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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 12:
O Timoshenko and Bernoulli beam models.

O Derivation of the beam equations by using the principle of virtual work, integration by
parts, and the fundamental lemma of variation calculus. Beam equilibrium and

constitutive equations in their tensor forms.

O Component representation of the beam equations in (x,y,z)— and (s,n,b)—coordinate

systems.
O Kinematics, virtual work density, and constitutive equation in (s, n,b) —coordinates
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THE CURVATURE EFFECT
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The basis vectors of the material (X, Y, z) —coordinate system are constants

dN = d(NI) - - dN - -
—+f = +fia+f,i=(—+Ff)I+f,]=0 <
d—N+fX:O and f, =0. €

dx

The basis vectors of the material (s,n,b) coordinate system are not constants

dN - d(Ne . _ 0N _ N B}
E-I_f: (dSS)"'fses"'fnen:(E"‘ fs)es"‘(ﬁ"‘fn)enzo

=

d—N+f3:0 and E+fn:0. €
ds R
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EXAMPLE Consider an inextensible string having constant mass per unit length (m) under

its own weight. Write the equilibrium equations in the structural (x,y,z) system with the
selection x as the curve parameter and show that y—c =acosh[(x—b)/a], in which a,b,c

are constants, is a solution (Catenary curve)

www.math.udel.edu/.../Chain/Dem0%20015.jpg teachers.sduhsd.k12.ca.us/.../GatewayArch.jpg
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Let us write the equilibrium equations dN /ds+ f; =0 and N/R+ f, =0 in terms of

x and y as we would like to get the solution in form y = y(x). Using y' =dy/dx,

d 1 d 1y ¢ ___ Mgy
dS (1+ y12)1/2 dX’ R (1+ y12)3/2’ S

mg
— ,and f, =—
(1+ y'2)Y2 (1+y'2)2

elimination of the forces gives the equation for the geometry

2 B
(1+¥ -y)=0 = y—c:acosh(%). &

y

Hence, the shape is a Catenary curve. The solution to the non-linear differential equation

can be obtained by using, e.g., Mathematica.
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EXAMPLE Equilibrium equations in (s,n,b) system can be used, e.g., to derive the well-
known formula for the elastic spring coefficient (AF = kAL). The geometrical parameters

are coil radius R, pitch h, number of coils n, and diameter d of wire. Material parameters

are Young’s modulus E and shear modulus G.

a EGzd*h? + 47°R? _
4n(Gd®h? +16Gh?R? + 4Ex°d°R? +32Ex°R%)
4
K~ O ~ when A2 <1 and (M2 «1
64nR R R

L the formula of literature
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BEAM MODEL

Timoshenko (Up =0) Bernoulli (Up =0)

Normal planes to the (material) axis of beam remain planes (Timoshenko) and normal to the
axis (Bernoulli) in deformation. Mathematically tg =Up +6 x Ppq (see any textbook on

statics and/or dynamics).
4-8



The kinematic assumption means that the normal planes to the mid-curve move as rigid
bodies in deformation. In terms of displacement of the translation point y=z =0 and
small rotation of the cross-section, displacement of a particle identified by (x,y,z) is
given by U= (Ui +Vvj+wk)+(gi +8]+wk)x(yj+zk). According to the Kinetic

assumption of the beam model o, =0y =0.

In the Bernoulli model, the cross-sections are assumed to remain normal planes to the

mid-curve in deformation which brings the Bernoulli constraints

dv dw
Vxy dx 4 Y xz dx

Due to the more severe assumptions, the modeling error of the Bernoulli model is larger

than that of the Timoshenko beam model!
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TIMOSHENKO BEAM BENDING (x,z)—plane

b,
HlllHlllHlx

Equilibrium egs. : 0Q, + +cy, =0 in (O,L)
dx
Constitutive egs. : Q, :GA(CCll—W+9) and My = Elccil—e in (O,L)
X X

Natural boundary condition: My =M, and Q, =F, at x=L

Essential boundary condition: #=0 and w=0 at x=0
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EXAMPLE 4.1 Consider the beam of the figure of length L. Material properties E and G
, cross-section properties A, S =0, | and the loading b are constants. Determine the axial
displacement, deflection, and rotation at the free end according to the Timoshenko beam

model.

