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Goals of the lecture

Neural machine translation
Why NMT is the mainstream∗ approach?
How are the current state-of-the-art NMT systems built?
What are the challenges and limitations for the systems?

Evaluation of machine translation
How are machine translation systems evaluated manually?
How do the standard automatic metrics work,
and how can they be improved?
What are the limitations of the metrics?

∗https://slator.com/whitepapers/

slator-neural-machine-translation-report-2018/

https://slator.com/whitepapers/slator-neural-machine-translation-report-2018/
https://slator.com/whitepapers/slator-neural-machine-translation-report-2018/
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Part I

Neural Machine Translation
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Why neural machine translation?
Ability to generalize

Model similarity of related words
I Semantically related: synomyms, paraphrases, ...
I Morphologically related: inflections, derivations, compounds

Avoid sparsity problems encountered in phrase-based MT.
Flexibility

Different context vectors are easy to include as input.
Enables paragraph and document-level modeling.

Integration
Easier to combine with other sources of information:
Text in other languages, speech, images, videos, ...
Multitask learning
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Why now∗?

Increased computation power (GPUs)
Matured deep learning software frameworks and libraries:
TensorFlow, (Py)Torch, Chainer, (Theano), etc.
Improvements in training algoritms for neural networks
I Adam (Kingma and Ba 2014)
I Layer normalization (Ba, Kiros, and Hinton 2016)
I Dropout (Srivastava et al. 2014)

Success of deep learning in computer vision and speech
recognition

∗“Now” means since the latter half of the 2010’s
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Some NMT toolkits

Fairseq
Joey NMT
Marian
OpenNMT
Sockeye
Tensor2tensor
...

https://github.com/pytorch/fairseq
https://github.com/joeynmt/joeynmt
https://github.com/marian-nmt/marian
https://github.com/OpenNMT/OpenNMT-py
https://github.com/awslabs/sockeye
https://github.com/tensorflow/tensor2tensor
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MT systems are conditional language models

Encoder Decoder

A cat sat <S> Kissa istui

Kissa istui </S>

s

t

t0 t1 t2

t1 t2 t3

t0, . . . , t(j−1),|tjP( s)

“<S>”, “Kissa”,|“istui”P( s)

A (data-driven) MT system is a conditional language model.
Predicts the target conditioned on the source.
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Background: Embedding variable-length
sequences

How to encode sequences (words, phrases, sentences)
x1, x2, . . . , xn of variable length n ≥ 1 to fixed length
representations?

Remember from Lecture 3: Embeddings such as word2vec
give fixed-length vectors for the units in the sequence.
But how to combine them? Summing or averaging discards
the sequence order.
Remember from Lecture 9: Neural network language
models are able to store information over long contexts.
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Sequence encoding

Recurrent neural networks:
Take the last hidden state as
sentence embedding.

hidden layer 
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Alternative: Convolutional
neural networks (Kim 2014)
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Encoder-decoder model
[…] Morgen fliege ich nach Kanada zur Konferenz. [...]

Tomorrow I will fly to the conference in Canada.

Encoder network

Decoder network

Sentence
representation
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Sequence decoding

How to implement the decoder?

Again, we can use a neural network language model
— just initialize the hidden state with the sentence
representation from encoder!

q x 1n x k
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q x 1

encoder hidden layer decoder hidden layer 

m x k
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First complete NMT systems

Kalchbrenner and Blunsom 2013:
Encode with convolutional neural
networks (CNN), decode with recurrent
neural network (RNN) language model
Sutskever, Vinyals, and Le 2014:
Encode and decoder with RNN with long
short-term memory (LSTM) units
Cho et al. 2014b: Encode with RNN with
gated recursive units (GRU) or gated
recursive CNN, decoder with RNN with
GRUs
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Recurrent neural networks: Gates

Vanishing gradient problem: Error signal decreases
exponentially with the number of layers in backpropagation
and gradient-based learning.
The RNN encoder must process entire sentence before
sentence encoding is ready: The long path makes it hard to
learn relevant information from first time steps (beginning of
sentence).
Solution:
I Predict what information to keep and what to forget from the

state representation.
I Gates: sigmoid activation (0–1) followed by pointwise

multiplication with the target signal.
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Recurrent neural networks: Gated units
LSTM and GRU are two gate architectures with similar
performance (Chung et al. 2014)
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Long short-term memory
(Hochreiter and Schmidhuber 1997)
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Gated recurrent unit
(Cho et al. 2014a)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


