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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 13:

  Reissner-Mindlin and Kirchhoff plate models.

  Derivation of the plate equations by using the principle of virtual work, integration by

parts, and the fundamental lemma of variation calculus. Plate equilibrium and

constitutive equations in their tensor forms.

  Component representations of the plate equations in ( , , )x y z   and ( , , )r n coordinate

systems.

  Approximate series solutions to plate equations.
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PLATE MODELS

Kinematic assumption: Line segments perpendicular to the mid/reference-plane remain

straight in deformation (Reissner-Mindlin) and perpendicular to the mid-plane (Kirchhoff).

Then, line segments move as rigid bodies according to 0 0u u    
   .

Kinetic assumption: Normal stress in the thickness direction is negligible.
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The kinematic assumption means that the normal line segments to the mid-plane move

as rigid bodies in deformation. In terms of displacement of the translation point 0z 

and small rotation of the line segments, displacement of a particle ( , , )x y z  is given by

( ) ( ) ( )u ui vj wk i j zk      
      in which the translation and rotation components

depend on the mid-plane position ( , )x y . The kinetic assumption of the plate model is

0zz  .

In the Kirchhoff model, line segments are assumed to remain normal to the mid-plane in

deformation which brings the Kirchhoff constraints ( 0 0w   


, 0 0 k  


)

0xz
w
x

 
  


  and 0yz
w
y

 
  


.

The modeling error in the Kirchhoff plate model is larger than that of the Reissner-

Mindlin plate model!
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 BENDING MODE OF KIRCHHOFF PLATE

Kirchhoff model is the practical choice for the bending of thin isotropic and homogeneous

simply supported plates. Assuming that the origin of the transverse axis is placed at the mid-

plane, the boundary value problem for bending of a simply supported plate loaded by

distributed transverse force nb  is given by

2 2
0 0 0nbw

D
    in ,

0w    and
2

2 0wD
n





  on 

in which
3

212(1 )
EtD 


 is the bending stiffness of the plate  and 0 ne
n


   


 .
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EXAMPLE 5.1 Consider bending of a simply supported Kirchhoff plate in the rectangle

domain (0, ) (0, )L H   . Thickness t , Young’s modulus E , and Poisson’s ratio  , and

distributed load b  in direction of z axis are constants. Derive the double sine series

solution of the form 1 1( , ) sin( / )sin( / )iji jw x y w i x L j y H  
   .

Answer 6
2 2 216 [( ) ]1 ( )ij

i
b i jw
D L Hj

  , {1,3,5, }i j  , 0ijw   otherwise.

x

y
 H

g

L
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 The double sine series satisfies the simply supported boundary conditions ‘a priori’.

Elimination of the stress resultants gives the fourth order differential equation for the

transverse displacement

4 4 4

4 2 2 42w w w b
Dx x y y

  
  

   
 ,  where

3

212(1 )
EtD 


.

 The double sine-series solution is based on the orthogonality properties of the sine and

cosine functions (like)

0
sin( )sin( )

2
L

ij
x xi j dx
L L

L
        and

0
sin( [1 ( 1) ]) iL xi dx

L
L
i

  


0
sin( )sin( )

2
H

ij
y yi j dy
H H

H
       and

0
sin( [1 ( 1) ]) iH yi dy

H
H
i

  


Cronecker delta
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 When the series approximation is substituted into the equilibrium equation, the outcome

is

4 2 2 4
1 1 [( ) 2( ) ( ) ( ) ]sin( )sin( )iji j

i i j j x y bw i j
L L H H L H D
      

      .

 The unknown coefficient can be solved by multiplying both sides of the equation by

sin( / )sin( / )k x L l y H  , integrating over the domain (0, ) (0, )L H   , and using

orthogonality of sine functions:

4 2 2
2

4 [1 ([( ) 2( ) ( 1) ][1 ( 1)
2 2

) ]( ) ] i j
ij

LH
ij

L H i i j j bw
L L H H D
   


      

6 2 2 2
16

[(

1

) ( ) ]

1
ij

bw i jD
L

i
H

j



, {1,3,5, }i j  , 0ijw   otherwise. 



