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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 12:

  Timoshenko and Bernoulli beam models.

  Derivation of the beam equations by using the principle of virtual work, integration by

parts, and the fundamental lemma of variation calculus. Beam equilibrium and

constitutive equations in their tensor forms.

  Component representation of the beam equations in ( , , )x y z   and ( , , )s n b coordinate

systems.

  Kinematics, virtual work density, and constitutive equation in ( , , )s n b coordinates
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THE CURVATURE EFFECT
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The basis vectors of the material ( , , )x y z coordinate system are constants

( ) ( ) 0x y x y
dN d Ni dNf f i f j f i f j
dx dx dx

       
     



0x
dN f
dx

  and 0yf  . 

The basis vectors of the material ( , , )s n b coordinate system are not constants

( ) ( ) ( ) 0s
s s n n s s n n

d NedN dN Nf f e f e f e f e
ds ds ds R

        
     



0s
dN f
ds

      and 0n
N f
R
   . 
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EXAMPLE Consider an inextensible string having constant mass per unit length (m) under

its own weight. Write the equilibrium equations in the structural ( , , )x y z system with the

selection x  as the curve parameter and show that cosh[( ) / ]y c a x b a   , in which , ,a b c

are constants, is a solution (Catenary curve)

teachers.sduhsd.k12.ca.us/.../GatewayArch.jpgwww.math.udel.edu/.../Chain/Demo%20015.jpg
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Let us write the equilibrium equations / 0sdN ds f   and / 0nN R f   in terms of

x and y as we would like to get the solution in form ( )y y x . Using /y dy dx  ,

2 1/2
1

(1 )
d d
ds dxy




, 2 3/2
1

(1 )
y

R y





, 2 1/2(1 )
s

mgyf
y


 


, and 2 1/2(1 )

n
mgf
y

 


 elimination of the forces gives the equation for the geometry

21( ) 0y y
y
  


 cosh( )x by c a
a


  . 

Hence, the shape is a Catenary curve. The solution to the non-linear differential equation

can be obtained by using, e.g., Mathematica.
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EXAMPLE Equilibrium equations in ( , , )s n b  system can be used, e.g., to derive the well-

known formula for the elastic spring coefficient ( F k L   ). The geometrical parameters

are coil radius R , pitch h , number of coils n , and diameter d  of wire. Material parameters

are Young’s modulus E  and shear modulus G .

4 2 2 2

2 2 2 2 2 2 2 2 4
4

4 ( 1 )6 4 32
EG d h R

n G
k

d h Gh R E d R E R
 

   





4

364
Gdk

nR
 when 2( ) 1d

R
 and 2( ) 1h

R


the formula of literature
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BEAM MODEL

                                   Timoshenko P( 0)u 
               Bernoulli P( 0)u 



Normal planes to the (material) axis of beam remain planes (Timoshenko) and normal to the

axis (Bernoulli) in deformation. Mathematically Q P PQu u    
   (see any textbook on

statics and/or dynamics).

w

x
z

P

P’
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Q
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The kinematic assumption means that the normal planes to the mid-curve move as rigid

bodies in deformation. In terms of displacement of the translation point 0y z   and

small rotation of the  cross-section, displacement of a particle identified by ( , , )x y z  is

given by ( ) ( ) ( )u ui vj wk i j k yj zk         
       . According to the kinetic

assumption of the beam model 0zz yy   .

In the Bernoulli model, the cross-sections are assumed to remain normal planes to the

mid-curve in deformation which brings the Bernoulli constraints

0xy
dv
dx

      and 0xz
dw
dx

    .

Due to the more severe assumptions, the modeling error of the Bernoulli model is larger

than that of the Timoshenko beam model!
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TIMOSHENKO BEAM BENDING ( , )x z plane

Equilibrium eqs. : 0z
z

dQ b
dx

    and 0y
z y

dM
Q c

dx
   in (0, )L

Constitutive eqs. : ( )z
dwQ GA
dx

     and y
dM EI
dx


 in (0, )L

Natural boundary condition: y yM M and z zQ F at x L

Essential boundary condition: 0    and 0w    at 0x 

L
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EXAMPLE 4.1 Consider the beam of the figure of length L . Material properties E  and G

, cross-section properties A, 0S  , I   and the loading b are constants. Determine the axial

displacement, deflection, and rotation at the free end according to the Timoshenko beam

model.

