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Learning goals

* Understand application areas of learning in robotics.

* Understand challenges of learning in robotics.

,, Aalto University
School of Electrical

Engineering



Applications of learning in robotics

* What can you think of?
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Applications of learning in robotics

* Learn how world works
— Robot and/or environment dynamics

* Learn what to do (and how)
— Learn a control policy, skill, task

 |Learn to understand environment / situation
— Learn to perceive

* [earn how to interact, ...
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Types of machine learning

* Supervised learning
— Learn input-output mappings from examples
— Give some examples!

* Reinforcement learning
— Learn by acting and observing rewards
— Give some examples!

* Unsupervised learning
— Cluster inputs without outputs
— Give some examples!
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Scope of learning

Scope can vary from e.g. adapting physical parameters to learning “everything”.

Example: Control

adapt learn learn
parameters free-form free-form
dynamics policy more
— things

learned
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Scope of learning

Scope can vary from e.g. adapting physical parameters to learning “everything”.

Example: Control

learn learn
paraa(::g’;[ers free-form free-form
dynamics policy more
— things
ore learned
priors —
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Effect of priors

* When are priors useful?
* What'’s their meaning in learning?

* When are they harmful?
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Challenges of learning in robotics

* Data cost is usually high.
— Physical experiments time consuming and potentially unsafe.

* Desired operation not always easy to define.
— For reinforcement learning.

* Safety and performance of learning difficult to guarantee.
— Depends on data and method used.

— Possibly weak transparency — internal operation often difficult to
characterize.
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Some solutions

 Data cost

— Simulation may provide training data.
* Reality gap between simulation and real world a challenge.

« Safety and transparency

— Learned models may be hard to interpret.
* Explainable learning currently a topic of major interest.
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Let’s watch a video
https://www.youtube.com/watch?v=jwSbzNHGfIM
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https://www.youtube.com/watch?v=jwSbzNHGflM

Example: Dextrous manipulation

A Distributed workers collect B We train a control policy using reinforcement learning.
experience on randomized It chooses the next action based on fingertip positions
environments at large scale. g and the object pose,

S

Observed .
Robot States Actions

C We train a convolutional neural network to predict the
object pose given three simulated camera images.

&

Object Pose
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Example: Dextrous manipulation

Transfer to the Real World

D We combine the pose estimation network
and the control policy to transfer to the real world.

Actions

Object Pose
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Example: Dextrous manipulation
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Analyze!

Could this approach be used in practice?

In which cases?

Why or why not? Which constraints are there for use?
Any other notes?
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Example: Learning grasp stability

1,1
H ! . _’Jl -H”JH

* Learn to predict if a grasp
IS stable based on tactile
sensor measurements

* Simple simulation and. . rn ! .~—~

analytic grasp quality B, o B . l-n ! .

measures to generate

training data. H ”m . = .

e Statistical ML.

R |

Bekiroglu et al. 2011
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Example: Learning where to grasp
Dex-Net 2.0

* Simulated pointcloud training data creation.

Robust Parallel-Jaw Grasps

1&dl
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Rendered Depth Images

£

Mahler et al., 2017



Example: Learning where to grasp
Dex-Net 2'0 Grasp Robustness

* Learn to predict quality metric from Color Image Robustness Map
Image using convolutional NN.

Aligned Image /7] /7 Grasp Quality CNN

Grasp Candidate

_ Ty

-’ RelU ReLU
LEN

Point Cloud

e

Mahler et al., 2017
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Example: Learning movements
Movement primitives

* General idea: Learn trajectories (trajectory primitives).
— Can be modulated, e.g. end-point or speed change.
— Learned from e.g. human demonstration.
— May be improved by reinforcement learning.
— Sequencing can also be learned.

Muelling et al. 2013

,, Aalto University
School of Electrical

Engineering



Example: Learning in-contact skills

* Learn position and force
trajectories from human
demonstration.

* Impedance control with force
feed-forward.

* Can be improved by
reinforcement learning.
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Example: End-to-end learning of deep

visuomotor policies

* Learn a NN controller from vision to torques.

* Training: Learn first individual trajectories using
reinforcement learning, train NN using supervised

learning.

spatial softmax feature motor
points forques

™32 distributions| -

RGB image convi conv3
i i 7x7 conv
stride 2 5x5 conv
RelU RelLU

fully fully fully ol
expected connected [ connected ] connected 3 *%g
2D position RelU ReLU linear :
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Levine et al. 2015
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Summary

* Machine learning provides tools for subproblems in
robotic manipulation.

* Data availability is often a challenge.

* At the moment, robot learning still primarily only in
research labs because of lack of robustness.

,, Aalto Un esty
School fEl ctrical
Engineerin



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

