

# Neural Network Language Models & BERT

Mittul Singh

- Spelling correction, text input
  - Search Query Completion



- Spelling correction, text input
  - Search Query Completion
- Optical character recognition
  - e.g. scanning old books



- Spelling correction, text input
  - Search Query Completion
- Optical character recognition
  - e.g. scanning old books
- Statistical machine translation



- Spelling correction, text input
  - Search Query Completion
- Optical character recognition
  - e.g. scanning old books
- Statistical machine translation
- Information retrieval
  - Question Answering



#### **Passage Sentence**

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

#### Question

What causes precipitation to fall?

#### **Answer Candidate**

gravity

- Spelling correction, text input
  - Search Query Completion
- Optical character recognition
  - e.g. scanning old books
- Statistical machine translation
- Information retrieval
  - Question Answering
- Automatic speech recognition

• ...





#### **Answer Candidate**

gravity

### Recap: N-gram Language Models

### Recap: N-gram Language Models

We wanted to calculate

$$p(W) = p(w_1, w_2, \dots, w_n) \tag{1}$$

$$p(w_i|w_{i-1},w_{i-2},\ldots,w_{n-1}) \approx p(w_i|w_{i-1},w_{i-2},w_{i-3},w_{i-4})$$
 (2)

## Neural Network Classifier for Language Modelling



## Neural Network Classifier for Language Modelling



## Neural Network Classifier for Language Modelling



#### Representing Words

### Representing Words

- Words are represented with one-hot vector, e.g.,
  - dog = (0, 0, 0, 1, 0, 0, ...)
  - cat = (0, 0, 0, 0, 0, 1, ...)
  - eat = (0, 1, 0, 0, 0, 0, ...)

#### Second Sketch





Loop through the entire corpus



**FFNN** 

- Loop through the entire corpus
- Calculate error or loss (cross-entropy loss)



- Loop through the entire corpus
- Calculate error or loss (cross-entropy loss)
- Propagate the error through network to update the weight matrices



- Loop through the entire corpus
- Calculate error or loss (cross-entropy loss)
- Propagate the error through network to update the weight matrices
- Back Propagation



**FFNN** 

The cat is walking in the bedroom

A dog was running in a room

The cat is walking in the bedroom

A dog was running in a room

The cat is running in a room

-> A dog is walking in a bedroom

The dog was walking in the room

The cat is walking in the bedroom

A dog was running in a room

The cat is running in a room

A dog is walking in a bedroom

The dog was walking in the room

 NNLM generalizes in such a way that similar words have similar vectors

The cat is walking in the bedroom

A dog was running in a room

The cat is running in a room

A dog is walking in a bedroom

The dog was walking in the room

- NNLM generalizes in such a way that similar words have similar vectors
- Presence of only one such sentence in the training set helps improve the probability of its combinations

#### Types of NNLM

- Feedforward Neural Network Language Model
- Recurrent Neural Network Language Model
- Long-Short Term Memory LM
- Transformer-based LM

• ..

#### NNLM: Questions

 What might be some challenges that you might face while training or applying NNLMs?

Long-Range Dependencies

- Long-Range Dependencies
- Training Speed

- Long-Range Dependencies
- Training Speed
- On-disk Size

- Long-Range Dependencies
- Training Speed
- On-disk Size
- Rare Context

- Long-Range Dependencies
- Training Speed
- On-disk Size
- Rare Context

• ...

### Feedforward: Long-term information

• "I grew up in France... I speak fluent \_\_\_\_."

### Feedforward: Long-term information

• "I grew up in France... I speak fluent French."

### Feedforward: Long-term information

- "I grew up in France... I speak fluent French."
- Feedforward Neural Network (FFNN) has limited context size



**FFNN** 











## RNN: Timestep 1



## RNN: Timestep 2



## RNN: Timestep 3



Theoretically information from first step is available to the present timestep

#### RNN

• "I grew up in France... I speak fluent French."



#### RNN

- "I grew up in France... I speak fluent <u>French</u>."
- As the gap grows, RNNs become unable to learn to connect information



#### RNN



- Error (red arrow) is passed through a chain of hidden states
- Error passing through multiple of these functions can vanish

 The main problem with RNNs is that gradients less than 1 become exponentially small over time

- The main problem with RNNs is that gradients less than 1 become exponentially small over time
- Known as the vanishing gradient problem

- The main problem with RNNs is that gradients less than 1 become exponentially small over time
- Known as the vanishing gradient problem
- Gradients greater than 1 become exponentially large over time (the exploding gradient problem)\*

SNLP 2021 21 Silo Al

- The main problem with RNNs is that gradients less than 1 become exponentially small over time
- Known as the vanishing gradient problem
- Gradients greater than 1 become exponentially large over time (the exploding gradient problem)\*
- This leads to training instability, and bad results

SNLP 2021 21 Silo Al

- The main problem with RNNs is that gradients less than 1 become exponentially small over time
- Known as the vanishing gradient problem
- Gradients greater than 1 become exponentially large over time (the exploding gradient problem)\*
- This leads to training instability, and bad results
- Sequence Modeling: https://www.deeplearningbook.org/ contents/rnn.html