Answer ( ) 0u L  ,
4 2

2
4)

8
(v bL EI LL GA

EI GAL


 , and
3

6
( ) bL

EI
L 

L
”Timoshenko  effect”

~ 1+(t/L) 2
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BERNOULLI BEAM BENDING ( , )x z plane

Equilibrium eqs. :
2

2 0y
z

d M
b

dx
    and y

z
dM

Q
dx

 in (0, )L

Constitutive eqs. :
2

2y
d wM EI
dx

  in (0, )L    (Bernoulli constraint 0xz
dw
dx

    )

Natural boundary condition: y yM M and z zQ F at x L

Essential boundary condition: 0w    and 0dw
dx

      at 0x 

L
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EXAMPLE 4.2 Consider the beam of the figure of length L . Material properties E  and G

, cross-section properties A, 0S   and I , and loading b are constants. Determine the axial

displacement, deflection, and rotation at the free end according to the Bernoulli beam

equations.

Answer ( ) 0u L  ,
4

8
( ) bL

EI
v L  , and

3

6
( ) bL

EI
L 

L
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MOMENTS OF AREA

Cross-section geometry of a beam influences the constitutive equations through the

moments of area (material is assumed to be homogeneous):

Zero moment: A dA 

First moments: zS ydA     and yS zdA 

Second moments: 2
zzI y dA  , 2

yyI z dA  ,  and zy yzI I yzdA  

Polar moment: 2 2
rr zz yyI y z dA I I   

The moments depend on the material coordinate system. For the simplest representation,

position of the x-axis and orientation of the y-axis should result into 0z y yzS S I   .
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4.1 BEAM EQUATIONS

Virtual work expression of beam, principle of virtual work, integration by parts, and the

fundamental lemma of variation calculus imply the equations:

0dF b
ds

 
 

in  ,

0s
dM e F c
ds

   
     in  ,

0nF F 
 

  or 0u u 
    on  ,

0nM M 
 

  or 0  
 

  on  .

Constitutive equations ( , )M M u 
   , ( , )F F u 

   (Bernoulli or Timoshenko) are needed in

displacement analysis and in statically indeterminate cases!
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Curvilinear ( , , )s n b  system represents a generic system. In terms of the stress and

external force resultant, virtual work densities of the beam model

T
int Fw

M





  
     

   


 ,

T
0ext

0

u bw
c





   

    
  


  ,   and

T
0ext

0

u Fw
M





   

    
  


 

in which the strain measures 0
0s

du e
ds

   
     and 0d

ds
 


 .

Integration by parts in the virtual work expression int extW W W     gives a more

convenient form for deducing the beam equations (the simple form of integration by

parts formula applies):

0 0
0[ ( ) ]s

d u dW F e M ds
ds ds
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0 0 0 0( ) ( )u b c ds u F M   
      
     



0 0 0 0[ ( ) ] ( )s
dF dMW u e F ds u nF nM
ds ds

    
          

       

0 0 0 0( ) ( )u b c ds u F M   
      
     



0 0[( ) ( ) ]s
dF dMW b u e F c ds
ds ds

  


        
    

0 0[( ) ( ) ]nF F u nM M        
    .

According to the principle of virtual work 0W  0 0( , )u U  
 . First, if 0u  and

0


are chosen to vanish on  , the fundamental lemma of variation calculus implies

0dF b
ds

 
 

and 0s
dM e F c
ds

   
   in  .  equilibrium equations
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Second, if 0u  and 0


are varied without any restrictions on the boundary (the

equilibrium equations are used to simplify the virtual work expression), the fundamental

lemma of variation calculus gives

0nF F 
 

  and 0nM M 
 

  on  . 

Third, the boundary terms vanish also if 0 0u 
 and/or 0 0 


on  by definition of

U . Then one may not deduce the condition above. However, 0 0u 
 and 0 0 


 on

u  imply that 0 0 0u u 
  and 0 0 0  

 
on u .

natural boundary conditions
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 RESULTANT DEFINITIONS

Stress and external force resultants are integrals over the cross-section. If the kinetic

assumptions are embedded in the elasticity tensor of the beam model

c
   

A CF E EdA dA
M E E C B

  
     

          
                            
 

      
          ,

fb JdA
c f

       
    



  ,

tF dA
tM 

   
   

  


 
 

where 1J n   and s s n n b bE Ee e Ge e Ge e  
        for an isotropic material.

