SILO.

Neural Network

Language Models
& BERT

Mittul Singh

Silo Al



Language Model
Applications



Language Model
Applications

e Spelling correction, text input netmeg

e Search Query Comp|etion Web mages Maps Shopping Books

SNLP 2021 2 Silo Al



Language Model
Applications

e Spelling correction, text input netmeg

e Search Query Completion
e Optical character recognition

* e.g. scanning old books

SNLP 2021 2 Silo Al



Language Model
Applications

e Spelling correction, text input netmeg

e Search Query Completion

= Google Translate

TURKISH T ENGLISH
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Language Model
Applications

Spelling correction, text input

netmeg

e Search Query Completion

Google Translate

Optical character recognition Passage Sentence

* e.g. scanning old books In meteorology, precipitation is any
product of the condensation of
atmospheric water vapor that falls
under gravity.

Statistical machine translation

e |[nformation retrieval

Question

e Question Answering

What causes precipitation to fall?

Answer Candidate

gravity

SNLP 2021 2 Silo Al



Language Model
Applications

Spelling correction, text input

e Search Query Completion

gle Translate

e Optical character recognition

. Who is Siri? 2
* e.g. scanning old books § Sapaihiogeucy
I'm Siri. But enough about me... can ask me: {1t might be a good time to write a
how can | help you? | book, and | can give you some
- Phons || titleideas. Just say, “What
’ ¥ “Call Bria should I call my novel?"

Statistical machine translation

e |[nformation retrieval

Py Apple Pay.

- Calendar
Set 1 meeting at

e Question Answering

S

Automatic speech recognition
Answer Candidate

gravity
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Recap: N-gram Language
Models

e \We wanted to calculate
p(W) = p(wy,ws, ..., Wy, ) (1)

plw;|wi—1,Wi—g, ..., Wp—1) = p(w;|wi—1, W;—9, Wi—3,Wi—g)  (2)
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Neural Network Classifier
for Language Modelling

Input? Output?

Image: http://mt-class.org/jhu/slides/lecture-nn-Im.pdf
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Neural Network Classifier
for Language Modelling

Output?

HULE

Image: http://mt-class.org/jhu/slides/lecture-nn-Im.pdf
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Neural Network Classifier
for Language Modelling

Word$

HULE

Image: http://mt-class.org/jhu/slides/lecture-nn-Im.pdf
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Representing Words

 Words are represented with one-hot vector, e.qg.,
e dog=(0,0,0,1,0,0, ...
e cat=(0,0,0,0,0,1, ...
e eat=(0,1,0,0,0,0, ...
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Second Sketch
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Image: http://mt-class.org/jhu/slides/lecture-nn-Im.pdf
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Feedforward Neural
Network LM (FFNN)

* |Loop through the entire
corpus

e (Calculate error or loss
(cross-entropy loss)
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Feedforward Neural
Network LM (FFNN)

Loop through the entire
corpus

Calculate error or loss
(cross-entropy loss)

Propagate the error
through network to
update the weight
matrices

Back Propagation

WORD4

A

l w

Hidden (t)
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Why NNs for LMs

_ S The cat is running in a room
The cat is walking in the bedroom

=> A dog is walking in a bedroom

A dog was running in a room -
The dog was walking in the room

* NNLM generalizes in such a way that similar words have
similar vectors
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Why NNs for LMs

_ S The cat is running in a room
The cat is walking in the bedroom

=> A dog is walking in a bedroom

A dog was running in a room -
The dog was walking in the room

* NNLM generalizes in such a way that similar words have
similar vectors

* Presence of only one such sentence in the training set
helps improve the probability of its combinations
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Types of NNLM

 Feedforward Neural Network Language Model
 Recurrent Neural Network Language Model
 Long-Short Term Memory LM

e Transformer-based LM
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NNLM: Questions

 What might be some challenges that you might face while
training or applying NNLMs?
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Feedforward: Long-term
Information

e “| grew up in France... | speak fluent French >

e Feedforward Neural Network (FFNN) has limited context
size
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Recurrent Neural Networks
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Recurrent Neural Networks
(RNN)
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RNN: Timestep 1
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RNN: Timestep 2
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RNN: Timestep 3
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Theoretically information from first step is available to the present timestep
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e “| grew up in France... | speak fluent French >
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e “| grew up in France...