5-9



5-10

5.1 PLATE EQUATIONS

Virtual work expression of plate, principle of virtual work, integration by parts, and the

fundamental lemma of variation calculus give ( ne  is the normal to the mid-plane):

0 0F b   


  in ,

0 0nM e F    
    in ,

0n F F  
  or 0 0 0u u 

  on  ,

( ) 0nn M M e   
    or 0 0 0  

 
 on  .

Stress resultants are symmetric so that cF F
 

 and cM M
 

. Constitutive equations

0 0( , )M M u 
   , 0 0( , )F F u 

   are needed for a closed equation system!
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In terms of the stress and external force resultants, virtual work densities of the plate

model  ( 0 0 ne  
 

 0 0ne  
  ) are given by

T
int

c
: Fw

M





  
    

   


 ,

T
0ext

0

u bw
c





  

     
   


  , and

T
0ext

0

u Fw
M





  

     
   




where the strain measures of the plate model are 0 0 0nu e  
   and 0 0 

 
 and

gradient operator 0 /ne n    
 .

Virtual work expression of plate is obtained as integral of the density expression over

the plate domain 2  (mid-plane)

0 0 0 c 0 0 c[ : ( ) : ( ) ]nW F u e M dA   


      
   

0 0 0 0( ) ( )b u c dA F u M ds   
 

       
      .
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Integration by parts gives an equivalent form (the aim is remove the derivatives acting

on the variations), retaining the original rotation variable with 0 0 ne  
  , and using

the vector identity ( ) ( )a b c a b c    
      gives

0 0 0 0[( ) ( ) ]nW F b u M e F c dA  


            
     

0 0[( ) ( ) ]n F F u n M M ds 


        
       

0 0 0 0[( ) [( ) ] ]n nW F b u M e F c e dA  


             
      

0 0[( ) [( ) ] ]nn F F u n M M e ds 


         
       .

Principle of virtual work and the fundamental lemma of variation calculus imply the

equilibrium equations and boundary conditions
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0 0F b   


in 

0( ) 0n nM e F c e      
      in 

0n F F  
     or 0 0 0u u 

    on 

( ) 0nn M M e   
      or 0 0 0  

 
  on 

Above, underbars denote given boundary values. Boundary conditions specify either a

kinematic quantity or its work conjugate kinetic (force like) quantity.

equilibrium eqs.

boundary conditions
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RESULTANT DEFINITIONS

Stress and external force resultants are integrals over the thickness ( 0 0 ne  
  ). Stress

resultant definition gives the constitutive equations:

2

11
: :

n A CF dn Edn
nM n n C B

 


 

                    
            

 
         ,

1b f dn
nc

   
   

  


 
 ,

1F
t dn

nM
   

   
  





 .

Elasticity tensor E


 is assumed to satisfy the minor and major symmetries and condition

: 0n ne e E 
 

, which implies that the kinetic assumption 0nn  is satisfied ‘a priori’.

external force and moment per unit area

external force and moment per unit length
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 STRESS RESULTANTS

Using the conventional notation for the components in the ( , , )x y n  coordinate system,

assumption 0nn   and  representation n nF N e Q Qe  
    

T
xx xy

yx yy

N Ni i
N

N Nj j

            
        

 


  ,

T
xx xy

yx yy

M Mi i
M

M Mj j

            
        

 


  , and
T

x

y

Qi
Q

Qj

         
      




 .

The first and second indices of the components of M


 do not have the same interpretation as

those of  .

x

n
y
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 BENDING MODE OF KIRCHHOFF PLATE

Equilibrium equations of the Kirchhoff plate model can be deduced from the Reissner-

Mindlin equations. However, boundary conditions are somewhat tricky and they require

derivation from the virtual work densities:

0 0nQ b   


  and 0Q M  
 

  in ,

0nn nM M     or 0s
w
n


 


   on ,

( ) 0n ns sQ Q M M
s


   


   or 0w w     on  .

