Linear response theory, Kubo formalism

March 22nd 2021

A reminder from session #3

Hamiltonians with translational symmetry can be diagonalized using Bloch's theorem, yielding a band-structure

E

Learning outcomes

- Non-equibrium response can be computed with the equilibrium ground state
- Responses allow to predict instabilities
- Certain responses can be quantized

Today's plan

- The response in classical magnets
- Linear response in quantum systems
- Linear response for many electrons and electronic instabilities
- Hall conductivity and Chern invariant

Response in materials

In general, for a certain observable *A* we will have

$$A(x, x', t, t')$$

Which kind of perturbation?

- \rightarrow Charge (dielectric and conductivity)
- → Spin fluctuation (magnetic susceptibility)
- \rightarrow Heat (thermal conductance)

Today's focus

We will deal time-independent systems with translational symmetry

$$A(x, x', t, t') = A(x - x')$$

(like the one dimensional infinite periodic chain)

A simple example: charge response

Types of responses

Impurities in a metal

Friedel oscillation

Neutron scattering

(Inelastic neutron-matter process)

Information on the Fermi surface

Information on magnetic excitations

Magnetic response in a classical magnet

Classical phase transitions

Classical phase transitions

Magnetic susceptibility

How does the magnetization of a material change when we apply an external magnetic field?

at high temperatures?

For small fields, we can perform a linear expansion

 $M_z(B_z) = \chi B_z$

Magnetic susceptibility

Take an Ising model

$$H=J\sum_{\langle ij\rangle}S^z_iS^z_j+\sum_iBS^z_i$$
 he high-temperature susceptibility (mean field) is $\chi=\frac{\partial M_z}{\partial B_z}$

Paramagnet for J = 0

 $\chi \sim \frac{1}{T}$

Ferromagnet

 $\begin{array}{l} \textit{Antiferromagnet} \\ \textit{for } J > 0 \end{array}$

Three types of magnetic systems

Paramagnet (any T)

Paramagnet

 $\chi \sim \frac{1}{T}$

Ferromagnet

 $\sim \overline{T - T_C}$

Antiferromagnet (low T)

Antiferromagnet

The high-temperature susceptibility

The high-T response tells us how the system behaves at low temperatures

Linear response in a quantum system

Unperturbed and perturbed Hamiltonian

Unperturbed Hamiltonian

 H_0 **Perturbed Hamiltonian**

$$H = H_0 + \lambda V$$

 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Can we infer the properties of a perturbed Hamiltonian from the unperturbed one?

Perturbation theory

Take a Hamiltonian that includes a perturbation V $H(\lambda) = H_0 + \lambda V$

Every "well behaved" function is linear for small argument

We will use a Taylor expansion in terms of the parameter λ

Observables in linear response theory

Full Hamiltonian
$$H(\lambda) = H_0 + \lambda V$$
 Perturbation Unperturbed Hamiltonian

For any observable

$$\mathbf{I}(\lambda) \approx A(\lambda = 0) + \lambda \chi$$

Full value

Unperturbed value

Contribution from the perturbation

Response of the system

Eigenfunctions in linear response theory

$H(\lambda) = H_0 + \lambda V$

Eigenfunctions after the perturbation

$$|\Psi_{i}\rangle(\lambda) = |\Psi_{i}\rangle(\lambda = 0) + \lambda \sum_{j \neq i} \alpha_{j} |\Psi_{j}\rangle(\lambda = 0)$$

Eigenfunction after the perturbation

Eigenfunctions before the perturbation

Eigenfunctions in
linear response theory
$$H(\lambda) = H_0 + \lambda V$$

Correction to the eigenfunctions to first order

$$\begin{split} |\Psi_i\rangle(\lambda) &= |\Psi_i^0\rangle + \lambda \sum_{j\neq i} \alpha_j |\Psi_j^0\rangle \\ \text{Coefficients} & \text{Notation} \\ &= \frac{\langle \Psi_i^0 | V | \Psi_j^0 \rangle}{\epsilon_i^0 - \epsilon_j^0} & |\Psi_i^0\rangle \equiv |\Psi_i\rangle(\lambda = 0) \\ &H_0 |\Psi_i^0\rangle = \epsilon_i^0 |\Psi_i^0\rangle \end{split}$$