NMT & MT Evaluation
23th March 2021 23/114 Stig-Arne Grönroos

Attention model

Even with gated units, it is hard to decode a sensible target
sentence from a single embedded source vector.
Encoder provides embeddings for each input unit — allow
decoder to look at them.
Attention model: At each decoder time step, predict which
parts of the source encoding are relevant for next output.

x1 x2 x3 xT

+
αt,1
αt,2 αt,3

αt,T

yt-1 yt

h1 h2 h3 hT

h1 h2 h3 hT

st-1 s t

(Bahdanau, Cho, and Bengio 2015)

Global align weights

Attention Layer

Context vector

(Luong, Pham, and Manning 2015)
http://distill.pub/2016/augmented-rnns/#attentional-interfaces

http://distill.pub/2016/augmented-rnns/#attentional-interfaces
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Adding layers

Google NMT (Wu et al. 2016)
Some results: https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
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Transformer architecture

Recurrent networks require
sequential computation (O(n) for n
units in sentence)
Can we cope without them?
“Attention is all you need” —
Google’s Transformer architecture
(Vaswani et al. 2017)
Multiple layers of attention networks
in both encoder and decoder

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


NMT & MT Evaluation
23th March 2021 26/114 Stig-Arne Grönroos

Latest Transformer variants

Taxonomy of efficient Transformer architectures (Tay et al. 2020a).
(Kitaev, Kaiser, and Levskaya 2020) (Wang et al. 2020) (Choromanski et al. 2020)

(Beltagy, Peters, and Cohan 2020) (Tay et al. 2020b) (Roy et al. 2021)



NMT & MT Evaluation
23th March 2021 27/114 Stig-Arne Grönroos

Break-out groups

Translation is
mapping from one arbitrary length sequence to
another arbitrary length sequence,
I (form of the task)

where the sequences are in different natural languages.
I (the semantics of task)

The encoder-decoder model is one kind of
sequence-to-sequence model.

Discuss in break-out groups (5 min):
Other tasks that you can use an NMT system for?
Same form, different semantics.
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Is Transformer all you need?

At the moment, Transformer is the state-of-the-art and de
facto standard in NMT.

But the model architecture is not everything!
Especially for low-resource language pairs and
morphologically rich languages, we need methods for:

1. Learning from bilingual data in other languages
2. Using monolingual corpora in source or target language
3. Selecting input and output units
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Transfer learning

Current machine learning methods are data-hungry.
The easiest way to improve performance is to train on larger
data.

Either collect more data for the task (expensive!),
or figure out a way to use existing data sets.
I Labeled data for other tasks.
I Unlabeled data.
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Labeled and unlabeled in the context of MT

Let’s say the goal is a English-to-Finnish system.
Labeled data for this task: English-Finnish sentence pairs
I Input English sentence
I is labeled by output Finnish sentence.

Labeled data for another task:
I e.g. English-Estonian sentence pairs.

Unlabeled data:
I Monolingual English,
I or monolingual Finnish.
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Transfer learning techniques

Transfer learning: Use knowledge gained from solving one
task in a related task.
How are the different learning tasks timed?
I Sequential transfer
I Parallel transfer
I Mix: Scheduled multi-task learning
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Transfer learning techniques
Sequential transfer

I Often called just "transfer learning"

1. Train a system on one task (“pretraining”),
2. then transfer the knowledge,
3. and finally continue training on another task (“fine-tuning”).

I Risk: catastrophic forgetting
I Benefit: the second task doesn’t need to be known when

training the first!

Parallel transfer

I Often called "multi-task learning"
I Learn multiple related tasks at the same time.

Mix: Scheduled multi-task learning

I e.g. multi-task pretraining + multi-task fine-tuning



NMT & MT Evaluation
23th March 2021 41/114 Stig-Arne Grönroos

Transfer learning techniques
Sequential transfer
I Often called just "transfer learning"

1. Train a system on one task (“pretraining”),
2. then transfer the knowledge,
3. and finally continue training on another task (“fine-tuning”).