SNLP 2021 21 Silo Al



### Long-Short Term Memory



- Lets add another neural network help the first network learn long-distance relationships
- That's basically what we do when we add more weight matrices to a neural network

### LSTM: States



### LSTM: States



• Global State c captures global information at the document/ sentence level

#### LSTM: States



- Global State c captures global information at the document/ sentence level
- LSTM hidden state h<sub>t</sub> interacts with this global state to predict the next word

24

Silo Al





 $\sigma$  sigmoid function

 $w_x$  weight of the respective gate(x)

 $b_x$  bias of the respective gate(x)

 $h_{t-1}$  output of the previous LSTM

 $x_t$  input at current timestamp



$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$

 $\sigma$  sigmoid function

 $w_x$  weight of the respective gate(x)

 $b_x$  bias of the respective gate(x)

 $h_{t-1}$  output of the previous LSTM

 $x_t$  input at current timestamp

Silo Al



$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$
  
 $c'_t = c_{t-1} * f_t$ 

 $\sigma$  sigmoid function

 $w_x$  weight of the respective gate(x)

 $b_x$  bias of the respective gate(x)

 $h_{t-1}$  output of the previous LSTM

 $x_t$  input at current timestamp

$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$
  
 $c'_t = c_{t-1} * f_t$ 

$$w_f = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$b_f = 0$$

- $\sigma$ : sigmoid fn \*: pointwise multiplication
- "," is vector concatenation
- $h_{t-1} = [1], \quad c_{t-1} = [2], \quad x_t = [0.2]$
- calculate:  $c_t'$

$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$
  
 $c'_t = c_{t-1} * f_t$ 

$$w_f = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$b_f = 0$$

- $\sigma$ : sigmoid fn \*: pointwise multiplication
- $h_{t-1} = [1], \quad c_{t-1} = [2], \quad x_t = [0.2]$
- calculate:  $c_t^\prime$

$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$
  
 $c'_t = c_{t-1} * f_t$ 

$$w_f = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$b_f = 0$$

- $\sigma$ : sigmoid fn \*: pointwise multiplication
- $h_{t-1} = [1], \quad c_{t-1} = [2], \quad x_t = [0.2]$
- calculate:  $c_t'$   $w_f[h_{t-1},x_t]+b_f=\begin{bmatrix}1&1\end{bmatrix}\times\begin{bmatrix}1\\0.2\end{bmatrix}=[1.2]$

$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$
  
 $c'_t = c_{t-1} * f_t$ 

$$w_f = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$b_f = 0$$

- $\sigma$ : sigmoid fn \*: pointwise multiplication
- $h_{t-1} = [1], \quad c_{t-1} = [2], \quad x_t = [0.2]$
- calculate:  $c'_t$   $w_f[h_{t-1}, x_t] + b_f = \begin{bmatrix} 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 1.2 \end{bmatrix}$   $f_t = [\sigma(1.2)] = [0.77]$

$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$
  
 $c'_t = c_{t-1} * f_t$ 

$$w_f = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$b_f = 0$$

- $\sigma$ : sigmoid fn \*: pointwise multiplication
- $h_{t-1} = [1], \quad c_{t-1} = [2], \quad x_t = [0.2]$
- calculate:  $c'_t$   $w_f[h_{t-1}, x_t] + b_f = \begin{bmatrix} 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 1.2 \end{bmatrix}$   $f_t = [\sigma(1.2)] = [0.77]$   $c'_t = c_{t-1} * f_t = [2] * [0.77] = [1.54]$

#### LSTM Problems

- Forget gate: removes information from the Global Cell state (C)
  - this information might be be useful at a later stage
- Implicit representation of long-term information
  - Cell state and previous hidden state summarise the prior information





#### Transformers for Language Modelling

## Transformers: Simplified



Multiple (50-90) such layers in a Transformer LM

## Transformers: Simplified



Multiple (50-90) such layers in a Transformer LM

## Transformers: Simplified



Multiple (50-90) such layers in a Transformer LM

#### Self-Attention

- E.g. "The animal didn't cross the street because it was too tired"
- What does "it" refer to? "The animal" or "the street"
- Self-attention is the mechanism that helps LM associate:
  - "it" with "the animal"