Constituive equation  of the moment resultant 0 0:M B w   
 

 follow from the Reissner-

Mindlin model, Kirchhoff constraint 0 0 0w  


, and assumes that 0C 


.

normal

tangential
s

n

t
u
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The equilibrium equation can be deduced from the Reissner-Mindlin equations by

separating the thin-slab and bending modes of plate with n nF N e Q Qe  
      and

n nb b e b 
    ( 0c 

  for simplicity). Then

0 0F b   


  and 0 0nM e F    
 



0 0 0N b   


, 0 0nQ b   


,  and 0 0M Q   




0 0( ) 0nM b     


. 

The biharmonic equation for the transverse displacement of literature follows from the

constitutive equation of homogeneous and isotropic material

0 0( ) 0nM b     


  and
2

0 0:
12
tM E w   
 

 2 2
0 0 0nD w b    . 

https://en.wikipedia.org/wiki/Biharmonic_equation
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5.2 CARTESIAN COORDINATES

Reissner-Mindlin model bending mode equilibrium and constitutive equations in ( , , )x y n

coordinates follow from the coordinate system invariant forms.

0

yx
n

xyxx
x

yy xy
y

QQ b
x y

MM Q
x y

M M
Q

y x

 
    

       
  

  
   

,
1
2

1 0
1 0

0 0 (1 )

xx

yy

xy

xM
M D

y
M

y x






  

 
 

    
           

              
   

,  and

x

y

w
Q xGt wQ

y





           
  

 in .     (notation
3

212(1 )
EtD 


)
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EXAMPLE 5.2 Consider the plate strip clamped at its ends and loaded by its own weight.

Determine the deflection w and rotation   of the plate according to the Reissner-Mindlin

model. Thickness, width, and length of the plate are t , H , and L , respectively (H L ).

Density  , Young’s modulus E , and Poisson’s ratio are constants. Assume that the stress-

resultants, displacement, and rotations depend on x  only.

Answer 1 ( )( ) ( ))
2 2

(
4

w t L x xg L xx x
G D


    and 2 2( 3 2 )

1
( )

2
gt x L
D

x Lx x  

x, X

y, Yz, Z

L

H
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According to the assumption, derivatives with respect to y  vanish. The equilibrium and

constitutive equations simplify to

0xdQ gt
dx

  , 0xx
x

dM Q
dx

  , xx
dM D
dx


 ,  and ( )x
dwQ Gt
dx

     in (0, )L ,

Boundary value problem for the transverse displacement and rotation, obtained by

eliminating the stress resultants,

2

2 ( ) 0d dwD Gt
dxdx

    ,
2

2( ) 0d w dGt gt
dxdx
      in (0, )L , 0w     on {0, }L .

 gives (use the Mathematica notebook)

1 ( )( ) [ ])
2 2

(
4

w t L x xgx L x x
G D

 
    and 2 2( 3 2 )

1
( )

2
gt x L
D

x Lx x   . 
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KIRCHHOFF PLATE EQUATIONS

Equilibrium and constitutive equations of the bending mode according to the Kirchhoff

model follow from the Reissner-Mindlin equations

0

yx
n

xyxx
x

yy xy
y

QQ b
x y

MM Q
x y

M M
Q

y x

 
    

       
  

  
   

,
1
2

1 0
1 0

0 0 (1 )

xx

yy

xy

xM
M D

y
M

y x






  

 
 

    
           

              
   

,  and

0

w
x
w
y





      
  

  in .
Kirchhoff
constraints!
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EXAMPLE 5.3 Consider the plate strip clamped at its ends and loaded by its own weight.

Determine the deflection w and rotation   of the plate according to the Kirchhoff model.