I Risk: catastrophic forgetting
I Benefit: the second task doesn’t need to be known when

training the first!

Parallel transfer

I Often called "multi-task learning"
I Learn multiple related tasks at the same time.

Mix: Scheduled multi-task learning

I e.g. multi-task pretraining + multi-task fine-tuning



NMT & MT Evaluation
23th March 2021 42/114 Stig-Arne Grönroos

Transfer learning techniques
Sequential transfer
I Often called just "transfer learning"

1. Train a system on one task (“pretraining”),
2. then transfer the knowledge,
3. and finally continue training on another task (“fine-tuning”).

I Risk: catastrophic forgetting
I Benefit: the second task doesn’t need to be known when

training the first!

Parallel transfer

I Often called "multi-task learning"
I Learn multiple related tasks at the same time.

Mix: Scheduled multi-task learning

I e.g. multi-task pretraining + multi-task fine-tuning



NMT & MT Evaluation
23th March 2021 43/114 Stig-Arne Grönroos

Transfer learning techniques
Sequential transfer
I Often called just "transfer learning"

1. Train a system on one task (“pretraining”),
2. then transfer the knowledge,
3. and finally continue training on another task (“fine-tuning”).

I Risk: catastrophic forgetting
I Benefit: the second task doesn’t need to be known when

training the first!

Parallel transfer
I Often called "multi-task learning"
I Learn multiple related tasks at the same time.

Mix: Scheduled multi-task learning

I e.g. multi-task pretraining + multi-task fine-tuning



NMT & MT Evaluation
23th March 2021 44/114 Stig-Arne Grönroos

Transfer learning techniques
Sequential transfer
I Often called just "transfer learning"

1. Train a system on one task (“pretraining”),
2. then transfer the knowledge,
3. and finally continue training on another task (“fine-tuning”).

I Risk: catastrophic forgetting
I Benefit: the second task doesn’t need to be known when

training the first!

Parallel transfer
I Often called "multi-task learning"
I Learn multiple related tasks at the same time.

Mix: Scheduled multi-task learning
I e.g. multi-task pretraining + multi-task fine-tuning



NMT & MT Evaluation
23th March 2021 45/114 Stig-Arne Grönroos

Cross-lingual transfer: Settings

Given training data between languages A and B, can it help
translating from language C to D?
Training a multilingual MT system is a multi-task training
scenario
I Each language pair is one task.

Multilingual settings:
I one-to-many
I many-to-one
I many-to-many
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Cross-lingual transfer: Zero-shot and universal
translation

Many-to-many
translation enables
new language pairs
without training data
(“zero-shot”) or
explicit pivot
language. Google’s multilingual NMT

(Johnson et al. 2016)

Universal translation: Extension of many-to-many
translation to cover all languages.
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Using monolingual corpora

There is no separate language model component in NMT.

How to exploit abundant monolingual data?
Approaches:
I Pretraining
I Autoencoding
I Back-translation
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Monolingual corpora: Pretraining

Sequential transfer: Train a component of the model on
monolingual data.

1. Pretrained source or target
embeddings

2. Language model fusion
3. Pretrained subnetwork

(encoder or decoder) Integrating pretrained RNN LM
(Gülçehre et al. 2015)



NMT & MT Evaluation
23th March 2021 52/114 Stig-Arne Grönroos

Monolingual corpora: Pretraining

Sequential transfer: Train a component of the model on
monolingual data.

1. Pretrained source or target
embeddings

2. Language model fusion
3. Pretrained subnetwork

(encoder or decoder) Integrating pretrained RNN LM
(Gülçehre et al. 2015)



NMT & MT Evaluation
23th March 2021 53/114 Stig-Arne Grönroos

Monolingual corpora: Pretraining

Sequential transfer: Train a component of the model on
monolingual data.

1. Pretrained source or target
embeddings

2. Language model fusion

3. Pretrained subnetwork
(encoder or decoder)

Integrating pretrained RNN LM
(Gülçehre et al. 2015)



NMT & MT Evaluation
23th March 2021 54/114 Stig-Arne Grönroos

Monolingual corpora: Pretraining

Sequential transfer: Train a component of the model on
monolingual data.