SNLP 2021 31 Silo Al

## Self-Attention: Step 0



Credit: <a href="http://jalammar.github.io/illustrated-transformer/">http://jalammar.github.io/illustrated-transformer/</a>













| Input     | Thinking              | Machines              |
|-----------|-----------------------|-----------------------|
| Embedding | X <sub>1</sub>        | X <sub>2</sub>        |
| Queries   | q <sub>1</sub>        | q <sub>2</sub>        |
| Keys      | <b>k</b> <sub>1</sub> | <b>k</b> <sub>2</sub> |
| Values    | V <sub>1</sub>        | <b>V</b> <sub>2</sub> |

| Input     | Thinking                              | Machines             |
|-----------|---------------------------------------|----------------------|
| Embedding | X <sub>1</sub>                        | X <sub>2</sub>       |
| Queries   | <b>q</b> <sub>1</sub>                 | q <sub>2</sub>       |
| Keys      | k <sub>1</sub>                        | k <sub>2</sub>       |
| Values    | V <sub>1</sub>                        | V <sub>2</sub>       |
| Score     | q <sub>1</sub> • k <sub>1</sub> = 112 | $q_1 \cdot k_2 = 96$ |

| Input                        | Thinking                              | Machines                             |
|------------------------------|---------------------------------------|--------------------------------------|
| Embedding                    | X <sub>1</sub>                        | <b>X</b> <sub>2</sub>                |
| Queries                      | q <sub>1</sub>                        | q <sub>2</sub>                       |
| Keys                         | k <sub>1</sub>                        | k <sub>2</sub>                       |
| Values                       | V <sub>1</sub>                        | V <sub>2</sub>                       |
| Score                        | q <sub>1</sub> • k <sub>1</sub> = 112 | q <sub>1</sub> • k <sub>2</sub> = 96 |
| Divide by 8 ( $\sqrt{d_k}$ ) | 14                                    | 12                                   |

| Input                        | Thinking                              | Machines                             |
|------------------------------|---------------------------------------|--------------------------------------|
| Embedding                    | X <sub>1</sub>                        | <b>X</b> <sub>2</sub>                |
| Queries                      | q <sub>1</sub>                        | q <sub>2</sub>                       |
| Keys                         | k <sub>1</sub>                        | k <sub>2</sub>                       |
| Values                       | V <sub>1</sub>                        | V <sub>2</sub>                       |
| Score                        | q <sub>1</sub> • k <sub>1</sub> = 112 | q <sub>1</sub> • k <sub>2</sub> = 96 |
| Divide by 8 ( $\sqrt{d_k}$ ) | 14                                    | 12                                   |
| Softmax                      | 0.88                                  | 0.12                                 |

| Input                        | Thinking                              | Machines              |
|------------------------------|---------------------------------------|-----------------------|
| Embedding                    | X <sub>1</sub>                        | <b>X</b> <sub>2</sub> |
| Queries                      | q <sub>1</sub>                        | q <sub>2</sub>        |
| Keys                         | k <sub>1</sub>                        | k <sub>2</sub>        |
| Values                       | V <sub>1</sub>                        | V <sub>2</sub>        |
| Score                        | q <sub>1</sub> • k <sub>1</sub> = 112 | $q_1 \cdot k_2 = 96$  |
| Divide by 8 ( $\sqrt{d_k}$ ) | 14                                    | 12                    |
| Softmax                      | 0.88                                  | 0.12                  |
| Softmax<br>X<br>Value        | V <sub>1</sub>                        | <b>V</b> <sub>2</sub> |



## Transformers: Simplified



Self-Attention seems to be asking an association question

- Self-Attention seems to be asking an association question
- Query ~ smaller word embedding

- Self-Attention seems to be asking an association question
- Query ~ smaller word embedding
- Key & Value ~ Key is the hash key that maps to Value

- Self-Attention seems to be asking an association question
- Query ~ smaller word embedding
- Key & Value ~ Key is the hash key that maps to Value
- The names Query, Key and Value come from retrieval parlance

- Self-Attention seems to be asking an association question
- Query ~ smaller word embedding
- Key & Value ~ Key is the hash key that maps to Value
- The names Query, Key and Value come from retrieval parlance
  - you fire a query, you compare to a key vector and return the value

## Self-attention: exercise

- "Computers are thinking machines"
- Compute z for machines

• 
$$Q = K = V = \begin{bmatrix} 0.2 & 0.8 \\ -0.2 & 0.5 \\ -0.3 & -0.4 \\ 0.7 & 0.7 \end{bmatrix}$$

- Computers = [ 1 0 0 0 ], are = [0 1 0 0], thinking = [0 0 1 0], machines = [0 0 0 1]
- Softmax

### Self-attention: exercise

- "Computers are thinking machines"
- Compute z for machines

• 
$$Q = K = V = \begin{bmatrix} 0.2 & 0.8 \\ -0.2 & 0.5 \\ -0.3 & -0.4 \\ 0.7 & 0.7 \end{bmatrix}$$

- Computers = [ 1 0 0 0 ], are = [0 1 0 0], thinking = [0 0 1 0], machines = [0 0 0 1]
- Softmax