external distributed force and moment

external point force and moment

constitutive
equation
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4.2 CARTESIAN COORDINATE SYSTEM

Timoshenko beam model equilibrium and constitutive equations in component forms

0

x

y
y

z
z

dN b
dx

dQ
b

dx
dQ b
dx

  
 
   
 
  
 

, ( )

( )

z y

y y

z
z

du d dEA ES ES
dx dx dxN

dv dQ GA GS
dx dx

Q dw dGA GS
dx dx

 





   
   
        
   
      

,

0

x

y
z y

z
y z

dT c
dx

dM
Q c

dx
dM Q c
dx

  
 
    
 
   
 

, and

( ) ( )y z rr

y y zy yy

z
z zz yz

dv dw dGS GS GI
dx dx dxT

du d dM ES EI EI
dx dx dx

M du d dES EI EI
dx dx dx

 

 

 

      
   
        
   
       

.
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If the x axis of the material coordinate system is aligned with the geometrical axis, the

Cartesian system component representations of displacement, rotation, force resultant,

moment resultant, elasticity tensor of beam and the relative position vector

T

0

( )
( )
( )

i u x
u j v x

w xk

   
       
   

  





,

T

0

( )
( )
( )

i x
j x

xk


 



   
       
   

  


 


,

T
( )
( )

( )
y

z

i N x
F j Q x

k Q x

  
      

   
   


 


,

T
( )
( )

( )
y

z

i T x
M j M x

k M x

  
      

   
   


 


,

T
0 0

0 0
0 0

i E i
E j G j

Gk k

    
                 

 
  

 
 and

T
0i

j y
zk


   
       
   

  





.

What remains is just finding the component representations of equilibrium and

constitutive equations by substituting the expression above.
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EXAMPLE 4.3 Consider a beam loaded by its own weight and clamped at its left end

(figure). Determine F


and M


 as functions of x by using the beam equations / 0dF dx b 


and / 0dM dx i F c   
    and the boundary conditions 0F 


 and 0M 


 at the free end.

Answer ( ) 0N x  , ( ) ( )zQ x gA x L   , 21( ) ( )
2yM x gA x L  

Lz

x
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In a statically determinate case one may solve the beam equations for the stress resultants

no matter the material. The non-zero loading component zb gA . Equilibrium

equations and the boundary condition at the free end (let us consider only the equations

of the planar problem) give

0dN
dx

   in (0, )L    and ( ) 0N L   ( ) 0N x  , 

0zdQ gA
dx

    in (0, )L    and ( ) 0zQ L   ( ) ( )zQ x gA x L   , 

( ) 0ydM
gA x L

dx
    in (0, )L    and ( ) 0yM L   21( ) ( )

2yM x gA x L   . 
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EXAMPLE Consider the beam of the figure of length L . Material properties E  and G ,

cross-section properties A, 0S   and I , and loading b are constants. Determine the axial

displacement, deflection, and rotation at the free end according to the Bernoulli beam

equations.

Answer (Mathematica notebook) ( ) 0u L  ,
4

8
( ) bL

EI
v L  , and

3

6
( ) bL

EI
L 

L



4-25

In the Bernoulli model, Bernoulli constraints / 0xy dv dx     and

/ 0xz dw dx     are used to eliminate the rotation components   and   from the

constitutive equations of the Timoshenko beam model. Then shear force components

yQ  and zQ  become constraint forces whose values follow from the equilibrium

equations. Assuming that 0y z yzS S I   , one may just replace the constitutive

equations  for yQ  and zQ  by Bernoulli constraints.

0

x

y
y

z
z

dN b
dx

dQ
b

dx
dQ b
dx

  
 
   
 
  
 

, 0
0

duEA
dxN

dv
dx
dw
dx





 
 

   
       
   
     

, 0

x

y
z y

z
y z

dT c
dx

dM
Q c

dx
dM Q c
dx

  
 
    
 
   
 

, and

rr

y yy

z
zz

dGI
dxT
dM EI
dx

M dEI
dx







 
 

   
      
   
   

  

.
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EXAMPLE 4.4 Consider the beam of the figure of length L . Material properties E  and G

, and loading b are constants. Due to the offset of the x-axis, cross-section properties are

given by A, S rA   and 2I r A , in which I  is the second moment with respect to the

symmetry axis and r is the radius of the cross-section. Determine the axial displacement,

deflection, and rotation at the free end (at the x-axis) according to the Bernoulli beam model.