1. Pretrained source or target
embeddings

2. Language model fusion
3. Pretrained subnetwork

(encoder or decoder) Integrating pretrained RNN LM
(Gülçehre et al. 2015)



NMT & MT Evaluation
23th March 2021 55/114 Stig-Arne Grönroos

Monolingual corpora: Autoencoding

Parallel transfer: Use multi-task learning with
source-to-source or target-to-target autoencoding as an
additional task.
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for target language
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Monolingual corpora: Autoencoding

Parallel transfer: Use multi-task learning with
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Monolingual corpora: Back-translation

Let’s say the goal is a English-to-Finnish system.

First train a Finnish-to-English system and translate any
monolingual Finnish corpora with it.
Use results as additional training material.
I Synthetic training data.

This technique is called back-translation
(Sennrich, Haddow, and Birch 2016a).
Bad translations on the source side do not matter too much.
Large gains, but double work in training.
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monolingual Finnish corpora with it.
Use results as additional training material.
I Synthetic training data.

This technique is called back-translation
(Sennrich, Haddow, and Birch 2016a).
Bad translations on the source side do not matter too much.

Large gains, but double work in training.
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Parameter sharing in NMT transfer learning

For (cross-lingual) transfer, parameters have to shared
between languages.
I Full sharing: All model parameters shared (mark languages

with special tokens “〈TO_FI〉” or embeddings)
I Partial sharing: Share only a subnetwork (e.g. encoder)
I Soft sharing: Learn a dependency between the parameters

instead of sharing them directly (Platanios et al. 2018)
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Parameter sharing in NMT transfer learning

Encoder Decoder

A cat sat <S> Kissa istui

Kissa istui </S>

Source text

Source embeddings Target embeddings

Target embeddings

t0 t1 t2

t1 t2 t3

Target text

LM
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Parameter sharing in NMT transfer learning

Encoder Decoder

A cat sat <S> Kissa istui

Kissa istui </S>

Source text

Source embeddings Target embeddings

Target embeddings

t0 t1 t2

t1 t2 t3

Target text

LM

Pretrained embeddings
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Parameter sharing in NMT transfer learning

Encoder Decoder

A cat sat <S> Kissa istui

Kissa istui </S>

Source text

Source embeddings Target embeddings

Target embeddings

t0 t1 t2

t1 t2 t3

Target text

LM

Pretrained encoder
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Parameter sharing in NMT transfer learning

Encoder Decoder

A cat sat <S> Kissa istui

Kissa istui </S>

Source text

Source embeddings Target embeddings

Target embeddings

t0 t1 t2

t1 t2 t3

Target text

LM

Language model fusion
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Parameter sharing in NMT transfer learning

Encoder Decoder

A cat sat <S> Kissa istui

Kissa istui </S>

Source text

Source embeddings Target embeddings

Target embeddings

t0 t1 t2

t1 t2 t3

Target text

LM

Full parameter sharing
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Lexical units in NMT

Limiting issues in phrase-based MT:
Many tokens per sentence makes decoding more difficult.
Different number of tokens in source and target sentence
makes word alignment more difficult.

No such restrictions in NMT!
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Units for encoder and decoder

Encoder input symbols
Words: large vocabulary, rare words, OOVs.
I but factors (e.g. morphological analysis) easy to integrate.

Attention model may limit the use of characters.
I Softmax operation on input tokens.

Decoder output symbols
Important: Computational complexity increases with
vocabulary size due to softmax in output layer.

Conclusion
Subword units (morphological segmentation if available, or
statistical subwords) may be a good compromise.
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Multilingual units

Current standard practice in segmentation: Byte-pair
encoding (BPE) (Sennrich, Haddow, and Birch 2016b)
I See Lecture 8 for details

Joint segmentation: The source and target language
corpora — or more languages in a multilingual system —
can be combined as a single training corpus for BPE.
I Identical words will have the same segmentation in all

languages.
I The NMT system can learn to make character-by-character

copy of rare names.

SentencePiece is rapidly gaining popularity (Kudo 2018)
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Challenges

Training is computationally very expensive.
I Increasing the number of layers improves results but

requires even more GPU resources.
NMT is a "black box" system.
I No "phrase table" to observe or modify.
I Inconvinient especially for translation industry, where correct

terminology is very important.
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Challenges (cont.)