 $z = [0.24 \ 0.55]$ 

Embedding

Queries

Keys

Values

Score q·k

Divide by  $\sqrt{2}(\sqrt{d_k})$ 

Softmax

Softmax

Χ

Value

| Input                            | Computers | are       | thinking  | machines  |
|----------------------------------|-----------|-----------|-----------|-----------|
| Embedding                        | [1 0 0 0] | [0 1 0 0] | [0 0 1 0] | [0 0 0 1] |
| Queries                          |           |           |           |           |
| Keys                             |           |           |           |           |
| Values                           |           |           |           |           |
| Score q·k                        |           |           |           |           |
| Divide by $\sqrt{2}(\sqrt{d_k})$ |           |           |           |           |
| Softmax                          |           |           |           |           |
| Softmax<br>X                     |           |           |           |           |
| Value                            |           |           |           |           |
| Sum                              |           |           |           |           |

| Input                            | Computers | are        | thinking    | machines  |
|----------------------------------|-----------|------------|-------------|-----------|
| Embedding                        | [1 0 0 0] | [0 1 0 0]  | [0 0 1 0]   | [0 0 0 1] |
| Queries                          | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Keys                             |           |            |             |           |
| Values                           |           |            |             |           |
| Score q·k                        |           |            |             |           |
| Divide by $\sqrt{2}(\sqrt{d_k})$ |           |            |             |           |
| Softmax                          |           |            |             |           |

Solullax

Softmax Χ

Value

| Input     | Computers | are        | thinking    | machines  |
|-----------|-----------|------------|-------------|-----------|
| Embedding | [1 0 0 0] | [0 1 0 0]  | [0 0 1 0]   | [0 0 0 1] |
| Queries   | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Keys      | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Values    |           |            |             |           |
| Score alk |           |            |             |           |

Score q·k

Divide by  $\sqrt{2}(\sqrt{d_k})$ 

Softmax

Softmax X Value

| Input                            | Computers | are        | thinking    | machines  |
|----------------------------------|-----------|------------|-------------|-----------|
| Embedding                        | [1 0 0 0] | [0 1 0 0]  | [0 0 1 0]   | [0 0 0 1] |
| Queries                          | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Keys                             | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Values                           | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Score q·k                        |           |            |             |           |
| Divide by $\sqrt{2}(\sqrt{d_k})$ |           |            |             |           |

Softmax X Value

| Input                            | Computers | are        | thinking    | machines  |
|----------------------------------|-----------|------------|-------------|-----------|
| Embedding                        | [1 0 0 0] | [0 1 0 0]  | [0 0 1 0]   | [0 0 0 1] |
| Queries                          | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Keys                             | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Values                           | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Score q·k                        | 0.7       | 0.21       | -0.49       | 0.98      |
| Divide by $\sqrt{2}(\sqrt{d_k})$ |           |            |             |           |
| Softmax                          |           |            |             |           |

Softmax X Value

value

| Input                            | Computers | are        | thinking    | machines  |
|----------------------------------|-----------|------------|-------------|-----------|
| Embedding                        | [1 0 0 0] | [0 1 0 0]  | [0 0 1 0]   | [0 0 0 1] |
| Queries                          | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Keys                             | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Values                           | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Score q·k                        | 0.7       | 0.21       | -0.49       | 0.98      |
| Divide by $\sqrt{2}(\sqrt{d_k})$ |           |            |             |           |
| Softmax                          |           |            |             |           |
|                                  |           |            |             |           |

Χ

Value

| Input                            | Computers | are        | thinking    | machines  |
|----------------------------------|-----------|------------|-------------|-----------|
| Embedding                        | [1 0 0 0] | [0 1 0 0]  | [0 0 1 0]   | [0 0 0 1] |
| Queries                          | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Keys                             | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Values                           | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Score q·k                        | 0.7       | 0.21       | -0.49       | 0.98      |
| Divide by $\sqrt{2}(\sqrt{d_k})$ |           |            |             |           |

Softmax Χ

Value

| Input                            | Computers | are        | thinking    | machines  |
|----------------------------------|-----------|------------|-------------|-----------|
| Embedding                        | [1 0 0 0] | [0 1 0 0]  | [0 0 1 0]   | [0 0 0 1] |
| Queries                          | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Keys                             | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Values                           | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Score q·k                        | 0.7       | 0.21       | -0.49       | 0.98      |
| Divide by $\sqrt{2}(\sqrt{d_k})$ |           |            |             |           |
| Softmax                          |           |            |             |           |

#### Softmax Χ

Value

| Input                            | Computers | are        | thinking    | machines  |
|----------------------------------|-----------|------------|-------------|-----------|
| Embedding                        | [1 0 0 0] | [0 1 0 0]  | [0 0 1 0]   | [0 0 0 1] |
| Queries                          | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Keys                             | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Values                           | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Score q·k                        | 0.7       | 0.21       | -0.49       | 0.98      |
| Divide by $\sqrt{2}(\sqrt{d_k})$ |           |            |             |           |
|                                  |           |            |             |           |

Softmax X

Value

| Input                            | Computers | are        | thinking    | machines  |
|----------------------------------|-----------|------------|-------------|-----------|
| Embedding                        | [1 0 0 0] | [0 1 0 0]  | [0 0 1 0]   | [0 0 0 1] |
| Queries                          | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Keys                             | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Values                           | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Score q·k                        | 0.7       | 0.21       | -0.49       | 0.98      |
| Divide by $\sqrt{2}(\sqrt{d_k})$ |           |            |             |           |
| Softmax                          |           |            |             |           |
|                                  |           |            |             |           |