Thickness, width, and length of the plate are t , H , and L , respectively ( H L ). Density

 , Young’s modulus E , and Poisson’s ratio  are constants. Assume that the stress-

resultants, displacement, and rotations depend on x  only.

Answer 2 2( ) ( )
24

gtw x L x x
D


   and 2 2( 3 2 )

12
( ) gt x Ldwx

d
L x

x
x

D
    

x, X

y, Yz, Z

L

H
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According to the assumption, derivatives with respect to y  vanish, and the set of partial

differential equations becomes a set of ordinary differential equations. The relevant

differential equations and the boundary conditions are

0xdQ gt
dx

  , 0xx
x

dM Q
dx

  , xx
dM D
dx


 , 0dw
dx

     in (0, )L ,

0w     on {0, }L .

Solution to w can be obtained, e.g., by eliminating the rotation and the stress resultants

4

4 0d wD gt
dx

  in (0, )L   and 0dww
dx

  on {0, }L 

2 2( )( )
24

gt L x xw x
D
 

  . 
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5.3 CURVILINEAR COORDINATES

Equilibrium and constitutive equations of the bending mode according to the Reissner-

Mindlin model in ( , , )r n coordinates follow from the coordinate system invariant forms:

( )1[ ]

( )1[ ] 0

( )1[ ]

r
n

rrr
r

r
r

QrQ b
r r

MrM M Q
r r

rM M
M Q

r r






 
 







 
    

        
  

   
   

,  
3 1 ( )

12
1 ( )

rr
r

r
r

r

rM
tM E

r
M

r r



 









 


 
 

   
   

       
    

  
  

,  and

1
r

r

w
Q rGt

wQ
r










           
  

 in .     (notation   2
1
2

1 0
1 0

1
0 0 (1 )

EE 







 
 

  
    

 )
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The component representations of quantities in the ( , , )r n  coordinate system are

T
r re Q

Q
e Q 

          
      




 ,
T

r rr r r

r

e M M e
M

e M M e



   

            
        

 


  ,
T

0 1
re r

e
r




 
            

  


 ,

T T

2

1 0
1 0

0 0 01

r r r rr r r r

n n n n

n n n n n r r n n r r n

e e e e e e e ee e e e
EE e e e e e e e e G e e e e

e e e e e e e e e e e e

   

       






   



     
                                     

          
            

           
.

Direct calculation (basis vectors are not constants) gives

0
( )1[ ] 0r

n n
QrQQ b b

r r





      
 


, 
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T

0

( )
1 0

( )

rrr
r

r

r
r

MrM M rQe r
M Q

e rM Mr
M rQ

r




  
 





 
                       


 , 

T

3

1
2

1 0
1: 1 0 ( )

12
0 0 (1 )

1 ( )

r r
r

r r
r

r

re e
tM E e e D

r
e e e e

r r



  

 





  


  


 
 

    
    

                  
  

  

 
    

   
, 
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:
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n
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KIRCHHOFF PLATE EQUATIONS

Equilibrium and constitutive equations of the bending mode according to the Kirchhoff

model follow from the Reissner-Mindlin equations

( )1[ ]

( )1[ ] 0

( )1[ ]

r
n

rrr
r

r
r

QrQ b
r r

MrM M Q
r r

rM M
M Q

r r






 
 







 
    

        
  

   
   

,  
3 1 ( )

12
1 ( )

rr
r

r
r

r

rM
tM E

r
M

r r



 









 


 
 

   
   

       
    

  
  

,  and

0
1

r

w
r
w

r






      
  

.
Kirchhoff
constraints!