The perturbed eigenfunctions can be expressed in terms of the unperturbed ones

 α_j

Question: perturbation theory for two sites

Take the full Hamiltonian with unperturbed term and perturbation

$$H = H_0 + \lambda V$$

$$H_0 = \Delta c_1^{\dagger} c_1 - \Delta c_2^{\dagger} c_2$$

$$V = c_1^{\dagger} c_2 + c_2^{\dagger} c_1$$

 $\alpha_j = \frac{\langle \Psi_i^0 | V | \Psi_j^0 \rangle}{\epsilon_i^0 - \epsilon_i^0}$

The unperturbed eigenstates are

What are the eigenstates for small
$$\lambda$$
 ?

01

01

Remember
$$\Psi_i(\lambda) = \Psi_i^0 + \lambda \sum_{j \neq i} \alpha_j \Psi_j^0$$

Question: perturbation theory for two sites

$$\begin{split} H &= H_0 + \lambda V = \epsilon_1 \Psi_1^{\dagger} \Psi_1 + \epsilon_2 \Psi_2^{\dagger} \Psi_2 \\ H_0 &= \Delta c_1^{\dagger} c_1 - \Delta c_2^{\dagger} c_2 \qquad \qquad V = c_1^{\dagger} c_2 + c_2^{\dagger} c_1 \\ \end{split}$$

$$\begin{aligned} \text{Unperturbed eigenstates} \qquad \qquad \Psi_1^{0\dagger} = c_1^{\dagger} \quad \Psi_2^{0\dagger} = c_2^{\dagger} \\ \epsilon_1^0 &= -\Delta \quad \epsilon_2^0 = \Delta \end{split}$$

Using the formula from perturbation theory from the previous slide we get

$$\Psi_1^{\dagger} = c_1^{\dagger} - \frac{\lambda}{2\Delta} c_2^{\dagger} \qquad \qquad \Psi_2^{\dagger} = c_2^{\dagger} + \frac{\lambda}{2\Delta} c_1^{\dagger}$$

Breakdown of perturbation theory

$$H(\lambda) = H_0 + \lambda V$$

Is any full many-body ground state perturbative in terms of λ ?

No! Certain quantum states are intrinsically non-perturbative

Impurity in a metal (Orthogonality catastrophe)

The many-body ground state Is orthogonal to the original

Quantum spin in a metal (Kondo effect)

The Kondo temperature is non-perturbative

Superconductivity (BCS limit)

The superconducting gap is non-perturbative

Many-body response

The Fermi sea

Take a certain band-structure

$$H = \sum_{k} \epsilon_k \Psi_k^{\dagger} \Psi_k$$

States below the Fermi energy are filled

The Fermi surface is the set of k-points that cross the Fermi energy

 $\{\vec{k}\}$ with $\epsilon_{\vec{k}} = \epsilon_F$

Question: The many-electron energy

Imagine that we have the following fermionic Hamiltonian

$$H = \Psi_1^{\dagger} \Psi_1 - \Psi_2^{\dagger} \Psi_2 - \Psi_3^{\dagger} \Psi_3$$

What is the many-body state with lowest energy E_{gs} ? $\{\Psi_i^{\dagger}, \Psi_j\} = \delta_{ij}$ $H|GS\rangle = E_{GS}|GS\rangle$ $\Psi_i|\Omega\rangle = 0$

Question: The many-electron energy

What is the lowest energy state of this Hamiltonian?

$$H = \Psi_1^{\dagger} \Psi_1 - \Psi_2^{\dagger} \Psi_2 - \Psi_3^{\dagger} \Psi_3 \qquad H|GS\rangle = E_{GS}|GS\rangle$$

Option #1Option #2Option #3 $|GS\rangle = \Psi_2^{\dagger}|\Omega\rangle$ $|GS\rangle = |\Omega\rangle$ $|GS\rangle = \Psi_2^{\dagger}\Psi_3^{\dagger}|\Omega\rangle$ $H|GS\rangle = -|GS\rangle$ $H|GS\rangle = 0$ $H|GS\rangle = -2|GS\rangle$ $E_{GS} = -1$ $E_{GS} = 0$ $E_{GS} = -2$