Jlllllllllllllx

V< L .
”Timoshenko effect”
~ 1+ (t/L) 2
4 2 3
Answer u(L)=0, v(L)=7 bL AEI+GAL nd w)=2L
GAL? 6El
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BERNOULLI BEAM BENDING (x,z)—plane

b,
1HlllHlllHlx

-

. M, dM,
Equilibrium egs. : +b,=0 and Q,=——= 1in (O,L)
dx? dx
Constitutive egs. : M, =—El ((jj_w in (O,L) (Bernoulli constraint y,, =
X

Natural boundary condition: My =M, and Q, =F, at x=L

Essential boundary condition: w=0 and &= —Cdi—w =0 at x=0
X
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EXAMPLE 4.2 Consider the beam of the figure of length L. Material properties E and G
, Cross-section properties A, S=0 and |, and loading b are constants. Determine the axial
displacement, deflection, and rotation at the free end according to the Bernoulli beam

equations.

Jlllllllllllllx

3

b bL
Answer u(L)=0, v(L)=—— =
(L) (L) SEl’ d w(lL)= SEl
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MOMENTS OF AREA

Cross-section geometry of a beam influences the constitutive equations through the

moments of area (material is assumed to be homogeneous):

Zero moment: A:j dA
First moments: S, :j ydA and S, :j zdA
. 2 2
Second moments: 1, :j y“dA, Ty =j z°dA, and 1, =1y, :j yzdA
. [ w2 524A _
Polar moment: |, _I yo+z%dA=1,+1y,

The moments depend on the material coordinate system. For the simplest representation,

position of the x-axis and orientation of the y-axis should result into S, =Sy =1y, =0.
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4.1 BEAM EQUATIONS

Virtual work expression of beam, principle of virtual work, integration by parts, and the

fundamental lemma of variation calculus imply the equations:

aF - . )

—+b=0 in Q, il
ds

d—M+éS><IE+6:O in Q, M
ds >

Constitutive equations M = M (4,8), F = F(d,8) (Bernoulli or Timoshenko) are needed in
displacement analysis and in statically indeterminate cases!
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Curvilinear (s,n,b) system represents a generic system. In terms of the stress and

external force resultant, virtual work densities of the beam model

T (= AT (- I
: o. ol ol
switt =1L P L swt=1"21 . b1 and swet=1"201 . E
OK M o0, C o6, M
In which the strain measures & :ddﬂ+éS xGy and & =ddﬂ.
S S

Integration by parts in the virtual work expression W = oW ™ + sW & gives a more
convenient form for deducing the beam equations (the simple form of integration by

parts formula applies):

dou

Ug d 5@0
ds

ds

éW:jQ —[F ( +8,x56p)—M - 1ds +

4-16



jQ (8p-b+58y-C)ds+ Y, (Slg-F +56,-M) <
oW = jg [— 5“o+(—+esxF) 5bplds = ., (8Ug-NF +56h-nM) +
jQ (8g b+ 58y -C)ds+ , (Slg-E+6y-M) <
—j [(—+b) 5uo+(;+eSxF+c) 56,1ds +
> o [(-NF +F) 6Ty +(-nM + M)-66].

According to the principle of virtual work W =0 V(8Uy,56,) €U . First, if 50y and

56, are chosen to vanish on 6Q, the fundamental lemma of variation calculus implies

—_

d—F+5 0 and d—M+eSxF+c 0 in Q. €& equilibrium equations

ds ds
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Second, if ol and 5@0 are varied without any restrictions on the boundary (the
equilibrium equations are used to simplify the virtual work expression), the fundamental

lemma of variation calculus gives

NnF—-F=0 and nM—-M =0 on 6Q. € natural boundary conditions

Third, the boundary terms vanish also if 50, = 0 and/or 56, =0 on 6Q by definition of
U . Then one may not deduce the condition above. However, 5y =0 and 66, =0 on

6Qy,, imply that Gy — Gy =0 and 6, — 6, = 0 on 6Q,,.
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RESULTANT DEFINITIONS

Stress and external force resultants are integrals over the cross-section. If the Kinetic

assumptions are embedded in the elasticity tensor of the beam model

= & £ Exp z A G (z constitutive
_ =.f . _dA= T (S T I N equation
M PXC pxE —pxExp K C. Bl X

b _ .[ f _ ¢+ JdA, external distributed force and moment
C px f

E £ .