Answer (Mathematica notebook)
3

6
( ) bL r

EI
u L  ,

4

8
( ) bL

EI
v L  , and

3

6
( ) bL

EI
L 

L
offset
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4.3 CURVILINEAR COORDINATE SYSTEM

Assuming that 0n b nbS S I    , the equilibrium and constitutive equations are

0

n s

n
b n

b
n b

dN Q b
ds
dQ N Q b
ds

dQ Q b
ds



 



   
 
     
 
    

, 0

n s

n
b b n

b
n n b

dT M c
ds
dM T M Q c

ds
dM M Q c

ds



 



   
 
      
 
     

,

( )

( )

( )

n

b

duEA v
dsN
dvQ GA u w
ds

Q dwGA v
ds



  

 

  
   
         
   
      

, and

( )

( )

( )

rr

n nn

b
bb

dGI
dsT
dM EI
ds

M dEI
ds

 

  

 

  
   
        
   
     

.
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The constitutive equations assume that the ( , , )s n b coordinate system is chosen so that

0n b nbS S I    to simplify the generic forms of the constitutive equations

( ) ( ) ( )

( ) ( )

( ) ( )

n b

n n

b
b

du d dEA v ES ES
ds ds dsN
dv dQ GA u w GS
ds ds

Q dw dGA v GS
ds ds

    

   

  

       
   
           
   
        

,

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

b rr n

n n nn bn

b
b nb bb

dw d dvGS v GI GS u w
ds ds dsT
du d dM ES v EI EI
ds ds ds

M du d dES v EI EI
ds ds ds

     

    

    

         
   
            
   
           

.
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EXAMPLE 4.5 Consider the planar beam loaded perpendicularly to its plane and clamped

at its end as shown. Mid-curve of the beam is a half-circle of radius R . Write down the

equilibrium equations of the curved beam and solve for the stress resultants as functions of

s . Curvature and torsion of a circular mid-curve 1/ R  and 0   are constants.

Answer bQ P , (1 cos )T sPR
R

  , and sin( )n PR
R

M s
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Boundary conditions define the external forces or moments acting on the boundaries or

their work conjugate displacements and rotations. The number of conditions need to

match the number of equations of the first order representation i.e. 12.  In a statically

determined case, the equilibrium equations of beam and force/moment conditions at the

free end suffice

1 0n
dN Q
ds R

 
1 0ndQ N

ds R
  0bdQ

ds


  in (0, )L
1 0n

dT M
ds R

 
1 0n

b
dM T Q

ds R
   0b

n
dM Q
ds

 

0N  0nQ  bQ P
at s L

0T  0nM  0bM 

equil. eqns.

B.C:s
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The equations can be integrated, e.g., in the following order (L R ). First

0bdQ
ds

   in (0, )L   and bQ P    at s L  ( )bQ s P , 

then

1 0n
dN Q
ds R

  , 1 0ndQ N
ds R

    in (0, )L   and 0nN Q    at s L 

2

2 2
1 0n

n
d Q Q
ds R

     in (0, )L   and 0n
n

dQQ
ds

    at s L  ( ) 0nQ s  

2

2 2
1 0d N N

ds R
     in (0, )L   and 0dNN

ds
    at s L  ( ) 0N s   , 

then
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0bdM
ds

   in (0, )L    and 0bM    at s L  ( ) 0bM s  , 

then

1 0n
dT M
ds R

  , 1 0ndM T P
ds R

     in (0, )L     and 0nT M    at s L 

2

2
1 0d TR T P
Rds

      in (0, )L    and 0dTT
ds

     at s L 

(cos 1)sT PR
R

   sin( )n
sM PR
R

  . 

When hand calculations become tedious, the Mathematica notebook of MEC-E8003

homepage helps.
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EXAMPLE 4.6 Consider the curved beam shown. Determine the displacement and rotation

components u , v and   at the free end according to the Bernoulli beam theory. The

moments of cross-section A, 0S  , and I .  Material parameters E , G , curvature 1/ R 

and torsion 0   are constants.

