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A reminder from session #3

Hamiltonians with translational symmetry can be
diagonalized using Bloch’s theorem, yielding a band-structure

Parabolic band Flat bands



  

Learning outcomes

● Non-equibrium response can be computed with 
the equilibrium ground state

● Responses allow to predict instabilities
● Certain responses can be quantized



  

Today’s plan

● The response in classical magnets
● Linear response in quantum systems
● Linear response for many electrons and 

electronic instabilities
● Hall conductivity and Chern invariant



  

Response in materials

Which kind of perturbation?
→ Charge (dielectric and conductivity)
→ Spin fluctuation (magnetic susceptibility)
→ Heat (thermal conductance)

In general, for a certain observable A
we will have



  

Today’s focus

We will deal time-independent systems with translational symmetry

(like the one dimensional infinite periodic chain)



  

A simple example: charge response

Perturbation

Change in potential

Linear response



  

Types of responses

Impurities in a metal
Friedel oscillation

Information on the Fermi surface

Neutron scattering

Information on magnetic excitations

(Inelastic neutron-matter process)



  

Sym

Magnetic response
in a classical magnet



  

Classical phase transitions

Critical temperature

Can we know if water freezes
by studying water in its liquid
state? 



  

Classical phase transitions

Critical temperature

Can we know if a system
orders from its high temperature
behavior?



  

Magnetic susceptibility

How does the magnetization
of a material change when we apply
an external magnetic field?

For small fields, we can perform a linear expansion

at high temperatures?



  

Magnetic susceptibility

Take an Ising model

The high-temperature susceptibility (mean field) is

Paramagnet
for for

Ferromagnet Antiferromagnet
for



  

Three types of magnetic systems

AntiferromagnetFerromagnetParamagnet

Paramagnet Ferromagnet Antiferromagnet

(any T) (low T) (low T)



  

The high-temperature susceptibility

Paramagnet Ferromagnet Antiferromagnet

The high-T response tells us how the system behaves at low temperatures



  

Sym

Linear response in
a quantum system



  

Unperturbed and perturbed 
Hamiltonian

Unperturbed Hamiltonian Perturbed Hamiltonian

Can we infer the properties of a perturbed
Hamiltonian from the unperturbed one?



  

Perturbation theory

Every “well behaved” function is linear for small argument

Take a Hamiltonian that includes a perturbation V

Energy Observables Wavefunctions

We will use a Taylor expansion in terms of the parameter



  

Observables in
linear response theory

Unperturbed
Hamiltonian

Perturbation
Full

Hamiltonian

For any observable 

Unperturbed
value

Full value Contribution from
the perturbation

Response of the system



  

Eigenfunctions in
linear response theory

Eigenfunctions after the perturbation

Eigenfunction after
the perturbation

Eigenfunctions before
the perturbation



  

Eigenfunctions in
linear response theory

Correction to the eigenfunctions to first order

Coefficients Notation

The perturbed eigenfunctions can be expressed in terms of the unperturbed ones



  

Question: perturbation theory
for two sites

Take the full Hamiltonian

with unperturbed term

and perturbation

Remember

The unperturbed eigenstates are

What are the eigenstates for small       ?



  

Question: perturbation theory
for two sites

Unperturbed eigenstates 

Using the formula from perturbation theory from the previous slide we get



  

Breakdown of perturbation theory

Impurity in a metal
(Orthogonality catastrophe)

Is any full many-body ground state perturbative in terms of     ? 

No! Certain quantum states are intrinsically non-perturbative

Superconductivity
(BCS limit)

Quantum spin in a metal
(Kondo effect)

The superconducting gap 
is non-perturbative

The Kondo temperature
is non-perturbative

The many-body ground state
Is orthogonal to the original



  

Sym
Many-body response



  

The Fermi sea

Take a certain band-structure

The Fermi surface is the
set of k-points that cross
the Fermi energy

States below the
Fermi energy are filled



  

Question: The many-electron energy

Imagine that we have the following fermionic Hamiltonian

What is the many-body state with lowest energy E
GS

?

Option #1 Option #2 Option #3



  

Question: The many-electron energy

Option #1 Option #2 Option #3

This is the state with
lowest energy

What is the lowest energy state of this Hamiltonian?



  

Ground state of
an electronic system

Lets take a fermionic Hamiltonian in diagonal form

The many body eigenstate with minimum energy (ground state) is

Where occ is the set of k with 

with

The total ground state energy is



  

Expectation values for the many 
electron system

Ground state Hamiltonian

Ground state energy

By definition



  

Perturbation theory for the many 
electron system

The change in charge in the system is defined as

Given that we have translational symmetry, we will work with the Fourier transform



  

The Lindhard formula

Using the formulas from perturbation theory we can show



  

Instabilities and nesting
Take the form of the static response

The response diverges for

A very small perturbation creates a huge response in the system, yielding an instability

1D band structure



  

Question: instabilities
in the square lattice

The Fermi surface of the square
lattice at half filling has this form

At which q-vector does the response diverge?

Fermi surface for



  

Question: instabilities
in the square lattice

There is a common q vector
that links same energy states

The response diverges at 



  

Fluctuations and instabilities

What is the condition for a small perturbation to “break down” a ground state?

Fluctuation



  

Classical example of instability
Supercooled (high purity) water

Below 0 degrees, a perturbation will freeze supercooled water

https://www.youtube.com/watch?v=_9N-Y2CyYhM



  

Instability in an electronic system

Without interactions With interactions

Response of the non-interacting system Response of the interacting system

How to know when a ground state breaks down due to interactions?



  

Instabilities, nesting and interactions
But what if we now have interactions in the Hamiltonian?

Free Hamiltonian Interactions

Response of the
free Hamiltonian

Response of the
full Hamiltonian

The full response diverges when

The random phase approximation (RPA) for the charge response



  

Magnetic instabilities
of an electron gas

Density of states (DOS)

The Stoner criterion

Spinful Hamiltonian with local interactions

RPA for the spin response

A system can become magnetic when DOS times interactions is sufficiently large



  

Interacting instabilities in materials

Magnetism

Instability in the
spin response

Dimerization &
charge density wave

Instability in the
charge/phonon response

Instability in the
e-e scattering

Superconductivity

(attractive interaction)(repulsive interaction)(repulsive interaction)



  

Sym

The Hall conductivity and 
Chern number



  

The transverse conductivity
Take a two-dimensional material

Apply a voltage in y
Measure a current in x

MeasureFull Hamiltonian Perturbation



  

The Hall effect

Hall conductivity

Measure the current perpendicular to a voltage



  

Linear response for
transverse current

The Hall conductivity is obtained as

with

Berry curvature of a band Expression coming from perturbation theory



  

The Hall conductivity

Using

Berry curvature

Chern number

Berry connection

The Hall conductivity is obtained as

the Hall conductivity can be expressed in terms of



  

Chern numbers in the
quantum Hall state

Band-structure in the quantum Hall state Hall conductivity

Each band ( a.k.a Landau level), contributes with Chern number +1



  

Hall conductivity in an insulator

An insulator can have a finite
(and quantized) Hall conductivity

The Chern number for each band is quantized

This is a simple example of
a topological state of matter



  

Take home
● We can predict collective behavior with linear response 
theory

● Responses of quantum materials allow to predict potential 
symmetry breaking states

● Reading material:
– Cohen & Louie, pages 159-164
– Simon, pages 243-247 and 251-253
– Bruus & Flensberg, pages 95-104



  

In the next session
● Topological materials, beyond the quantized 

Hall conductance
● The relation between Hamiltonians, cups, 

dognuts and knots
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