This is the state with lowest energy

Ground state of an electronic system

Lets take a fermionic Hamiltonian in diagonal form

$$H = \sum_{k} \epsilon_{k} \Psi_{k}^{\dagger} \Psi_{k} \qquad \{\Psi_{i}^{\dagger}, \Psi_{j}\} = \delta_{ij}$$

$$\begin{split} \text{The many body eigenstate with minimum energy (ground state) is} \\ |GS\rangle &= \prod_{k \in occ} \Psi_k^{\dagger} |\Omega\rangle & \text{Where occ is the set of } k \text{ with } \epsilon_k < 0 \\ & \text{with } \Psi_k |\Omega\rangle = 0 \end{split}$$
 $H|GS\rangle &= E_{GS}|GS\rangle & \text{The total ground state energy is} \quad E_{GS} = \sum_{k \in occ} \epsilon_k \end{split}$

Expectation values for the many electron system

Perturbation theory for the many electron system

$$|GS\rangle = \prod_{k \in occ} \Psi_k^{\dagger} |\Omega\rangle \qquad V = c_0^{\dagger} c_0 \qquad H_0 = \sum_k \epsilon_k \Psi_k^{\dagger} \Psi_k$$

 $H = H_0 + \lambda V$

The change in charge in the system is defined as

$$\langle c_n^{\dagger} c_n \rangle - \langle c_n^{\dagger} c_n \rangle_{GS} \equiv \chi(n) \lambda$$

Given that we have translational symmetry, we will work with the Fourier transform

$$\chi(q) = \sum e^{iqn} \chi(n)$$

The Lindhard formula

Using the formulas from perturbation theory we can show

$$\chi(q) = \sum_{k} \frac{n_k - n_{k+q}}{\epsilon_k - \epsilon_{k+q}} \qquad n_k = \langle GS | \Psi_k^{\dagger} \Psi_k | GS \rangle$$
$$n_k = 0, 1$$

Instabilities and nesting

Take the form of the static response

$$\chi(q) = \sum_{k} \frac{n_k - n_{k+q}}{\epsilon_k - \epsilon_{k+q}}$$

The response diverges for

$$\epsilon_k = \epsilon_{k+q}$$

A very small perturbation creates a huge response in the system, yielding an instability

Question: instabilities in the square lattice

The Fermi surface of the square lattice at half filling has this form

Fermi surface for $\epsilon_k=0$

$$\chi(q) = \sum_{k} \frac{n_k - n_{k+q}}{\epsilon_k - \epsilon_{k+q}}$$
$$n_k = 0, 1$$

At which q-vector does the response diverge?

Question: instabilities in the square lattice

There is a common q vector that links same energy states

$$\chi(q) = \sum_{k} \frac{n_k - n_{k+q}}{\epsilon_k - \epsilon_{k+q}}$$
$$n_k = 0, 1$$

The response diverges at

$$q = \frac{\pi}{2}(1, \pm 1)$$

Fluctuations and instabilities

What is the condition for a small perturbation to "break down" a ground state?

Classical example of instability

Supercooled (high purity) water

https://www.youtube.com/watch?v=_9N-Y2CyYhM

Below 0 degrees, a perturbation will freeze supercooled water

Instability in an electronic system

Without interactions

Response of the non-interacting system

 χ_0

With interactions

Response of the interacting system χ

How to know when a ground state breaks down due to interactions?

Instabilities, nesting and interactions

But what if we now have interactions in the Hamiltonian?