— :j ldA external point force and moment

M px1

where J =1-nx and E = E&.&, + G&, &, + G&,&, for an isotropic material.
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4.2 CARTESIAN COORDINATE SYSTEM

Timoshenko beam model equilibrium and constitutive equations in component forms

[ dN )
— +by EAd—u—ES dy +ES, —= dé’
dx (N dx dx Y dx
dQ dv d¢
] dy—l—b =0, 1Qy =71 GA(——w)—GS Y Gy >
X
Q|
99 |y, ‘ GA(—+9)+GS a4
| dx k dx
dT \ ( dv dw dg’
—+C — - - _r
ax X = GSy(dX w)+GSZ( +9)+GIrr »
dM du d do
y _ _ v,
] - —Q;+cCyr=0,and ¢ My ¢ =+ ES,— i —El,y— i +Ely— i -
dM, (M | du dy de
C —ES, —+ El — El
dx +Qy e, k AV
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If the x —axis of the material coordinate system is aligned with the geometrical axis, the

Cartesian system component representations of displacement, rotation, force resultant,

moment resultant, elasticity tensor of beam and the relative position vector

V

KT\T (%)’ KT\T (%) KT\T . N(X)\

UO:<]> s V(X) ¢, §02<T> 3 0(X) ¢, IE:<]> <Qy(X)
L) 1 2 R Y R Y
T)'[e o o] T (0

E={j+ |0 G O|<jrand p=1] <yt
k) L0 0 GJlk) k] 1z

<

—_— =

|

T

. T S
1My (X)

Mz (X))

V

What remains is just finding the component representations of equilibrium and

constitutive equations by substituting the expression above.
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EXAMPLE 4.3 Consider a beam loaded by its own weight and clamped at its left end
(figure). Determine F and M as functions of x by using the beam equations dF /dx+b =0
and dM /dx+1 x F +€ =0 and the boundary conditions F =0 and M =0 at the free end.

Answer N(x)=0, Q,(x)=-pgA(x—L), M (x)= —pgA%(x— L)?
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In a statically determinate case one may solve the beam equations for the stress resultants
no matter the material. The non-zero loading component b, = pgA. Equilibrium

equations and the boundary condition at the free end (let us consider only the equations

of the planar problem) give

‘jj_'\':o in (OL) and N(L)=0 = N(x)=0, €
X

d;iz +pgA=0 in (O,L) and Q,(L)=0 = Q,(X)=-pgA(x-L), €

dM
y+pgA(X—L):O in (O,L) and My(L)=0 = My(X)z—pgA%(X—L)Z. €
X
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EXAMPLE Consider the beam of the figure of length L. Material properties E and G,
cross-section properties A, S=0 and |, and loading b are constants. Determine the axial

displacement, deflection, and rotation at the free end according to the Bernoulli beam

equations.
Ififilfififlififilfifififli515115151flifi51151finfifilfififilfififilfififilfifi1l ¥
L -
|_4 oL
Answer (Mathematica notebook) u(L)=0, v(L)=—, and w( )_6EI
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Inthe Bernoulli model, Bernoulli constraints  y,, =dv/dx—y =0 and
7y, =dw/dx+6 =0 are used to eliminate the rotation components & and y from the
constitutive equations of the Timoshenko beam model. Then shear force components
Qy and Q, become constraint forces whose values follow from the equilibrium
equations. Assuming that Sy, =S, =1, =0, one may just replace the constitutive

equations for Q, and Q, by Bernoulli constraints.

[ dN ] ( Y [ dT ( )
—+Dby EAd_u —+Cy G'rr%
dX rN\ dX dX ( T ) dX
de dv dMy do

<W+by>20, <8>:<&—w>, ] - _Qz+Cy>:O’and<My>:<Elyy&>-
dQ, U | dw dM (M | dy

+b —+6 £+Qy +cC El,, —/

Ldx 7 dx ) | dx Qy ‘- Y dx
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EXAMPLE 4.4 Consider the beam of the figure of length L. Material properties E and G
, and loading b are constants. Due to the offset of the x-axis, cross-section properties are
given by A, S=-rA and | +r?A, in which 1 is the second moment with respect to the
symmetry axis and r is the radius of the cross-section. Determine the axial displacement,

deflection, and rotation at the free end (at the x- axis) according to the Bernoulli beam model.