Answer

  28
(

3
)

4
I A RPR

E AI
u L

   
 ,

2

2
( ) AR I

E AI
PRv L 

 , and
2

( )
2

2PRL
EI

  


ns
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When writing the beam equations, it is convenient to write the equilibrium equations,

constitutive equations and boundary conditions “as is” without any eliminations (notice

that the constitutive equation for the shear force has been replaced by its “work

conjugate” Bernoulli constraint):

1 0n
dN Q
ds R

  , 1 0ndQ N
ds R

  , and 0b
n

dM Q
ds

    in (0, )L ,

1( )duN EA v
ds R

  , 1 0dv u
ds R

   ,  and b
dM EI
ds


   in (0, )L ,

0u  , 0v  ,  and 0  at 0s  ,

N P , 0nQ  , and 0bM  at s L .



4-35

In a statically determined case, it is possible to solve for the stress resultants first.

Elimination is used in the connected first order equations to end up with second order

non-connected equations. With / 2L R

2

2 2
1 0d N N

ds R
   in (0, )L    and 0dN

ds
 , N P   at s L 

( ) sin( )sN s P
R

  , ( ) cos( )n
sQ s P
R

 , 

cos( ) 0bdM sP
ds R

    in (0, )L  and 0bM    at s L  ( ) [1 sin( )]b
sM s PR
R

  . 

After that, one may continue with the constitutive equations. Again, elimination is used

in the connected first order equations to end up with second order non-connected

equations
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[1 sin( )]d PR s
ds EI R


    in (0, )L   and 0     at 0s  
2

[ cos( ) 1]PR s s
EI R R

    ,

2 2

2 2
1 1( ) sin( )d v PR P PR sv

EI EA EI R Rds R
     in (0, )L   and 0v  , 0dv

ds
   at 0s  

3 2
( ) ( )[ cos( ) sin( )]

2 2
PR P PR s s R sv s
EI EA EI R R

    , 

3 2
( ) ( ) [ cos( ) 1] ( )[ sin( )]

2
dv PR s s P PR s su s R
ds EI R R EA EI R

       . 

Notice that the missing boundary condition for the second order problems, obtained

through the elimination, is given by the original first order equations!
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EXAMPLE 4.7 Consider the semi-circular beam loaded perpendicularly to its plane and

clamped at its ends shown. Write down the Timoshenko beam boundary value problem and

solve for the vertical deflection at the mid-point with the Mathematica notebook of the

course. The cross-section is circular with properties A, nn bbI I I  , 2rrI I  and

0n bS S  . The material properties E ,G ,   and curvature 1/ R   are constants (torsion

0  ).  Finally, consider the Bernoulli limit.

Answer
2 3 4[16 ( 2 ) ( 16 8 4 )]

16
w Ag G E R

EGI
    


  


   

R

g
s
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The parameters of the Timoshenko beam equations are in this case 0s nb b  ,

bb b Ag  ,  and 0s n bc c c   . Therefore

1 0n
dN Q
ds R

 
1 0ndQ N

ds R
  0bdQ b

ds
 

  in (0, )R
1 0n

dT M
ds R

 
1 0n

b
dM T Q

ds R
   0b

n
dM Q
ds

 

1( )duN EA v
ds r

 
1( )n

dvQ GA u
ds R

   ( )b
dwQ GA
ds

 

in (0, )R
12 ( )dT GI

ds R
  

1( )n
dM EI
ds R
   b

dM EI
ds




0u  0v  0w 
{0, }s R

0  0  0 

equil. eqns.

const. eqns.

B.C:s
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In a statically non-determinate case all equations have to be solved simultaneously which

may mean tedious calculations. Solution to the non-zero displacement and rotation

components at the mid-point / 2s R  as given by the Mathematica notebook are

3 ( 2)( 4 ) 4( )
2 4

E G EgAR
G EI

R   


  
 , 

2 3
4 16 ( 2) (8 4 16)( )

2 16
G Ew gAR

G EI
R    


     

 . 

The code finds first the Timoshenko solution. After that, the Bernoulli solution is

obtained by enforcing the Bernoulli constraints.
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4.4 CURVED BEAM KINEMATICS

The use of arc length s  as the curve parameter is convenient. Curvature 1/ R   and torsion

   define the basis vector derivatives.