* As the gap grows, RNNs become unable to learn to
connect information
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* Error (red arrow) is passed through a chain of hidden

states

e Error passing through multiple of these functions can

vanish

SNLP 2021

Image: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
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Problems with RNN

 The main problem with RNNs is that gradients less than 1
become exponentially small over time
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Problems with RNN

 The main problem with RNNs is that gradients less than 1
become exponentially small over time

e Known as the vanishing gradient problem

e Gradients greater than 1 become exponentially large over
time (the exploding gradient problem)-

* This leads to training instability, and bad results

e Sequence Modeling: https://www.deeplearningbook.org/
contents/rnn.html

* The exploding gradient problem can be alleviated by clipping large gradient values to some maximum number
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Long-Short Term Memory
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e | ets add another neural network help the first network
learn long-distance relationships

 That’s basically what we do when we add more weight
matrices to a neural network

Image: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
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LSTM: States
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LSTM: States
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e Global Stateaptures global information at the
document/ sentence level
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LSTM: States
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e Global Stateaptures global information at the
document/ sentence level

e LSTM hidden state hifinteracts with this global state to
predict the next word
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o sigmoid function
w,. weight of the respective gate(x)
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fr = o(wglhi—1, x¢] + by)
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fr = o(wglhe—1, 2] + bp)

Cp = ci—1 * fi

* weights and bias
wg =1[1 1
e 0:sigmoid fn * : pointwise multiplication

e “7Is vector concatenation
* hi_1=[1], &-1=[2], T+ =[0.2]

/
e calculate: ¢,
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fr = o(wglhe—1, 2] + bp)

Cp = ci—1 * fi

* weights and bias
wg =1[1 1
e 0:sigmoid fn * : pointwise multiplication

e hi_1=[1], ¢&t—1=[2], T+ =[0.2]

/
e calculate: ¢ _

’U]f[ht_l,l't] -+ bf — [1 1] X 0.9 — [12]
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fe = o(wglhs—1,x¢] + )

C; = Ct—1 * [

* weights and bias
wg =1[1 1
e 0:sigmoid fn * : pointwise multiplication

e hi_1=[1], ¢&t—1=[2], T+ =[0.2]

e calculate: C;
’U]f[ht_l,l't] -+ bf — [1 1] X — [12]

0.2
fr = lo(1.2)] = [0.77] -
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fr = o(wglhe—1, 2] + bp)

Cp = ci—1 * fi

* weights and bias
wg =1[1 1
e 0:sigmoid fn * : pointwise multiplication

e hi_1=[1], ¢&t—1=[2], T+ =[0.2]

e calculate: C; h
wrlhi—1,2¢] +0r =1 1] X 02| = 1.2]
fr = lo(1.2)] = [0.77] -

¢, = ci_1 * fr = [2] % [0.77] = [1.54]
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LSTM Problems

* Forget gate: removes information from the Global Cell state (C)

 Implicit representation of long-term information

SNLP 2021

e this information might be be useful at a later stage

e (Cell state and previous hidden state summarise the prior
information

HO
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Transformers for Language Modelling
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Transformers: Simplified

[ 1 1 1 )
T 1 1
L] L[] L]
[ 1 T 1 ]
1 1 1

NN NN NN

Multiple (50-90) such layers in a Transformer LM

Credit: http://jalammar.github.io/illustrated-transformer/
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Transformers: Simplified

1 1 1

1 1 1
L] L[] L]

1 1 1

Multiple (50-90) such layers in a Transformer LM

Credit: http://jalammar.github.io/illustrated-transformer/
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http://jalammar.github.io/illustrated-transformer/