5-28

The various forms in literature follow after elimination of rotations or stress resultants

in the generic forms. For example, solving for the shear forces in terms of the moment

resultants and eliminating the rotations in the constitutive equations by using the

Kirchhoff constraints gives first

( )
1

( )

rr r
r

r r

rM M MQ r
Q r rM M M

r

 


  





                
   

,

2 2

2 2

2 2

2 2

1 1( )

1 1( )

1(1 ) ( )

rr

r

w w w
r r rr

M
w w wM D

r r rr
M

w
r r














   
  

                    
    

 
   



2 2
2 2
0 0 2 2 2 2

1 1 1 1[ ( ) ][ ( ) ] nbw r r w
r r r r r r Dr r 
     

     
    

.
Biharmonic

equation
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EXAMPLE 5.4 A simply supported circular plate of radius R  is loaded by its own weight

as shown in the figure. Write down the boundary value problem giving as its solution the

transverse displacement. Use Kirchhoff plate equations in the polar coordinate system.

Problem parameters E ,  ,    and t  are constants. Assume that w depends on the radial

coordinate only.

Answer: 1 1[ ( )][ ( )] 0nbd d d dr r w
r dr dr r dr dr D

   in (0, )R , ( ) ( ) 0rrM R w R 

g

R
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Assuming rotation symmetry, the bending mode equilibrium equation and the boundary

conditions of circular simply supported plate of isotropic homogeneous material

simplify to

1 1[ ( )][ ( )] 0nbd d d dr r w
r dr dr r dr dr D

    in (0, )R ,

2

2
1( ) 0rr

d w dwM D
r drdr

      and 0w    on { }R ,

3 2

3 2 2
1 1( ) 0r

d w d w dwQ D
r drdr dr r

     ,
2

2
1( ) 0rr

d w dwM D
r drdr

      on {0}.

The generic solution to the equilibrium equation in terms of integration constants a, b,

c, and d (obtained by repeated integrations) is 2 2(1 log ) logw a r dcr r rb    .
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EXAMPLE 5.5 A simply supported circular plate of radius R  is loaded by a point force P

acting at the midpoint as shown in the figure. Determine the displacement of the plate at the

midpoint by using the Kirchhoff plate model in the polar coordinate system. Problem

parameters E,   and t are constants. Assume that the solution depends on the radial

coordinate only.  Use the generic solution 2 2( ) (1 log ) logw r a r r r d rb c    .

Answer:
2 2

3
3 (3 (1 )
1

1 3(0) )
16 4

PR PRw
D Et



 

 


  


 

P

R
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Let us consider first solution on an annular domain of outer radius R which is simple

supported on the outer boundary and loaded by constant distributed force / (2 )Q P  

on the inner boundary r  . Assuming rotation symmetry, the bending mode

equilibrium equation and the boundary conditions simplify to

1 1( )( ) 0d d d dr r w
r dr dr r dr dr

    in ( , )R , ( ) 0rrM R  , ( ) 0w R  , ( ) 0rQ Q  

where
3 2

3 2 2
1 1( )r

d w d w dwQ D
r drdr dr r

    ,
2

2
1( )rr

d w dwM D
r drdr

   .

The generic solution to the biharmonic equation (obtained by repeated integrations)

contains parameters a , b , c , and d  to be determined from the boundary conditions. As

displacement should be bounded at the inner boundary when 0   integration constant

0d  .
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2
( 08)rQ Q P cD


 

  
8

c
D
P


 ,

[ ( 1) (1 )2 2 (1 )log ] 0( )rrM D c b c RR          
1 2(1 ) log

16 (1 )
Rb P

D
 

 
  


 ,

2 2( ) lo( g 0) a b c R cR Rw R       on 
2 3

1
1

16
PRa

D


 





 .