Value

| Input                            | Computers | are        | thinking    | machines  |
|----------------------------------|-----------|------------|-------------|-----------|
| Embedding                        | [1 0 0 0] | [0 1 0 0]  | [0 0 1 0]   | [0 0 0 1] |
| Queries                          | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Keys                             | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Values                           | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Score q·k                        | 0.7       | 0.21       | -0.49       | 0.98      |
| Divide by $\sqrt{2}(\sqrt{d_k})$ |           |            |             |           |
| Softmax                          |           |            |             |           |
|                                  |           |            |             |           |

Χ

Value

| Input                            | Computers | are        | thinking    | machines  |
|----------------------------------|-----------|------------|-------------|-----------|
| Embedding                        | [1 0 0 0] | [0 1 0 0]  | [0 0 1 0]   | [0 0 0 1] |
| Queries                          | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Keys                             | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Values                           | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Score q·k                        | 0.7       | 0.21       | -0.49       | 0.98      |
| Divide by $\sqrt{2}(\sqrt{d_k})$ | 0.49      | 0.15       | -0.35       | 0.69      |
| Softmax                          |           |            |             |           |
| Softmax<br>X<br>Value            |           |            |             |           |

| Input                            | Computers | are        | thinking    | machines  |
|----------------------------------|-----------|------------|-------------|-----------|
| Embedding                        | [1 0 0 0] | [0 1 0 0]  | [0 0 1 0]   | [0 0 0 1] |
| Queries                          | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Keys                             | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Values                           | [0.2 0.8] | [-0.2 0.5] | [-0.3 -0.4] | [0.7 0.7] |
| Score q·k                        | 0.7       | 0.21       | -0.49       | 0.98      |
| Divide by $\sqrt{2}(\sqrt{d_k})$ | 0.49      | 0.15       | -0.35       | 0.69      |
| Softmax                          | 0.30      | 0.21       | 0.13        | 0.36      |
| Softmax<br>X<br>Value            |           |            |             |           |

| Input                            | Computers   | are          | thinking      | machines    |
|----------------------------------|-------------|--------------|---------------|-------------|
| Embedding                        | [1 0 0 0]   | [0 1 0 0]    | [0 0 1 0]     | [0 0 0 1]   |
| Queries                          | [0.2 0.8]   | [-0.2 0.5]   | [-0.3 -0.4]   | [0.7 0.7]   |
| Keys                             | [0.2 0.8]   | [-0.2 0.5]   | [-0.3 -0.4]   | [0.7 0.7]   |
| Values                           | [0.2 0.8]   | [-0.2 0.5]   | [-0.3 -0.4]   | [0.7 0.7]   |
| Score q·k                        | 0.7         | 0.21         | -0.49         | 0.98        |
| Divide by $\sqrt{2}(\sqrt{d_k})$ | 0.49        | 0.15         | -0.35         | 0.69        |
| Softmax                          | 0.30        | 0.21         | 0.13          | 0.36        |
| Softmax<br>X<br>Value            | [0.06 0.24] | [-0.04 0.10] | [-0.04 -0.05] | [0.25 0.25] |
| Sum                              |             |              |               |             |

| Input                            | Computers   | are          | thinking      | machines    |
|----------------------------------|-------------|--------------|---------------|-------------|
| Embedding                        | [1 0 0 0]   | [0 1 0 0]    | [0 0 1 0]     | [0 0 0 1]   |
| Queries                          | [0.2 0.8]   | [-0.2 0.5]   | [-0.3 -0.4]   | [0.7 0.7]   |
| Keys                             | [0.2 0.8]   | [-0.2 0.5]   | [-0.3 -0.4]   | [0.7 0.7]   |
| Values                           | [0.2 0.8]   | [-0.2 0.5]   | [-0.3 -0.4]   | [0.7 0.7]   |
| Score q·k                        | 0.7         | 0.21         | -0.49         | 0.98        |
| Divide by $\sqrt{2}(\sqrt{d_k})$ | 0.49        | 0.15         | -0.35         | 0.69        |
| Softmax                          | 0.30        | 0.21         | 0.13          | 0.36        |
| Softmax<br>X<br>Value            | [0.06 0.24] | [-0.04 0.10] | [-0.04 -0.05] | [0.25 0.25] |
| Sum                              |             |              |               | [0.23 0.54] |

ASR 2020 Aalto University





RNNs: Process tokens one-by-one





- RNNs: Process tokens one-by-one
  - Chain of dependencies built using a single token





- RNNs: Process tokens one-by-one
  - Chain of dependencies built using a single token



Transformers LM: Process a segment of tokens



- RNNs: Process tokens one-by-one
  - Chain of dependencies built using a single token
- A Kts
- Transformers LM: Process a segment of tokens
  - Dependencies within the segment



- RNNs: Process tokens one-by-one
  - Chain of dependencies built using a single token
- A Lanh A

- Transformers LM: Process a segment of tokens
  - Dependencies within the segment
  - Within segment position is given by the positional encoding



## Transformer LM processing of Segments



(a) Training phase.

(b) Evaluation phase.