Self-Attention

e E.g. “The animal didn't cross the street because it was
too tired”

e What does “it” refer to? “The animal” or “the street”

o Self-attention is the mechanism that helps LM associate:

 “It” with “the animal”

Credit: http://jalammar.github.io/illustrated-transformer/
SNLP 2021 31 Silo Al
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Self-Attention: Step O

Input

Embedding

Queries

Keys

Values

Credit: http://jalammar.github.io/illustrated-transformer/
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Self-Attention: Step O

Input

Embedding

Queries
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Values

Credit: http://jalammar.github.io/illustrated-transformer/
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Input Thinking Machines
Embedding X1 X2
Queries 1 2
Keys ki K2
Values Vi V2
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Input Thinking Machines
Embedding X1 X2
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Input Thinking Machines
Embedding X1 X2

Queries 1 02
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Values Vi V2

Score qir e ki=112 qi ® k2 =96
Divide by 8 (/d;. ) 14 12
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Input Thinking Machines
Embedding X1 X2

Queries 1 02

Keys ki K2

Values Vi V2

Score qir e ki=112 qi ® k2 =96
Divide by 8 (/d;. ) 14 12
Softmax 0.88 0.12
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Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ( Vd) )

Softmax

Softmax
X
Value

Thinking Machines
X1 X2
g1 gz
K1 k2
V1 V2
qir e ki=112 qi ® ko =96
14 12
0.88 0.12
V1 V2
37
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Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (/dy )

Softmax

Softmax
X
Value

Sum

Thinking

X1

K1

V1

q1.k1=

V1

Z1

X2

K>

V2

Machines

V2

0k2

38
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Credit: http://jalammar.qgithub.io/illustrated-transformer/
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Transformers: Simplified

[ 1 1 1 )
T T 1
L] L[] L]
[ T T 1 ]
1 1 1

Credit: http://jalammar.github.io/illustrated-transformer/
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Self-Attention

e Self-Attention seems to be asking an association question
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Self-Attention

e Self-Attention seems to be asking an association question
e Query ~ smaller word embedding
e Key & Value ~ Key is the hash key that maps to Value

* The names Query, Key and Value come from retrieval
parlance

e you fire a query, you compare to a key vector and
return the value
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Self-attention:

SNLP 2021

“Computers are thinking machines”

Compute z for machines

Q:K:V:

0.2 0.8
—0.2 0.5
—0.3 —0.4

0.7 0.7

exercise

Computers=[1000],are =[01 0 0], thinking=[00 1 0],

machines = [0 0 0 1]

Softmax

41
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Self-attention:
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“Computers are thinking machines”

Compute z for machines

Q:K:V:

0.2 0.8
—0.2 0.5
—0.3 —0.4

0.7 0.7

exercise

Computers=[1000],are =[01 0 0], thinking=[00 1 0],

machines = [0 0 0 1]

Softmax

42

z=[0.24 0.55]
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Input Computers are thinking machines

Embedding [100Q0Q] [0100] [0010] [000 1]

Queries [0.2 0.8] [-0.2 0.5] [-0.3 -0.4] [0.7 0.7]
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Values

Score gk

Divide by,[2( Vd} )
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X
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Input
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Transformers for Language

Modelling

* RNNSs: Process tokens one-by-one

e Chain of dependencies built using a single [ A J‘ﬁ:
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Transformers for Languag
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* RNNSs: Process tokens one-by-one

e

e Chain of dependencies built using a single [ F m:qr—
token

 Transformers LM: Process a segment of
tokens
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Transformers for Languag
Modelling

* RNNSs: Process tokens one-by-one

e

S
e Chain of dependencies built using a single [ i J‘ﬁ:r—ﬂ o }‘
token | |
3 ® ©
 Transformers LM: Process a segment of
tokens
1 1 t
* Dependencies within the segment [
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Transformers for Language
Modelling

* RNNSs: Process tokens one-by-one

* o o
e Chain of dependencies built using a single [ R ﬁ:r—ﬂ F }‘
token | |
3 ® ©
 Transformers LM: Process a segment of
tokens
t 1 t
* Dependencies within the segment [ )
f f f
e Within segment position is given by the : : :
positional encoding [ T ]

SNLP 2021 44 Silo Al



Transformer LM processing

5 6 6 6
O O O O
O O 0O O
o o o o

Segment 1

of Segments

© O O
© O O
o O O
99

Segment 2

(a) Training phase.