Mapping: 0 ( ( ) ( )( , , ) ) n bne s b sr s n b r s e 
  

Basis:
0 /

( / ) / /
s

n s s

b s n

e r s
e e s e s
e e e

    
          
      

 
  
  

  and
0 0

0
0 0

s s

n n

b b

e e
e e

s
e e


 



    
                   

 
 
 

Gradient: [ )](1
s n be n e e

J s n b n b
b    

     
    

   ,   where 1J n 

Volume element: dV JdAds
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 Intrinsic ( , , )s n b coordinate system is curvilinear and orthonormal. The matrix of the

basis vector derivatives is anti-symmetric and expressible in the form

    1
0 0

( ) 0
0 0

s s s

n n n

b b b

e e e
e F F e e

s s
e e e


 




      

                            

  
  
  

depending on torsion   and curvature 1/ R  .

 Using the generic expression of the gradient operator (the basis vectors are not

orthogonal away from the axis and the simple expression based on the scaling coefficient

does not apply)

   

T

T 1 [ )](
1

s s
s

n n n b

b b

e
ee F H n e e

s n bn b
b

n
e
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 The expression of the volume element is

( ) [( ) ] (1 )n b
s n b

de der r rdV dndbds e n b e e dAds n dAds
s n b ds ds

  
         

  

      

 The radius of curvature 1/R   at a point is given by the best fitting circle and it is a

geometric quantity. Torsion   describes the rate by which ne  and be  rotate around the

mid-curve.
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4.5 VIRTUAL WORK DENSITY

Virtual work densities can be expressed in terms of generalized forces (force, moment) and

their work conjugate strains:

T
int Fw

M





  
     

   




T
0ext

0

u bw
c





   

    
  


  ,

T
0ext

0

u Fw
M





   

    
  


 

where

F dA
M


 

   
     


 
   ,

fb JdA
c f

       
    



  , and

tF dA
tM 

   
   

  


 
  .

n

M


F


b


s

t

u

c
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In vector notation, the kinematic assumption of the beam model, gradient operator,

gradient of the relative position vector and displacement gradient are ( 1J n  )

0 0( , , ) ( ) ( ) ( , )u s n b u s s n b   
   where n bne be  

   ,

0 n be e
n b
 

    
 

  where 0 (1 [ )]se n
J s b

b
n

  
   

  
 ,

1
s sI e e

J
  

   where s s n n b bI e e e e e e  
       ,

dV JdAds .

The displacement gradient becomes ( I 


 is antisymmetric) as displacement

components depend on s only
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0 0
0

1 1) (( )s s s s
du du e e I e e

J ds ds J
        
     



0
1 )(su e I
J

       
      where 0

0s
d
ds
u e   
    and 0d

ds
 



 .

Assuming the symmetry of stress c   , virtual work of internal forces per unit volume

becomes (vector identity ( ) ( )a b c a b c    
      is needed in the derivation)  with notation

s se e     
    

T
int

c
1:Vw u
J

 
  

  
   

           

 
 

   .

As dV JdAds  and Ωds d , the virtual work expression of internal forces takes the

form
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T
int int

VV
FW w dV d
M


 



  
       

   
 


 ,   where

F dA
M


 

   
     


 
   . 

If the surface forces are acting on the end surfaces only (just to simplify the derivation),

the virtual works of external volume and surface forces are (vector identity

( ) ( )a b c a b c    
     and dV JdAd   are used again)

T
0ext

0
( )V V

u bW u f dV d
c


 



   
       

  
 

   ,  where
fb JdA

c f

       
    



  . 

T
0ext

0
( )A A

u FW u t dA
M


 



   
      

  



   ,  where

tF dA
tM 

   
   

  


 
  . 
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4.6 CONSTITUTIVE EQUATIONS

Constitutive equations follow from the generalized Hooke’s law (taking into accout the

kinetic assumptions 0nn bb   ), gradient of the displacement for the beam model, and

definitions of stress resultants:

c

A CF dA
M C B

 
  

      
               


  
    , where

0
0

0

s
du e
ds

d
ds



 

         
   

  

 
  and

c

1A C E E dA
JE EC B


  

    
          


    
      ,  where s sE e E e  

   and n bne be  
   .

The three tensors A


, B


, and C


 define the constitutive equations.
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Derivation uses stress resultant definitions, beam model elasticity tensor, and

displacement gradient. Displacement gradient was derived earlier when discussing the

virtual work expression

0
1 )(su e I
J

        
    .