The random phase approximation (RPA) for the charge response

Response of the full Hamiltonian $\chi(q) \approx \frac{\chi_0(q)}{1 + v_q \chi_0(q)}$ Response of the free Hamiltonian The full response diverges when $v_q \chi_0(q) = -1$

Magnetic instabilities of an electron gas

Spinful Hamiltonian with local interactions

$$H = \sum_{k,s} \epsilon_k \Psi_{k,s}^{\dagger} \Psi_{k,s} + \sum_k U c_{n\uparrow}^{\dagger} c_{n\uparrow} c_{n\downarrow}^{\dagger} c_{n\downarrow}$$

RPA for the spin response

$$\chi^{s}(0) \approx \frac{\chi_{0}^{s}(0)}{1 - U\chi_{0}^{s}(0)}$$

Density of states (DOS) $D(\omega) = \sum_{k} \delta(\omega - \epsilon_{k})$

The Stoner criterion $D(\omega=0)U=1$

A system can become magnetic when DOS times interactions is sufficiently large

Interacting instabilities in materials

Magnetism

Instability in the spin response (repulsive interaction)

Dimerization & charge density wave

Instability in the charge/phonon response

(repulsive interaction)

Superconductivity

Instability in the e-e scattering (attractive interaction)

The Hall conductivity and Chern number

The transverse conductivity

Take a two-dimensional material

Full Hamiltonian $H = H_0 + \lambda V$

Perturbation $V \sim y \sim i \partial_{k_x}$

Measure $J_x \sim \langle \partial H / \partial k_x \rangle$

The Hall effect

Measure the current perpendicular to a voltage

Linear response for transverse current

$$J_x = \sigma_{xy} V_y$$
 The Hall conductivity is obtained as $\sigma_{xy} = \sum_{\alpha \in occ} \int \Omega_{\alpha} d^2 \mathbf{k}$

with
$$\Omega_{\alpha}(\mathbf{k}) = i \sum_{\beta \neq \alpha} \frac{\langle \Psi_{\alpha} | \partial H / \partial k_x | \Psi_{\beta} \rangle \langle \Psi_{\beta} | \partial H / \partial k_y | \Psi_{\alpha} \rangle}{(\epsilon_{\alpha} - \epsilon_{\beta})^2} \longrightarrow \alpha \leftrightarrow \beta$$

Berry curvature of a band

Expression coming from perturbation theory

The Hall conductivity

The Hall conductivity is obtained as $\sigma_{xy} = \sum_{\alpha \in occ} \int \Omega_{\alpha} d^2 \mathbf{k}$

Using
$$\langle \Psi_{\alpha} | \partial H / \partial k_{\mu} | \Psi_{\beta} \rangle = \langle \partial_{k_{\mu}} \Psi_{\alpha} | \Psi_{\beta} \rangle (\epsilon_{\alpha} - \epsilon_{\beta})$$

the Hall conductivity can be expressed in terms of

Berry curvature
 Berry connection

$$\Omega_{\alpha} = \partial_{k_x} A_y^{\alpha} - \partial_{k_y} A_x^{\alpha}$$
 $A_{\mu}^{\alpha} = i \langle \partial_{k_{\mu}} \Psi_{\alpha} | \Psi_{\alpha} \rangle$
 $\sigma_{xy} = \sum_{\alpha \in occ} \int \Omega_{\alpha} d^2 \mathbf{k} = \sum_{\alpha} C_{\alpha} = C$
 Chern number

Chern numbers in the quantum Hall state

Each band (a.k.a Landau level), contributes with Chern number +1

Hall conductivity in an insulator

$$\sigma_{xy} = \sum_{\alpha \in occ} \int \Omega_{\alpha} d^2 \mathbf{k} = \sum_{\alpha} C_{\alpha} = C$$

The Chern number for each band is quantized

An insulator can have a finite (and quantized) Hall conductivity

 $C_{\alpha} = \int \Omega_{\alpha}(\mathbf{k}) d^2 \mathbf{k} = 0, \pm 1, \pm 2, \dots$

This is a simple example of a topological state of matter

Take home

- We can predict collective behavior with linear response theory
- Responses of quantum materials allow to predict potential symmetry breaking states
- Reading material:
 - -Cohen & Louie, pages 159-164
 - Simon, pages 243-247 and 251-253
 - -Bruus & Flensberg, pages 95-104

In the next session

- Topological materials, beyond the quantized Hall conductance
- The relation between Hamiltonians, cups, dognuts and knots

 $H = \sum t_{ij} c_i^{\dagger} c_j$ ii