SNLP 2021

© 0 0 9 O
o o g o o
o d o o o
oo s

Limited Context

45

O

O

&

Segment Size ~ 4

© o o 9
¢ O O
o O O O
oo o

Limited Context

(b) Evaluation phase.

Dai et al., 2019

O

O

w

Silo Al


http://www.apple.com/uk

Transformer LM processing
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(a) Training phase.

e Limited context-dependency
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* the model can’t “use” a word that appeared several sentences ago.
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Transformer LM processing
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Segment 2

(a) Training phase.

e Limited context-dependency

* the model can’t “use” a word that appeared several sentences ago.

e Context fragmentation
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* no relationships can be leveraged across segments
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https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder
Representations from Transformers
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BERT: Bidirectional Encoder
Representations from Transformers
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answering there is a lack of training data

 Deep learning requires large amounts of annotated data
 |anguage models for general purpose representations
* Aim to pretrain general purpose representations

* that can be fine-tuned using small task-specific dataset to
obtain good performance on specialised tasks
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BERT: Bidirectional Encoder
Representations from Transformers

* For specialised tasks like named entity recognition, question
answering there is a lack of training data

 Deep learning requires large amounts of annotated data
 |anguage models for general purpose representations
* Aim to pretrain general purpose representations

* that can be fine-tuned using small task-specific dataset to
obtain good performance on specialised tasks

* Welcome BERT! Fext
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Transformers for Language
Modelling
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Image Credit: https://arxiv.org/pdf/1706.03762.pdf
Content Credit:TransformerXL Explained & Al-Rfou et al. 2018
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Transformers for Language
Modelling

e Transformers LM
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Image Credit: https://arxiv.org/pdf/1706.03762.pdf
Content Credit:TransformerXL Explained & Al-Rfou et al. 2018
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Transformers for Language
Modelling

e Transformers LM
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e Unidirectional [ J
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Image Credit: https://arxiv.org/pdf/1706.03762.pdf
Content Credit:TransformerXL Explained & Al-Rfou et al. 2018
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Transformers for Language
Modelling

e Transformers LM

t t t
e Unidirectional [ J
e Segment of tokens th th th

t t t

Image Credit: https://arxiv.org/pdf/1706.03762.pdf
Content Credit:TransformerXL Explained & Al-Rfou et al. 2018
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Transformers for Language
Modelling

e Transformers LM

. . ] T T T
 Unidirectional [ o J
e Segment of tokens th th th
t t t
e |anguage Models predict the [ ]

next word 1 t t

Image Credit: https://arxiv.org/pdf/1706.03762.pdf
Content Credit:TransformerXL Explained & Al-Rfou et al. 2018
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Encoder Representations

 Require only the representations

* Forego of the output layer and only keep the encoder
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Traditionally,

| anguage Models predict the next word

* Or loosely, they “fill in the blank” based on the context

* The man went to the store and bought a of shoes
| .anguage models are mostly used as unidirectional tools

e Bidirectionality in this above example can help make a better
judgement

* |In BERT, this bidirectionality is important to obtain good
general purpose representations
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* Pretraining

e Takes lots and lots of sentences
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BERT: Learning Setup

* Pretraining

e Takes lots and lots of sentences
e Masked LM

e Next Sentence Prediction

e Finetune
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e Use specialised tokens CLS, SEP



Masked LM

/ N
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e Use specialised tokens CLS, SEP
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+ + + + + + + + + + +
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ + + + + + + + + + +
Position
Embeddings E0 El Ez E3 E4 ES E6 E7 E8 E9 Elo
e Use specialised tokens CLS, SEP
e 15% of the tokens are randomly masked
SNLP 2021 52 Silo Al