<u>Dai et al., 2019</u>

# Transformer LM processing of Segments



• Limited context-dependency

Dai et al., 2019

• the model can't "use" a word that appeared several sentences ago.

## Transformer LM processing of Segments



- Limited context-dependency
  - the model can't "use" a word that appeared several sentences ago.
- Context fragmentation
  - no relationships can be leveraged across segments

Dai et al., 2019



# [Jacob Devlin et al 2018]

Image credit: https://towardsml.com/2019/09/17/bertexplained-a-complete-guide-with-theory-and-tutorial/

 For specialised tasks like named entity recognition, question answering there is a lack of training data

- For specialised tasks like named entity recognition, question answering there is a lack of training data
- Deep learning requires large amounts of annotated data

- For specialised tasks like named entity recognition, question answering there is a lack of training data
- Deep learning requires large amounts of annotated data
- Language models for general purpose representations

- For specialised tasks like named entity recognition, question answering there is a lack of training data
- Deep learning requires large amounts of annotated data
- Language models for general purpose representations
- Aim to pretrain general purpose representations

- For specialised tasks like named entity recognition, question answering there is a lack of training data
- Deep learning requires large amounts of annotated data
- Language models for general purpose representations
- Aim to pretrain general purpose representations
- that can be fine-tuned using small task-specific dataset to obtain good performance on specialised tasks

- For specialised tasks like named entity recognition, question answering there is a lack of training data
- Deep learning requires large amounts of annotated data
- Language models for general purpose representations
- Aim to pretrain general purpose representations
- that can be fine-tuned using small task-specific dataset to obtain good performance on specialised tasks
- Welcome BERT!





Image Credit: <a href="https://arxiv.org/pdf/1706.03762.pdf">https://arxiv.org/pdf/1706.03762.pdf</a>
Content Credit: <a href="mailto:TransformerXL Explained">TransformerXL Explained</a> & <a href="Al-Rfou et al. 2018">Al-Rfou et al. 2018</a>

Transformers LM



Image Credit: <a href="https://arxiv.org/pdf/1706.03762.pdf">https://arxiv.org/pdf/1706.03762.pdf</a>
Content Credit: <a href="mailto:TransformerXL Explained">TransformerXL Explained</a> & <a href="Al-Rfou et al. 2018">Al-Rfou et al. 2018</a>

- Transformers LM
  - Unidirectional



Image Credit: <a href="https://arxiv.org/pdf/1706.03762.pdf">https://arxiv.org/pdf/1706.03762.pdf</a>
Content Credit: <a href="https://arxiv.org/pdf/1706.03762.pdf">TransformerXL Explained</a> & <a href="https://arxiv.org/pdf/1706.03762.pdf">Al-Rfou et al. 2018</a>

- Transformers LM
  - Unidirectional
  - Segment of tokens



Image Credit: <a href="https://arxiv.org/pdf/1706.03762.pdf">https://arxiv.org/pdf/1706.03762.pdf</a>
Content Credit: <a href="https://arxiv.org/pdf/1706.03762.pdf">TransformerXL Explained</a> & <a href="https://arxiv.org/pdf/1706.03762.pdf">Al-Rfou et al. 2018</a>

- Transformers LM
  - Unidirectional
  - Segment of tokens
- Language Models predict the next word



Image Credit: <a href="https://arxiv.org/pdf/1706.03762.pdf">https://arxiv.org/pdf/1706.03762.pdf</a>
Content Credit: <a href="https://arxiv.org/pdf/1706.03762.pdf">TransformerXL Explained</a> & <a href="https://arxiv.org/pdf/1706.03762.pdf">Al-Rfou et al. 2018</a>

#### Encoder Representations

- Require only the representations
- Forego of the output layer and only keep the encoder

Language Models predict the next word

- Language Models predict the next word
- Or loosely, they "fill in the blank" based on the context

- Language Models predict the next word
- Or loosely, they "fill in the blank" based on the context
- The man went to the store and bought a \_\_\_\_\_ of shoes

- Language Models predict the next word
- Or loosely, they "fill in the blank" based on the context
- The man went to the store and bought a \_\_\_\_\_ of shoes
- Language models are mostly used as unidirectional tools

- Language Models predict the next word
- Or loosely, they "fill in the blank" based on the context
- The man went to the store and bought a \_\_\_\_\_ of shoes
- Language models are mostly used as unidirectional tools
- Bidirectionality in this above example can help make a better judgement

- Language Models predict the next word
- Or loosely, they "fill in the blank" based on the context
- The man went to the store and bought a \_\_\_\_\_ of shoes
- Language models are mostly used as unidirectional tools
- Bidirectionality in this above example can help make a better judgement
- In BERT, this bidirectionality is important to obtain good general purpose representations

Pretraining

- Pretraining
  - Takes lots and lots of sentences

- Pretraining
  - Takes lots and lots of sentences
  - Masked LM

- Pretraining
  - Takes lots and lots of sentences
  - Masked LM
  - Next Sentence Prediction

- Pretraining
  - Takes lots and lots of sentences
  - Masked LM
  - Next Sentence Prediction
- Finetune

#### Masked LM

Input [CLS] my dog is cute [SEP] he likes play ##ing [SEP]

Input [CLS] my dog is cute [SEP] he likes play ##ing [SEP]

• Use specialised tokens CLS, SEP



Use specialised tokens CLS, SEP



- Use specialised tokens CLS, SEP
- 15% of the tokens are randomly masked



- Use specialised tokens CLS, SEP
- 15% of the tokens are randomly masked



- Use specialised tokens CLS, SEP
- 15% of the tokens are randomly masked



- Use specialised tokens CLS, SEP
- 15% of the tokens are randomly masked

#### Next Sentence Prediction



Use the CLS output embedding to predict is sentence B is the next sentence or not.

