random processes through a linear system
When a random process x(t) is applied at the input of a linear system with a transfer
function H(f) we can write the PSD of the output as

Sy(f) = |H(f)|2Sx(f)

Meanwhile the mean square voltage can be written as

v2 =

∫ ∞
−∞

Sy(f) df

x(f) y(f)H(f)

Figure 4 – Linear system transfer function

4.2 Wiener–Khintchine Theorem
The PSD is often calculated from the following property. Let’s assume that x(t) is
a wide-sense stationary process (constant mean and variance), then the PSD can be
obtained from the Fourier transform of the autocorrelation function

S(f) =

∫ ∞
−∞

Rx(τ)e−j2πfτ dτ

5 Revisiting the harmonic oscillator
Imagine now that the harmonic oscillator (HO) in Fig.2 is being acted upon with a
quantum force F̂ (t) representing an environment. Such situation arises either during
a measurement process or when the HO is undergoing some transition (|n+ 1〉  
|n〉 or |n〉  |n+ 1〉). In the former the environment is coupled to the HO number
operator a†a, while in the later it is coupled to the HO position operator x ∝ (a+ a†).
Since in this situation the system’s observables are not accessible, we measure the
auto-correlation function of the environment force to make an inference about the state
of the system. When thermal equilibrium is reached the principle of detailed balance
implies that the ratio between the PSD of the two possible transition rates is

SFF (Ω)

SFF (−Ω)
= 1 +

1

n̄

where n̄ is the average number of black-body photons.
In the limit of large n̄ the classical symmetry between the transition rate PSDs is re-
stored. However, when we cool down our environment i.e.n̄ ≈ 0 the symmetry no
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longer holds as the ratio diverges, and the two PSDs correspond to different phenom-
nea heating/cooling of a harmonic oscillator. Unfortunately this is way out of the scope
of our course.

6 Superconductivity (Lecture 4)
The Josephson junction (JJ) that we have studied thoroughly during the lecture is the
basis for different qubit architectures. We are going to postpone the discussion of
these qubit realizations till a future lecture. Meanwhile, we only focus on the analogy
between the JJ and the harmonic oscillator model.
As we have seen the super current inside each side of the junction is made of pairs
of electrons called Cooper pairs. These electrons occupy a macroscopic wavefunction
with a well-defined phase. Tunneling occurs when electron pairs migrate from one
side of the junction to the other, thus decreasing/increasing the number of cooper pairs
at superconducting lump. Thus it is quite natural to characterize the behaviour of JJ
by the number of cooper pairs, hence we define an ”observable” corresponding to the
number of cooper pairs

N =
∑
n

|n〉n 〈n|

where n = 0,±1,±2,±3, .... and |n〉 are the eigenstates of the number operator N
By analogy with the quantum theory of electromagnetic radiation we define an operator
corresponding to the condensate phase

eiϕ̂ =
1

2

∫ 2π

0

dϕ′ eiϕ
′
|ϕ′〉 〈ϕ′|

It is straight forward to conclude that this operator has a space of eigen-kets |ϕ〉 as de-
fined in the exercise sheet. Pushing this analogy one step further, we impose a canonical
commutation relation between the two observables similar to that between the position
and momentum of a harmonic oscillator

[N, eiϕ̂] = i

However our assumption that cooper pair number operator has a discrete spectrum
leads us to a contradiction. To see this, consider calculating the matrix element of the
previous commutator bracket for any two arbitrary number states |n〉, and |n′〉

〈n′| [N, eiϕ̂] |n〉 = iδnn′

Then using the definition of the number operator we get

〈n′|
(∑
n′′

|n′′〉n′′ 〈n′′|
)
eiϕ̂ |n〉 − 〈n′| eiϕ̂

(∑
n′′

|n′′〉n′′ 〈n′′|
)
|n〉 = iδnn′

(n′ − n) 〈n′|eiϕ̂|n〉 = iδnn′

Thus when n = n′ we get a contradiction! This actually asserts the remark pointed
out during the lecture that we shouldn’t take the discrete nature of the cooper pairs
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too serious and it is more convenient to think of the condensate wavefunction as a
coherent macroscopic state of knowledge of continuous nature. Usually the problem of
the quantum phase is dealt with in the context of quantum optics. We can find more
concrete arguments in any standard textbook on the subject.

7 Some useful definitions of the delta function

δnm =
1

2π

∫ 2π

0

dϕ e−i(n−m)ϕ

δ(ϕ− ϕ′) =
1

2π

∑
n

e−in(ϕ−ϕ′)
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