llllllllllllllx

L -
Answer (Mathematica notebook) u(L)= —£ V(L)_b_ (L) = b|—3
6EI ser” M VD =5gr
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4.3 CURVILINEAR COORDINATE SYSTEM

Assuming that S, =Sy = 1, =0, the equilibrium and constitutive equations are

(dN ] (dT
E—in('-Fbs E_MHK—FCS
4 dQn +Nx—-Q,7+b, =0, 1 M, +Tx—Mpr-Qy +C =0,
ds ds
dQ dM
kd_sb+QnT+bb | kd_sb+MnT+Qn+Cb
eAdY _ve) cl, (32 _ )
rN\ dS r T 3 dS
dv do
Q=1 GA(E+UK—WT—w) c,and <M = Elnn(g+¢/<—wr) -
Qb d Ivlb
& J W & J dw
GA(—+vr+6 El,,(—+6
(dS T+0) bb(dS 7)

" J "
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The constitutive equations assume that the (s, n,b) —coordinate system is chosen so that

S,y =Sy = Iy =0 to simplify the generic forms of the constitutive equations

EA(d—u —VK)+ ES, (% +¢x —yr)—ES} (C;—Z + 07)
‘N
<Qn>=<GA(—+UK Wz —i) —GS ( ¢ — k) .
Qb ¢

GA(— +vr +0)+GS, ( — k)

dg dv ]

GSb(—+VT+9)+G|rr( QK)—GSn(E+UK—WT—W)

(T
d

] I\I\;:n =2 ESn(E_VK)JF Elnn(E+¢K_WT)_E|bn(d_Z+97) -
S du do dy

—ES,,(—-vx)-El,(—+d¢x —w7r)+El,,(—+6

k b (g ~ V&) ~ Blnp (- + dx —yrz) + Bl (- +07)
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EXAMPLE 4.5 Consider the planar beam loaded perpendicularly to its plane and clamped
at its end as shown. Mid-curve of the beam is a half-circle of radius R. Write down the
equilibrium equations of the curved beam and solve for the stress resultants as functions of

s. Curvature and torsion of a circular mid-curve x =1/R and 7 =0 are constants.

Answer Q, =P, T=PR(1+ cos%), and M,, = —PRsin(%)
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Boundary conditions define the external forces or moments acting on the boundaries or
their work conjugate displacements and rotations. The number of conditions need to
match the number of equations of the first order representation i.e. 12. In a statically
determined case, the equilibrium equations of beam and force/moment conditions at the

free end suffice

; ] equil. egns.

d_N_iQn Qn+ N=0 &:0 “
ds R ds R ds

- in (O,L)
dT 1 dM 1 dM
— —=M, =0 N -7-Q,=0 —2+Q,=0
ds R " ds R R ds On 7

3 B.C:s
N=0 Qn,=0 Qp =

> at s=L
T=0 M,=0 My =0
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The equations can be integrated, e.g., in the following order (L = zR). First

dd%zo in (O,L) and Q, =P at s=L = Qy(s)=P, €

then

dN 1 dQ, 1 .

— =0, =0, N+ —-N=0in (O,L) and N=Q,=0 at s=L =
dS RQn S R ( ) Qn

d2Qn 1 _ dQ,
<2 +R2Qn=0 in (O,L) and Q=—==0at s=L = Qy(s)=0 €

2
N 1 N20 in (0,L) and NN _pats—L = N(s)=0, €
ds? R? ds

then
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dM—bzo in (O,L) and My =0 at s=L = My(s)=0, €

ds
then
9T Iy o My pgin (L) and T=M, =0 at s=L =
ds R ds R
2
Rd—T+iT—P:O in (O,L) and T:d—T:O at s=L =
ds° R ds

T= PR(COS%+1) = M, :—PRsin(%). &

When hand calculations become tedious, the Mathematica notebook of MEC-E8003

homepage helps.

4-32



EXAMPLE 4.6 Consider the curved beam shown. Determine the displacement and rotation
components u, v and  at the free end according to the Bernoulli beam theory. The

moments of cross-section A, S =0, and |. Material parameters E, G, curvature x =1/R

and torsion z =0 are constants.