Masked LM

Input [CLS] W my dog | |MASK ( cute 1 [SEP] he ( likes H play W MASK 1 [SEP]
Tok
E(r)nt?enddings E[CLS] Emy Edog Em"’ESk Ecute E[SEP] Ehe Elikes Eplay Emas‘i E[SEP]
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Next Sentence Prediction

/ / N y \ / \
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Token
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Output [CLS] my dog is ( cute W [SEP] he ( likes W play W ##ing 1 [SEP]

isNext?
Use the CLS output embedding to predict is sentence B is
the next sentence or not.
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Fine-tuning

Class Class
Label Label
— 5
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(@) Sentence Pair Classification Tasks:

MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG
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(c) Question Answering Tasks:
SQUAD v1.1
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|

Single Sentence

(b) Single Sentence Classification Tasks:

SST-2, ColLA
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BERT
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I

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER
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Glue Test Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTRAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT L ArRGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1
[Jacob Devlin et al 2018]
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Reading Task

e Read this article: https://medium.com/@samia.khalid/
bert-explained-a-complete-guide-with-theory-and-
tutorial-3ac9ebc8farc

 Prepare questions to discuss!

e Time: 10 mins
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https://medium.com/@samia.khalid/bert-explained-a-complete-guide-with-theory-and-tutorial-3ac9ebc8fa7c
https://medium.com/@samia.khalid/bert-explained-a-complete-guide-with-theory-and-tutorial-3ac9ebc8fa7c
https://medium.com/@samia.khalid/bert-explained-a-complete-guide-with-theory-and-tutorial-3ac9ebc8fa7c
https://medium.com/@samia.khalid/bert-explained-a-complete-guide-with-theory-and-tutorial-3ac9ebc8fa7c

Summary

e NNLM:
e LSTMs
e Transformers
e Self Attention
e BERT
e Challenges
 Long-Term Dependencies
e Class-based output layer

e Rare Words
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Further Reading

 Neural Networks and Neural Language Models: https://
web.stanford.edu/~jurafsky/slp3/7.pdf
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Neural Network Training
STILL WAITING
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e Slowest part of training an NNLM
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Softmax Normalization

IS softmax normalization
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Softmax Normalization
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Is softmax normalization X
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Softmax Normalization

e Slowest part of training an NNLM
IS softmax normalization

e Why?

e Before the softmax layer (final
layer) we just have a real number,
not a probability
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Softmax Normalization
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e Before the softmax layer (final
layer) we just have a real number, \4
not a probability 7 o Wi D
e So we need to know the sum of k=1

scores for all possible words
being predicted (ie. the
normalization constant)
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Slowest part of training an NNLM
IS softmax normalization

Why? ew;.r -h
plwilh) = —

Before the softmax layer (final

layer) we just have a real number, \4

not a probability 7 o Wi D

So we need to know the sum of k=1

scores for all possible words

being predicted (ie. the

normalization constant)

This involves |V| steps, where |V| is the size of the vocabulary

Typical values of |V| are between 10K to 10M
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Softmax Normalization

e Slowest part of training an NNLM
IS softmax normalization

e Why? ew;.r -h
plwilh) = —
e Before the softmax layer (final
layer) we just have a real number, \4
not a probability 7 o Wi D
e So we need to know the sum of k=1

scores for all possible words
being predicted (ie. the
normalization constant)
e This involves |V| steps, where |V| is the size of the vocabulary

* Typical values of |V| are between 10K to 10M

* \We must do this for every word in our training set (eg. 1TM-1B), every epoch (> 10)
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Class-based Output Layer

e (Class-based output is calculated as:

p(w) = p(w|C(w)) x p(C(w))

membership probability class probability
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Class-based Output Layer

e (Class-based output is calculated as:

SNLP 2021

p(w) : [V

p(w) = p(w|C(w)) x p(C(w))

membership probability class probability

Word Output Layer

T

Hidden

T

Input

61

p(C(w)) : VIVI

Class Output Layer

|

— Hidden

T

Input

p(w|C(w))