# Fine-tuning

Label



(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



(b) Single Sentence Classification Tasks: SST-2, CoLA



54 (d) Single Sentence Tagging Tasks: CoNLL-2003 NER

### Glue Test Results

| System               | MNLI-(m/mm) | QQP         | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE         | Average     |
|----------------------|-------------|-------------|------|-------|------|-------|------|-------------|-------------|
|                      | 392k        | 363k        | 108k | 67k   | 8.5k | 5.7k  | 3.5k | 2.5k        | -           |
| Pre-OpenAI SOTA      | 80.6/80.1   | 66.1        | 82.3 | 93.2  | 35.0 | 81.0  | 86.0 | 61.7        | 74.0        |
| BiLSTM+ELMo+Attn     | 76.4/76.1   | 64.8        | 79.8 | 90.4  | 36.0 | 73.3  | 84.9 | 56.8        | 71.0        |
| OpenAI GPT           | 82.1/81.4   | 70.3        | 87.4 | 91.3  | 45.4 | 80.0  | 82.3 | 56.0        | 75.1        |
| BERT <sub>BASE</sub> | 84.6/83.4   | 71.2        | 90.5 | 93.5  | 52.1 | 85.8  | 88.9 | 66.4        | 79.6        |
| $BERT_{LARGE}$       | 86.7/85.9   | <b>72.1</b> | 92.7 | 94.9  | 60.5 | 86.5  | 89.3 | <b>70.1</b> | <b>82.1</b> |

[Jacob Devlin et al 2018]

# Reading Task

- Read this article: <a href="https://medium.com/@samia.khalid/bert-explained-a-complete-guide-with-theory-and-tutorial-3ac9ebc8fa7c">https://medium.com/@samia.khalid/bert-explained-a-complete-guide-with-theory-and-tutorial-3ac9ebc8fa7c</a>
- Prepare questions to discuss!
- Time: 10 mins

# Summary

- NNLM:
  - LSTMs
  - Transformers
    - Self Attention
    - BERT
- Challenges
  - Long-Term Dependencies
  - Class-based output layer
  - Rare Words

# Further Reading

Neural Networks and Neural Language Models: https://web.stanford.edu/~jurafsky/slp3/7.pdf

# Neural Network Training



Slowest part of training an NNLM is softmax normalization



- Slowest part of training an NNLM is softmax normalization
- Why?



- Slowest part of training an NNLM is softmax normalization
- Why?
- Before the softmax layer (final layer) we just have a real number, not a probability

- Slowest part of training an NNLM is softmax normalization
- Why?
- Before the softmax layer (final layer) we just have a real number, not a probability
- So we need to know the sum of scores for all possible words being predicted (ie. the normalization constant)

$$p(w_i|h) = \frac{e^{w_i^T \cdot h}}{Z}$$

$$|V|$$

$$Z = \sum_{k=1}^{|V|} e^{w_k^T \cdot h}$$

- Slowest part of training an NNLM is softmax normalization
- Why?
- Before the softmax layer (final layer) we just have a real number, not a probability
- So we need to know the sum of scores for all possible words being predicted (ie. the normalization constant)
- This involves |V| steps, where |V| is the size of the vocabulary

$$p(w_i|h) = \frac{e^{w_i^T \cdot h}}{Z}$$

$$Z = \sum_{k=1}^{|V|} e^{w_k^T \cdot h}$$

- Slowest part of training an NNLM is softmax normalization
- Why?
- Before the softmax layer (final layer) we just have a real number, not a probability
- So we need to know the sum of scores for all possible words being predicted (ie. the normalization constant)
- This involves |V| steps, where |V| is the size of the vocabulary
- Typical values of |V| are between 10K to 10M

$$p(w_i|h) = \frac{e^{w_i^T \cdot h}}{Z}$$

$$Z = \sum_{k=1}^{|V|} e^{w_k^T \cdot h}$$

- Slowest part of training an NNLM is softmax normalization
- Why?
- Before the softmax layer (final layer) we just have a real number, not a probability
- So we need to know the sum of scores for all possible words being predicted (ie. the normalization constant)

 $p(w_i|h) = \frac{e^{w_i^T \cdot h}}{Z}$  $Z = \sum_{i=1}^{|V|} e^{w_k^T \cdot h}$ 

k=1

- This involves |V| steps, where |V| is the size of the vocabulary
- Typical values of |V| are between 10K to 10M
- We must do this for every word in our training set (eg. 1M-1B), every epoch (> 10)