Answer

PR 17+ A(-8+37)R? PR AR? — | PR? 77 -2

1(L="¢ AAl M= vD =
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When writing the beam equations, it is convenient to write the equilibrium equations,
constitutive equations and boundary conditions “as is” without any eliminations (notice
that the constitutive equation for the shear force has been replaced by its “work

conjugate” Bernoulli constraint):

dN 1 dQ 1 dM .
— --Q,=0, ="+ -N=0,and —2+Q,=0 in (0,L),
ds RQn ds R ds On O.L)

1, &

N:EA(z—u—Ev), _y+u=0, and szEld—‘” in (0,L),
S

ds R ds
u=0, v=0, and w=0 at s=0,

N=P, Q,=0,and My, =0 at s=L.
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In a statically determined case, it is possible to solve for the stress resultants first.
Elimination is used in the connected first order equations to end up with second order

non-connected equations. With L=7zR /2

2
d N+ 12N=Oin(0,L) and d—N:O,N:P at s=L =

ds? R ds

N(s) = Psin(%) Q. (s) = Pcos(%), €«

M . :
dd—b+ Pcos(%):o in (O,L) and My =0 at s=L = My(s)= PR[l—sm(%)]. €«
S
After that, one may continue with the constitutive equations. Again, elimination is used
In the connected first order equations to end up with second order non-connected
equations
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2
C:;” PR[1 sm(—)] in(0,L) and w=0 at s=0= l//_?[—J“COS(_) 1.
S

2 2
d Y4 = VZPR_( P PR )ism(—) in (0,L) and v=0, d—_O at s=0 =
ds? R? EI EA  El 'R ds

3 2
v(s) = PERI (PR )[%cos(%)—%sin(%)], €

EA El
3 2
u(s) = R(w—d—Z)—ﬁ[— cos(2) - 1]+( R,)[%sin(%)]. €

Notice that the missing boundary condition for the second order problems, obtained

through the elimination, is given by the original first order equations!
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EXAMPLE 4.7 Consider the semi-circular beam loaded perpendicularly to its plane and
clamped at its ends shown. Write down the Timoshenko beam boundary value problem and
solve for the vertical deflection at the mid-point with the Mathematica notebook of the
course. The cross-section is circular with properties A, I, =1l =1, I, =21 and
S, =S, =0. The material properties E,G, p and curvature x =1/R are constants (torsion

7 =0). Finally, consider the Bernoulli limit.

PAQ[L6G (-2 + 7) + E(~16 + 87 — 47° + 2°)]R*
16EGI

Answer w=
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The parameters of the Timoshenko beam equations are in this case by =b, =0,

b, =b=pAg, and ¢, =c, =C, =0. Therefore

d—N—ianO dQn+£|\|:o d&+b:0 | equil. egns.
ds R ds R ds
> in (0,7R)
dT 1 dM 1 dM
— —=M,=0 N4 -T-Q,=0 —L2+Q,=0
ds R " ds R R ds On /
du 1 dv. 1 dw ) const. eqns.
N =EA(——-—V =GA(—+—=Uu- =GA(—+46
(dS r) Qn (dS - v) Qo (dS )
> in (0,7R)
dg 1 do 1 dy
T=2GlI(—-=6 M, =El(—+= My = El —
(ds R) " (ds R¢) b ds /
N B.C:s
u=0 v=_0 w=0
. se{0,7R}

0 0

ASS
I
I

o
<
I

o
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In a statically non-determinate case all equations have to be solved simultaneously which
may mean tedious calculations. Solution to the non-zero displacement and rotation

components at the mid-point s = zR /2 as given by the Mathematica notebook are

R3 (7 -2)(zE-4G)-4E
AGrEl

#3) = po

AR? 16G(7—2) + 87 —4x° +7° —16)E
16G7El |

€

7R
W(—) =
(2) olo

The code finds first the Timoshenko solution. After that, the Bernoulli solution is

obtained by enforcing the Bernoulli constraints.
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4.4 CURVED BEAM KINEMATICS

The use of arc length s as the curve parameter is convenient. Curvature x =1/ R and torsion

7 define the basis vector derivatives.