Translation quality issues
I Problems with long sentences (Toral and

Sánchez-Cartagena 2017)
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I Good fluency, but sometimes very misleading translations
— can be less predictable than PBMT

I EN: Stealing food is a common crime in student halls.
FI: Lapsenteko on yhteistä rikollisuutta.
(Making children is shared crime.)
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(Making children is shared crime.)
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Completely optional additional reading

Most of these topics are discussed in further detail in my
PhD thesis (Grönroos 2020).
I Section 3.2.2 Neural models (Sequence2sequence models)
I Section 5.2.3 Neural machine translation (History of NMT)
I Section 3.4.2 Transfer and Multi-task learning
I Section 5.3.3 Multilingual translation
I Section 5.3.4 Exploiting monolingual data
I Section 5.3.1 Vocabulary construction (Subword units)

Not in the exam.
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Part II

Machine Translation Evaluation
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Outline

Human evaluation

Automatic evaluation

Meta-evaluation
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How to evaluate MT systems?

Final evaluation should depend on the intended application
Understanding text as it is; skimming/gisting→ Human
evaluation
Aid for human translations→ Decrease in translation time
Multilingual information retrieval→ IR evaluation
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Human evaluation: Direct assessment

Given translation output
and source and/or
reference translation, how
good the translation is?
Adequacy: Does the output
convey the same meaning?
Fluency: Is the output good
and fluent language?
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Human evaluation: Ranking

Given N translation output and source, order them from
best to worst.
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Human evaluation: Agreement

Evaluators disagree (WMT 2006):

1 2 3 4 5

10%

20%

30%

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Inter-evaluator agreement can be measured with Kappa
coefficient:

K =
p(A)− p(E)

1− p(E)

p(A) = proportion of agreement
p(E) = agreement by chance

Ranking provides more consistent results than direct
assessment.
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Evaluating translator efficiency gain

How does the average translation time per sentence
change?
I From scratch
I Using only translation memory
I Between different MT systems

Challenges:
I Translators have different experience and ways of working
I High variability between translation segments
I Easiest cases often solved by translation memories
I How to present the translation in the UI

Needs lots of data or complicated setup and advanced
analysis (e.g. mixed-effect regression models).
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Why automatic evaluation?

Manual evaluation is expensive
MT researchers rarely have the resources.
Annual competitions (WMT shared tasks) help somewhat.

Manual evaluation is slow
Cannot be used during development.
Especially not for optimization of model parameters and
hyperparameters.
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Challenges in automatic evaluation

Why MT evaluation is more difficult than in ASR evaluation? Why
not use word error rate (WER)?
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Challenges in automatic evaluation

Multiple correct answers: Ideally there should be several
reference translations made by different persons.
Graded correctness: Word choices, grammatical
correctness, emphasis (“koira jahtasi kissaa” vs. “kissaa
koira jahtasi”), style (“kick the bucket” vs. “die”), ...
Usefulness depends on intended use.
I Translator’s tool: Long segments that require no changes
I Skimming: Meaning should be correct; fluent enough for

easy understanding
I Information retrieval: Terminology important; fluency and

grammatical correctness do not matter
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Global edit distance metrics

Word and letter error rates do not account possible
variations in word order.
Edit distance with moves is an NP-hard problem.
Solutions:
I TER: Shift operation + greedy search (Snover et al. 2006)
I SPEDE: Limited-distance word swapping

(Wang and Manning 2012)
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Local metrics

Concentrate on small parts of the full text at a time.
Similarity to IR metrics:
I Precision: Every item should be found in the reference.
I Recall: Anything in the reference should not be left out.

Observing individual words in not adequate (word order!)
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Local metrics: BLEU

BLEU (“Bilingual Evaluation Understudy”) (Papineni et al.
2002) was one of the first metrics to report high correlation
with human judgments of quality.
Log-linear model parameters can be tuned directly for the
score.