Displacement at the centerpoint is obtained at the limit 0(0) lim ( )w w  . As the

coefficients do not depend on  , the limit is given by (0)w a .
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4.4 VIRTUAL WORK DENSITIES

Virtual work expressions contain generalized forces (force and moment) corresponding to

the chosen kinematic quantities:

T
cint

c
: Fw

M





  
    

   


 ,

T
0ext

0

u bw
c





  

    
   


  ,

T
0ext

0

u Fw
M





  

    
   




in which

1F
dn

nM


   
   

  



 ,

1b f dn
nc

   
   

  


 
 ,

1F
t dn

nM
   

   
  





 , and 0 0 ne  

  .
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 Straight line segments perpendicular to the mid/reference-plane remain straight in

deformation. In vector notation

0 0 0 0nu u ne u n     
       where 0 0 ne  

 


0 0 0 0 0 0( )n nu e u u e n n
n

   
          


       

where the strain measures of plate 0 0 0nu e  
   and 0 0 

 
.

 Assuming symmetry of stress int
c: ( )Vw u    

  . Virtual work density of the plate

model is obtained by integrating the virtual work density over the small dimension (

dV dndA )

T T
int

c c

1
[ : ( )] :V

F
W dn dA dA

n M
 

 
  

      
          

       
  

 
   ,   hence
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T
int

c
: Fw

M





  
    

   


   and

1F dn
nM


   

   
  




 . 

Virtual work expression of external forces takes into account volume forces and surface

forces acting on the body (dV dndA  and dA dnds ).

T T
0 0ext

0 0

1
[ ( )] ( )V V

u u bW f udV f dn dA dA
n c

 
 

  

     
            

      
   

  
   

T
0ext

0

u bw
c





  

    
   


  ,  where

1b f dn
nc

   
   

  


 
 . 

T
0ext

0

1
( )A A

u
W t udA t dn ds

n


 


   
      

  
  

 
 



5-37

T
0ext

0

u Fw
M





  

    
   


 ,  where

1F t dn
nM

   
   

  





 . 

In the derivation, surface forces acting on the top and bottom surfaces of the plate have

been omitted for simplicity (they may contribute to b


 and c ).
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RESULTANT DEFINITIONS

Stress and external force resultants are integrals over the thickness ( 0 0 ne  
  ). Stress

resultant definition gives the constitutive equations:

2

11
: :

n A CF dn Edn
nM n n C B

 


 

                    
            

 
         ,

1b f dn
nc

   
   

  


 
 ,

1F
t dn

nM
   

   
  





 .

Elasticity dyad E


 is assumed to satisfy the minor and major symmetries and condition

: 0n ne e E 
  , which implies that the kinetic assumption 0nn  is satisfied ‘a priori’.

external force and moment per unit area

external force and moment per unit length
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4.5 KIRCHHOFF PLATE EQUATIONS

Kirchhoff plate model equilibrium and constitutive equations can be deduced from the

Reissner-Mindlin ones. However, the somewhat tricky boundary conditions require a more

careful consideration starting from the virtual work expression:

0 0 0nM b    


  in 

0nn nM M     or 0s
w
n


 


   on 

( ) 0n ns sQ Q M M
s


   


   or 0w w     on  .

In the model, shear stress resultant is a constraint force to be solved from the moment

equilibrium equation 0Q M  
 

 and constitutive equation for the moment resultant.



5-40

 In the Kirchhoff model, straight line segments normal to the mid/reference-plane remain

line segments and perpendicular to the mid-plane so that 0 0 0w   


 (Kirchhoff

constraint). After elimination of the rotation components and second integration by parts,

the Reissner-Mindlin virtual work expression takes the form

0 0 0[( ) ( ) ]nW F b u M e F w dA  


           
   

0[( ) ( ) )n F F u n M M w ds 


        
      

0 0 0[( ) ( ) ]nW F b u M e F w dA  


           
   

0 0[( ) ( ) ( ) ]nn F F u n M M w n M e F w ds  


              
         

 The thin-slab and bending modes can be separated by writing 0 0 nu v we   
   .