Mapping: r(s,n,b)=ry(s)+ne,(s)+b&,(s)

\
|

6 org 1 08 5 € 0 x Of&
Basis: <&, =1 (06 /0s)/|o& /os|; and a—<én>= -« 0 7|& ¢
S
\é’b, L éS Xén ) \é’b, i 0 —7T O_ \é’b,
Gradient: V:ési[i+r(bﬁ—nﬁ)]+§nﬁ+§bﬁ, where J =1-nx
J 0s on db on ob

Volume element: dV = JdAds
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Intrinsic (s, n,b)—coordinate system is curvilinear and orthonormal. The matrix of the

basis vector derivatives is anti-symmetric and expressible in the form

~

J

0
—
oS

DCDl

= CIFDIFT

~

|

Dl D
> wn

r
(q»]}
O
N

M
o

r

J

0 x O}|&
c=|-k 0 7|{€
) _0 —7T 0_ ké»b,

~
J

depending on torsion 7 and curvature x =1/R.

Using the generic expression of the gradient operator (the basis vectors are not

orthogonal away from the axis and the simple expression based on the scaling coefficient

does not apply)

~

|

J

T

L [FTT[H]H

Dl D
- wn

r
(q»]}
O
N

on %




The expression of the volume element is

or or
X
oS on

or dé. . d&
.2 dndbds =[(B. + N—" + h—LY)x &.1-&.dAds = (1— nx)dAds
)ab [(& " ds)X nl- € (1-nx)

dV =(
The radius of curvature R =1/« at a point is given by the best fitting circle and it is a

geometric quantity. Torsion = describes the rate by which €, and €, rotate around the

mid-curve.
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4.5 VIRTUAL WORK DENSITY

Virtual work densities can be expressed in terms of generalized forces (force, moment) and

their work conjugate strains:

T (=
§Wlnt — 58 . F
SK M




In vector notation, the kinematic assumption of the beam model, gradient operator,

gradient of the relative position vector and displacement gradient are (J =1—nx)

G(s,n,b) =g (s) + 6y (s)x A(n,b) where p=ng, +bé,, )

5 5 1.6 o 06
V=Vy+6,—+6 — where Vy=6 —[—+7(b—-n—)],
07 oy "5 0 SJ[as ( on ab)] >

. - 1 e L
Vp=1 —jeseS where | =§&€ +€,€, + €&,

dV = JdAds. J

The displacement gradient becomes (I x@ is antisymmetric) as displacement

components depend on s only
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1, ddy . dfy 1
VU =— (6 —+ 6, ——X | ——6.8.)x6, <
J(s ds P) ( ] S s) 0
1 ddi dg
Vi=—6(F+ix5)—1 x0 where #=—20 1 & xdy and &= 20
] s( P) 0 ds 0 ds

Assuming the symmetry of stress & = &, virtual work of internal forces per unit volume

becomes (vector identity a- (b x¢) = (axb)-T is needed in the derivation) with notation

PXO

N T -
- 5
5\A«',”t=—&czéva=—i{ ‘9} .{f’ﬁ}.

As dV =JdAds and ds =dQ, the virtual work expression of internal forces takes the

form
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T (= . )
- - 5
éW'”t:j §vv\',”th:j AR - dQ, where - =I 7 lda. €
Vv Q | oK M M PXEG

If the surface forces are acting on the end surfaces only (just to simplify the derivation),
the wvirtual works of external volume and surface forces are (vector identity
a-(bxc)=(dxb)-¢ and dV = JJAdQ are used again)

8T . .
- ou b f
ext — 0
oW, " = ou- f)dV = o dQ, where = _+JdA. €&
jv ( ) IQ {5‘90} {6} {6} j { f}

5T = .
. ou F F t

SWEXt = ou-t)dA= ﬁo - = ¢, Where < < ¢ = _+dA. €&
A jA ( ) 269{590 M M I pxt

|
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4.6 CONSTITUTIVE EQUATIONS

Constitutive equations follow from the generalized Hooke’s law (taking into accout the
Kinetic assumptions o, = oy =0), gradient of the displacement for the beam model, and

definitions of stress resultants:

rdu,o ~ _)\

. —~ +6.x6
3 A C| (& g 5270
:j {_Gﬁ}dA: .. -{i},where {‘i}m as . - and
pxo Cc BJ X k 9%

. ds

A é E —Exp - pre
. - =j e f'oﬁ idA, where E =€, -E - and p=ng, +Dhg,.
C. B xE —-pxExp|J

The three tensors A, B, and C define the constitutive equations.
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Derivation uses stress resultant definitions, beam model elasticity tensor, and
displacement gradient. Displacement gradient was derived earlier when discussing the

virtual work expression

VUZ%_’S(E:-FIE:XIB)—[»X@O .