The stress-strain relationship of a linearly elastic material with elasticity tensor E


 for

the beam model gives with definition s se e     
      (notice that 0I 


 is

antisymmetric and vanishes as elasticity tensor is symmetric with respect to the last

index pair)

)( 1: sE u E e
J

         
       


1)(se E
J

         
     

in which s sE e E e  
   .
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Finally, constitutive equations follow from the definitions of stress resultants. In a

concise form, the constitutive equations and parameters taking into account the cross-

section geometry and the material can be written as

c

(
(

) 1
)

A CF EdA dA
JM E C B

   
     

         
                        
 

      
         where

c

1A C E E dA
JE EC B


  

    
          


    
        and

0
0

0

s
du e
ds

d
ds



 

         
   

  

 
 .

Assuming an isotropic material, the kinetic assumption of the beam model 0nn bb  

gives the elasticity tensor expression

may depend on s
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T T0 0 0 0
0 0 0 0 0
0 0 0 0 0

s s s s s n n s s n n s

n n n n n b b n n b b n

b b b b b s s b b s s b

e e E e e e e e e G e e e e
E e e e e e e e e G e e e e

e e e e e e e e G e e e e

           
                       
                     

           
            

           


T 0 0
0 0
0 0

s s

s s n n

b b

e E e
E e E e e G e

e G e

    
            
        

 
    

 
.

If the material is further homogeneous and cross section geometry constant, component

forms of A


, B


 and C


 of the constitutive equation take the forms

T 0 0
1 1 0 0

0 0

s s

n n

b b

e AE e
A E dA E dA e AG e

J J
e AG e

    
           
        

 

 
    

 
,
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T 0
1( ) 0 0

0 0

s n b s

n n n

b b b

e S E S E e
C E dA e S G e

J
e S G e


     

            
         



 
    

 
,

T ( ) 0 0
1 0

0

s nn bb s

n nn nb n

b nb bb b

e I I G e
B E dA e I E I E e

J
e I E I E e

 
     

             
         



 
    

 

in which the moments of cross sections

1A dA
J

  , 1
nS b dA

J
  , 1

bS n dA
J

  , 1
bn nbI I nb dA

J
   ,

2 1
nnI b dA

J
  , 2 1

bbI n dA
J

  ,  and rr nn bbI I I  .
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depend on the geometry of the cross-section, curvature ( 1J n  ), and positioning of

the material coordinate system.

Finally, the component representations of the constitutive equations for an isotropic and

homogeneous material take the forms ( 0 s n bu ue ve we  
    , 0 s n be e e     

    )

( ) ( ) ( )

( ) ( )

( ) ( )

n b

n n

b
b

du d dEA v ES ES
ds ds dsN dv dQ GA u w GS
ds ds

Q dw dGA v GS
ds ds

    

   

  

       
   
           
   
        

, 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

b rr n

n n nn bn

b
b nb bb

dw d dvGS v GI GS u w
ds ds dsT
du d dM ES v EI EI
ds ds ds

M du d dES v EI EI
ds ds ds

     

    

    

         
   
            
   
           

.

The cross-section properties are constants only in case of constant curvature and cross-

section geometry. If the beam is thin compared to the radius of curvature 1J  , this

effect can be omitted.
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EXAMPLE In curved geometry, position of the neutral axis depends on the curvature as

1J n  .  If the mid-curve is placed at the geometric centroid of the cross-section and

curvature 1/ R  , the (non-zero) moments for a circular cross-section of radius r  are (

/r R  ):

/r R  0 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 1

2/ ( )A r 1 1.00 1.01 1.02 1.04 1.07 1.11 1.17 1.25 1.39 2

3/ ( )bS r  0 0.03 0.05 0.08 0.11 0.14 0.18 0.24 0.31 0.44 1

41/ ( )
4bbI r   1 1.00 1.02 1.05 1.09 1.15 1.23 1.36 1.56 1.94 4

41/ ( )
4nnI r  1 1.00 1.01 1.02 1.03 1.05 1.07 1.10 1.15 1.21 1.33
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The moments of the cross section follow from the integrals (need to be evaluated

numerically for each value of /r R  ,

2 12
0 0

1
1 cos

sA r dsd
s


 

  
 

   
  ,

2 13
0 0

1 cos
1 cosb

sS r s dsd
s


  

  
 

   
  ,

2 14 2 2
0 0

1 4 cos
4 1 cosbb

sI r s dsd
s


  

  
 

   
  ,

2 14 2 2
0 0

1 4 sin
4 1 cosnn

sI r s dsd
s


  

  
 

   
  .

Above, cosn sr   and sinb sr  .