Omitting the thin slab mode ( 0Q M  
 

)
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0 0( )nW M b wdA 


     


0( ) ( ) ( )n Q Q wds n M M w ds 
 

         
   

 As only w and its normal derivative /w n  can be varied independently on , some

additional manipulations are needed before application of the fundamental lemma of

variation calculus. Using division

0
w ww n s
n s

 
  

 
  ,

 where n  and ns e n 
    are the unit outward normal and tangential vectors to the

boundary, integration by parts in the boundary term containing /w s   with respect to s

gives
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0 0( )n ns sW M b wdA M M w  
        


 

[ ( )] ( )n ns s nn n
wQ Q M M wds M M ds

s n
 

 

 
       

   .

Integration by parts is over a closed one-dimensional domain starting and ending at the

same point having opposite unit outward normal ( 1 ). In the expression,   denotes

jump and Π  is the set of points where the jump takes place (the usual integration by parts

assumes continuity. A more generic form for piecewise continuity contains jump terms).

The last term vanishes if the quantity inside the jump brackets is continuous or 0w 

on . In what follows we assume so to avoid further discussions about conditions at

corners etc. when deflection w is not specified. Arranging the terms gives

0 0( )nW M b wd 
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[ ( )] ( )n ns s nn n
wQ Q M M wds M M ds

s n
 

 

 
       

   .

Principle of virtual work and the fundamental lemma of variation calculus give

0 0 0nM b    


  in  ,

0nn nM M     or 0s
w
n


 


   on  ,

( ) 0n ns sQ Q M M
s


   


   or 0w w     on  .
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5.6 APPROXIMATE SOLUTIONS

Principle of virtual work can be used to find approximate series solutions to plate equations.

An approximation satisfying the essential boundary conditions ‘a priori’ is just substituted

into the virtual work expression by considering the coefficient of the terms of the series as

the unknowns. For the plate model

T
0 0 0 0 0 0int

0 0 0 0c
: :n nu e u eA C

W dA
C B

 
 

 

                   


      
    ,

T T
0 0ext

0 0

u u FbW dA ds
Mc

 


  

      
          

      
 

  
  .

Various series solution in literature and the finite element method are just particular cases

of this theme.
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Assuming that 0C 


, the thin slab and bending modes of the plate model disconnect and

one may often consider the modes separately. Virtual work expression for the bending

mode (Kirchhoff plate model) simplifies to

0 0 0 0: :W w B wdA wbdA 
 

       


.

When written in the Cartesian ( , , )x y n  coordinate system

T2 2

2 2

2 2

2 2
1
22 2

1 0
1 0

0 0 (1 )
2 2

n

w w
x x

w wW D dA wb dA
y y

w w
x y x y




  




 

    
   

     
              

              
         

  .
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EXAMPLE 5.6 Consider pure bending of a rectangle Kirchhoff plate (0, ) (0, )L H   .

Derive the series solution 1 1( , ) sin( )sin( )iji j
x yw x y w i j
L H

 
      by considering

the coefficients ijw  as the unknowns of the virtual work expression. Thickness t , Young’s

modulus E , and Poisson’s ratio  , and distributed load b  in direction of z axis are

constants.

Answer 2 2 216 [1 / ( ) ( ) ]ij
b iw

Lij
j

D H
 

  , {1,3,5, }i j  , 0ijw   otherwise.

x

y
 H

g

L
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When the series approximation is substituted there, the virtual work expression becomes

a variational expression for the unknown coefficients. Using then orthogonality of the

sines and cosines on (0, ) (0, )L H   , virtual work expressions of the internal and

external forces boil down to

int 2 2 2
1 1 [( ) ( ) ]

4ij iji j
L i jW w D w

L H
H    

     ,

ext
1 1 ij iji jW w b  
    , where

0 0
( , )sin( )sin( )

L H
ij

x yb b x y i j dxdy
L H

    .

The fundamental lemma of variation calculus implies that (here ( , )b x y b gt  )

2 2 2/ [( ) ( ) ]
4ij ij

i jw b LH
L

D
H

     
, where 24ij

Lb b H
ij

 , {1,3,5, }i j  . 