Silo Al



Class-based Output Layer

e (Class-based output is calculated as:

p(w) = p(w|C(w)) x p(C(w))

membership probability class probability

p(w) : [V] p(C(w)): VIV]  p(w|C(w))
Word Output Layer Class Output Layer
—> Hidden —> Hidden
Input Input

e Softmax: N x 4M (Vocabulary)
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Class-based Output Layer

e (Class-based output is calculated as:

p(w) = p(w|C(w)) x p(C(w))

membership probability class probability

p(w) : [V] p(C(w)): VIV]  p(w|C(w))
Word Output Layer Class Output Layer
—> Hidden —> Hidden
Input Input

e Softmax: N x 4M (Vocabulary)

e (Class-based Output: N x 2K (Classes)
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Speeding up Normalization
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e Class-based Decomposition 0(v/V])
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e Class-based Decomposition 0(v/V])

 Noise Contrastive Estimation (NCE) O(1)

SNLP 2021 62 Silo Al



Speeding up Normalization
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Speeding up Normalization

e Class-based Decomposition 0(v/V])
 Noise Contrastive Estimation (NCE) O(1)
e Hierarchical Softmax O(log, [V])

e Self Normalization ensures that the normalization
constant Z is close to one. Slow for training, fast for test-
time queries O(1)
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Question

 What kind of words will be tough to predict by neural
network language model? And what can help the NNLM
to predict these?
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Rare Words

* Rare words: words which occur with low frequency
e Qut-of-Vocabulary words (OOVs: Frequency 0 in training set)
* Frequency is 1

* Problem learning good feature vectors for such words
* Not enough data

* A predictive system is not able handle them well

 One would want automatic Video Subtitling Systems to predict
these words as well
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Rare Words

Languages

Finnish

English
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Rare Words

Languages Training Set

Size

Finnish 170M
"""""" owedsh | taomM |
mabe | aeom |
"""""""
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Rare Words

Training Set

Languages Size Vocabulary
Finnish 170M 4.2M
"""""" owedsh | oM | s
wae | sm | o
"""""""
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Rare Words

Languages Traini_ng Set Vocabulary Rare Words
Size = (f<1)
Finnish 170M 4.2M 95 %
"""""" owedsh | oM | e | se%
wae | sm | v 5%
"""""""
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Rare Words

Languages Traini_ng Set Vocabulary Rare Words Rare Words
Size - (f<1) (f<5)
Finnish 170M 4.2M 55 % 82 %
"""""" owedsh | oM | soM | so% | e%
wae | sm | v s% | m%
"""""""
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Rare Words

Languages Traini_ng Set Vocabulary Rare Words Rare Words
Size - (f<1) (f<5)
Finnish 170M 4.2M 55 % 82 %
"""""" owedsh | oM | soM | so% | e%
wae | sm | v s% | m%
"""""""

Rare words form a large portion of the vocabulary
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OOVs

 Morphologically-rich languages have a lot of OOVs

SNLP 2021 66 Silo Al



OOVs

 Morphologically-rich languages have a lot of OOVs

* (Creating a large training corpus can still lead to OOV
rate ~ 2%
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OOVs

 Morphologically-rich languages have a lot of OOVs

* (Creating a large training corpus can still lead to OOV
rate ~ 2%

e Some languages (low-resource) can have OOV rates as
high as 40%
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Subwords

e Segment words into subwords

» Words: This sentence simply has words

SNLP 2021 67 Silo Al



Subwords

e Segment words into subwords
» Words: This sentence simply has words

* Morphemes: Th is sent ence in to morph eme s
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Subwords

e Segment words into subwords
» Words: This sentence simply has words
* Morphemes: Th is sent ence in to morph eme s

e Characters: Thisoneintocharacters
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Summary

e NNLM:
e LSTMs
e Transformers
e Self Attention
e BERT
e Challenges
 Long-Term Dependencies
e Class-based output layer

e Rare Words
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