Class-based output is calculated as:

$$p(w) = p(w|C(w)) \times p(C(w))$$
 membership probability class probability

Class-based output is calculated as:

$$p(w) = p(w|C(w)) \times p(C(w))$$
 membership probability class probability





Class-based output is calculated as:

$$p(w) = p(w|C(w)) \times p(C(w))$$
 membership probability class probability



Softmax: N × 4M (Vocabulary)



Class-based output is calculated as:

$$p(w) = p(w|C(w)) \times p(C(w))$$
 membership probability class probability





- Softmax: N × 4M (Vocabulary)
- Class-based Output: N × 2K (Classes)

• Class-based Decomposition  $O(\sqrt{|V|})$ 

- Class-based Decomposition  $O(\sqrt{|V|})$
- Noise Contrastive Estimation (NCE) O(1)

- Class-based Decomposition  $O(\sqrt{|V|})$
- Noise Contrastive Estimation (NCE) O(1)
- Hierarchical Softmax  $O(\log_2 |V|)$

- Class-based Decomposition  $O(\sqrt{|V|})$
- Noise Contrastive Estimation (NCE) O(1)
- Hierarchical Softmax  $O(\log_2 |V|)$
- Self Normalization ensures that the normalization constant Z is close to one. Slow for training, fast for test-time queries O(1)

### Question

 What kind of words will be tough to predict by neural network language model? And what can help the NNLM to predict these?

- Rare words: words which occur with low frequency
  - Out-of-Vocabulary words (OOVs: Frequency 0 in training set)
  - Frequency is 1
- Problem learning good feature vectors for such words
  - Not enough data
- A predictive system is not able handle them well
  - One would want automatic Video Subtitling Systems to predict these words as well

Languages

**Finnish** 

**Swedish** 

**Arabic** 

**English** 

| Languages | Training Set<br>Size |  |  |
|-----------|----------------------|--|--|
| Finnish   | 170M                 |  |  |
| Swedish   | 130M                 |  |  |
| Arabic    | 460M                 |  |  |
| English   | 790M                 |  |  |

| Languages | Training Set<br>Size | Vocabulary |  |
|-----------|----------------------|------------|--|
| Finnish   | 170M                 | 4.2M       |  |
| Swedish   | 130M                 | 3.5M       |  |
| Arabic    | 460M                 | 1.3M       |  |
| English   | 790M                 | 760K       |  |

| Languages | Training Set<br>Size | Vocabulary | Rare Words<br>(f≤1) |  |
|-----------|----------------------|------------|---------------------|--|
| Finnish   | 170M                 | 4.2M       | 55 %                |  |
| Swedish   | 130M                 | 3.5M       | 56 %                |  |
| Arabic    | 460M                 | 1.3M       | 55 %                |  |
| English   | 790M                 | 760K       | 41 %                |  |

| Languages | Training Set<br>Size | Vocabulary | Rare Words<br>(f≤1) | Rare Words<br>(f≤5) |
|-----------|----------------------|------------|---------------------|---------------------|
| Finnish   | 170M                 | 4.2M       | 55 %                | 82 %                |
| Swedish   | 130M                 | 3.5M       | 56 %                | 82 %                |
| Arabic    | 460M                 | 1.3M       | 55 %                | 78 %                |
| English   | 790M                 | 760K       | 41 %                | 70 %                |

| Languages | Training Set<br>Size | Vocabulary | Rare Words<br>(f≤1) | Rare Words<br>(f≤5) |
|-----------|----------------------|------------|---------------------|---------------------|
| Finnish   | 170M                 | 4.2M       | 55 %                | 82 %                |
| Swedish   | 130M                 | 3.5M       | 56 %                | 82 %                |
| Arabic    | 460M                 | 1.3M       | 55 %                | 78 %                |
| English   | 790M                 | 760K       | 41 %                | 70 %                |

Rare words form a large portion of the vocabulary

### OOVs

Morphologically-rich languages have a lot of OOVs

### **OOVs**

- Morphologically-rich languages have a lot of OOVs
  - Creating a large training corpus can still lead to OOV rate ~ 2%

### **OOVs**

- Morphologically-rich languages have a lot of OOVs
  - Creating a large training corpus can still lead to OOV rate ~ 2%
- Some languages (low-resource) can have OOV rates as high as 40%

### Subwords

- Segment words into subwords
  - Words: This sentence simply has words

### Subwords

- Segment words into subwords
  - Words: This sentence simply has words
  - Morphemes: Th is sent ence in to morph eme s

### Subwords

- Segment words into subwords
  - Words: This sentence simply has words
  - Morphemes: Th is sent ence in to morph eme s
  - Characters: This one intocharacters

# Summary

- NNLM:
  - LSTMs
  - Transformers
    - Self Attention
    - BERT
- Challenges
  - Long-Term Dependencies
  - Class-based output layer
  - Rare Words