BLEU = min
(

1, output-length
reference-length

)(∏4
i=1 precisioni

) 1
4

Typically calculated over entire corpus
(system-level evaluation).
Example:
(by Philipp Koehn, http://www.statmt.org/book/)

http://www.statmt.org/book/


Example

airport security   Israeli officials are responsible

Israeli officials   responsibility of   airport   safety

Israeli officials are responsible for airport securityREFERENCE:

SYSTEM A:

SYSTEM B:
4-GRAM MATCH2-GRAM MATCH

2-GRAM MATCH 1-GRAM MATCH

Metric System A System B
precision (1gram) 3/6 6/6
precision (2gram) 1/5 4/5
precision (3gram) 0/4 2/4
precision (4gram) 0/3 1/3

brevity penalty 6/7 6/7
bleu 0% 52%

Chapter 8: Evaluation 17
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Local metrics:
Problems in BLEU

Does not work for languages with no word boundaries.
Single word or n-gram is scored 0 or 1.
I Inflections: “translation” vs. “translations”
I Derivations: “[he] made translations” vs. “[he] translated”
I Compounds: “Arbeits Geberverband” vs.

“Arbeitgeberverband” (employers’ organization)

Poor measure of adequacy for morphologically rich
languages.



NMT & MT Evaluation
23th March 2021 101/114 Stig-Arne Grönroos

Beyond word-based metrics

Preprocessing (stemming, morphological segmentation)
I METEOR (Banerjee and Lavie 2005; Denkowski and Lavie

2011)
I AMBER (Chen and Kuhn 2011)

Characted-based measures
I char-BLEU (Denoual and Lepage 2005)
I Weighted character F-score (chrF3) (Popović 2015)

Combine with word similarity calculation
I Alignment based on character similarity (Homola, Kuboň,

and Pecina 2009)
I Tolerant BLEU (Libovický and Pecina 2014)
I LeBLEU (Virpioja and Grönroos 2015)
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How to evaluate evaluation metrics?

Goals
Correct: better systems have higher scores
Interpretable: intuitive interpretation of translation quality
Consistent: repeated use gives the same results
Low cost: efficient computation, no extra work or linguistic
resources needed
Tuning compatible: can be used to tune translation systems
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How to evaluate evaluation metrics?

Correlation to human evaluation
Pearson correlation vs Kendall’s Tau
I Kendall’s Tau is less sensitive to outliers
I Kendall’s Tau doesn’t consider the differences in scores,
I and two metrics whose errors differ in magnitude can have

the same Kendall’s Tau

I Outlier weak MT systems affect correlation too much.
I Outliers in general easy to rank: give metrics a high

correlation.

(Mathur et al. 2020)



NMT & MT Evaluation
23th March 2021 104/114 Stig-Arne Grönroos

How to evaluate evaluation metrics?

Even if a metric works for comparing similar MT systems, it
should not to be trusted for comparing very different ones.
Examples from http://www.statmt.org/book/:

http://www.statmt.org/book/


Correlation with Human Judgement

Chapter 8: Evaluation 22



Evidence of Shortcomings of Automatic Metrics
Post-edited output vs. statistical systems (NIST 2005)
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Evidence of Shortcomings of Automatic Metrics
Rule-based vs. statistical systems
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NMT quality on par with human translators?

Sometimes human evaluation has indicated that NMT would
be on the level of human translation.
E.g. paper by Microsoft Research:
“Achieving Human Parity on Automatic Chinese to English
News Translation“ (Hassan Awadalla et al. 2018)
I Direct assessment (score 0-100) by bilingual humans.
I No statistically significant difference between NMT output

and reference translations by humans!
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NMT quality on par with human translators?
Caveats:
I Are the human translators professionals? Are they

translating to their native language?
I How about the human evaluators?

I Do they understand what to judge (e.g. fluency vs.
adequacy)? Even bad NMT is fluent.

I Skill and time spent: ability to notice subtle differences.
I Bilingual vs evaluators only speaking target language (use

source, or only reference?)
I Is the document context available?

See e.g. https://www.linkedin.com/pulse/

microsoft-mt-reaches-parity-bad-human-translation-tommi-nieminen

or (Toral et al. 2018; Läubli et al. 2020)

https://www.linkedin.com/pulse/microsoft-mt-reaches-parity-bad-human-translation-tommi-nieminen
https://www.linkedin.com/pulse/microsoft-mt-reaches-parity-bad-human-translation-tommi-nieminen
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