The stress-strain relationship of a linearly elastic material with elasticity tensor E for
the beam model gives with definition 6=8,-6=¢5-8 (notice that Ix@, is
antisymmetric and vanishes as elasticity tensor is symmetric with respect to the last

Index pair)
G=E:Vi=E-&-(§+kxp)= = G=6-

in which E=¢,-E-&,.
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Finally, constitutive equations follow from the definitions of stress resultants. In a
concise form, the constitutive equations and parameters taking into account the cross-

section geometry and the material can be written as

: ; = (G4Rxp A ¢l [z
E =I #G# dA:j E@(5+K><p) idA: N E i where
M PXO PXxE-(e+Kxp)|J C. B| ¥

o~ May depend ons . .
o o .4
A C E “Exp |1 z ds T8 X0
. 9=j . 20 |=dA and < _ =1 . >
C. B pxE —pxExp|Jd K %

. ds )

Assuming an isotropic material, the kinetic assumption of the beam model o, = o =0

gives the elasticity tensor expression
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If the material is further homogeneous and cross section geometry constant, component

forms of A, B and C of the constitutive equation take the forms

L1 a1
A:j EjdA:Ej jdA:<
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e \T_ = r

6, 0 S,E -S,ET[&)
C=-| (Ex[))%dA:<§n> S$.G 0 0 [{&,r,
&) [ %G 0 0 &)
8 [(Iy +155)G 0 0 (&)
B=-| ﬁxExﬁ%dA:@,ﬁ 0 I, E =1 ,E [{&,}
&) [ 0 —InpE  IopE (&)

in which the moments of cross sections

A=| %dA, Sp = | b%dA, Sp = | n%dA, | nb%dA,

lon = [ bz%dA, I = [ nz%dA, and I =10+ lpp.
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depend on the geometry of the cross-section, curvature (J =1—nx), and positioning of

the material coordinate system.

Finally, the component representations of the constitutive equations for an isotropic and

homogeneous material take the forms (0 = UE + VE,, + W&, G = @€, + 66, + &)

EA(d—u —VvK)+ ES, (% +¢x —yr)— ES} (C;—Z + 1)

GA(—-I—UK' wr —i) —GS ( ¢ — k) -, €=

N
O
>
~
Il
N

GA(—+Vr+9)+GSb( ¢ _ 0x)

"
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GSb(d—W+VT+9)+GIrr(d—¢—9K)—GSn(y+uzc—Wr—;y)
(T ) ds ds ds
SMp b=+ ESn(z—:—VK)+ Elnn(%+¢K—wr)—Elbn(C;—Z+ﬁr) -, €
Mp

—ESb(z—:—VK)—Elnb(%+¢/c—wr)+Elbb(%—g+9r)

"

The cross-section properties are constants only in case of constant curvature and cross-

section geometry. If the beam is thin compared to the radius of curvature J =1, this

effect can be omitted.
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EXAMPLE In curved geometry, position of the neutral axis depends on the curvature as
J =1-nk. If the mid-curve is placed at the geometric centroid of the cross-section and
curvature x =1/ R, the (non-zero) moments for a circular cross-section of radius r are (
e=r/R):

e=rlR 0 1/10  2/10 3/10 4/10 5/10 6/10 7/10 810 9/10 1

Al (7zr2) 1 1.00 101 102 1.04 1.07 111 117 125 139 2

Sy / (x1°

b/ (zr’) o0 003 005 008 011 014 018 024 031 044 1
1 4

Ibb/(zﬂr ) 1 100 1.02 105 1.09 115 123 136 156 194 4
1 4

'nn/(zﬂr ) 1 1.00 101 102 1.03 1.05 1.07 110 115 121 133

4-54



The moments of the cross section follow from the integrals (need to be evaluated

numerically for each value of ¢ =r/R,

I o —m—y)
770 70 1-sgcosp

1 e27 (1 S
S = 7r3| = SCOS dsd 3 |,
b =% (EIO IO '81—55003,8 'Bj

_1 4 4 27 (1 2 2
|bb—z7” (;jo jo s cos” f dsdﬂj,

1-secosf

27 S
=—7zr( j j 52 sin? 1 sacos,Bde'Bj'

Above, n=srcosf and b=srsing.
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