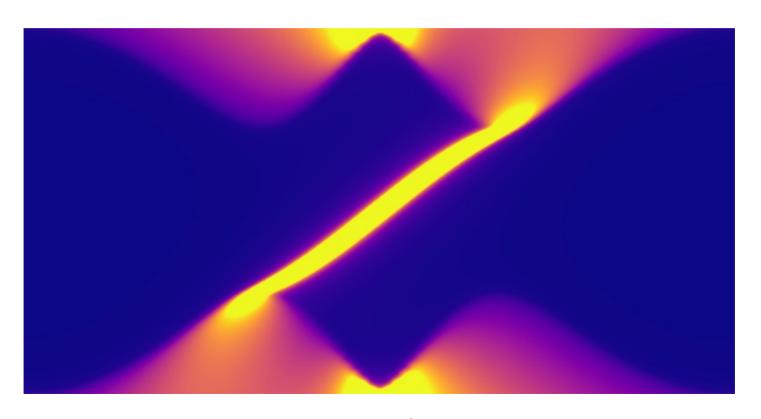
Topological band structure theory



March 29th 2021

Today's learning outcomes

- Topological states of matter show quantum phenomena resilient to perturbations
- Non-trivial topological invariants give rise to gapless surface excitations

Today's plan

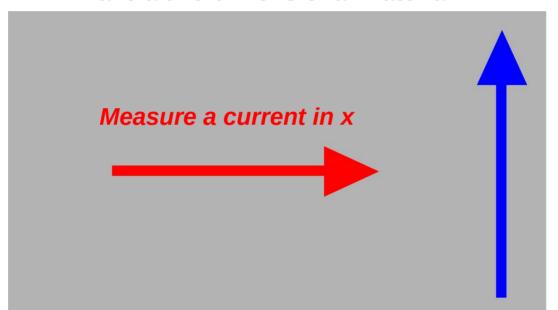
- The quantum Hall effect and its edge states
- The concept of topology in physics
- A minimal model for a topological insulator
- Topology beyond electrons

If you want to know more, there are nice resources online

https://topocondmat.org/

A reminder from session #4: The transverse conductivity

Take a two-dimensional material



Apply a voltage in y

$$J_x = \sigma_{xy} V_y$$

Full Hamiltonian $H = H_0 + \lambda V$

Perturbation $V \sim y \sim i \partial_{k_x}$

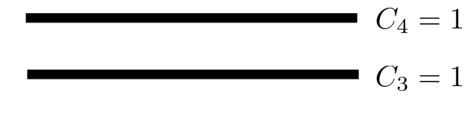
Measure

 $J_x \sim \langle \partial H / \partial k_x \rangle$

A reminder from session #4: the quantum Hall state

 $C_2 = 1$

Band-structure in the quantum Hall state



$$C_1 = 1$$

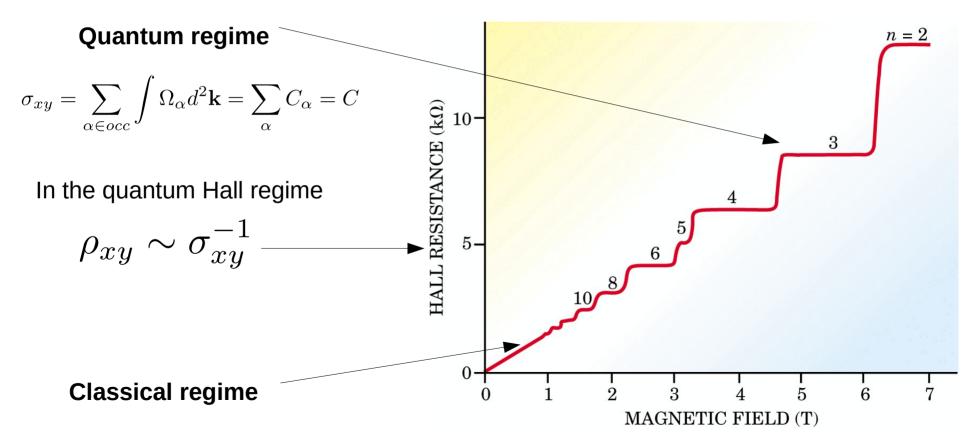
Hall conductivity

$$\sigma_{xy} = \sum_{\alpha \in occ} \int \Omega_{\alpha} d^2 \mathbf{k} = \sum_{\alpha} C_{\alpha} = C$$

$$\Omega_{\alpha} = \partial_{k_x} A_y^{\alpha} - \partial_{k_y} A_x^{\alpha}$$
$$A_{\mu}^{\alpha} = i \langle \partial_{k_{\mu}} \Psi_{\alpha} | \Psi_{\alpha} \rangle$$

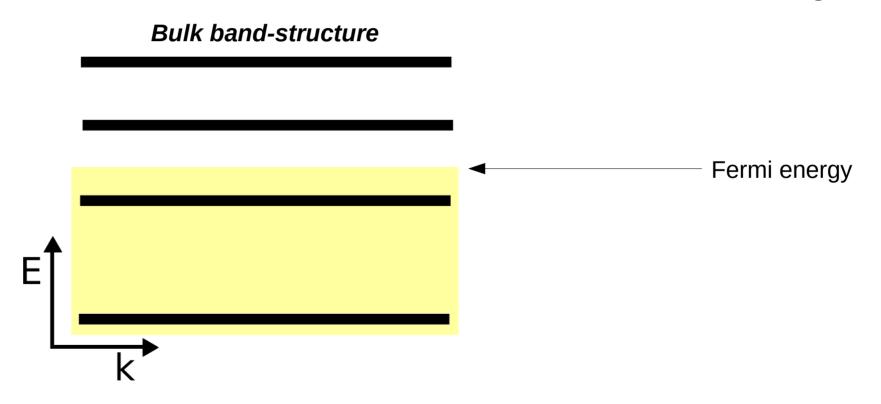
Each band (a.k.a Landau level), contributes with Chern number +1

A reminder from session #4: the quantum Hall state



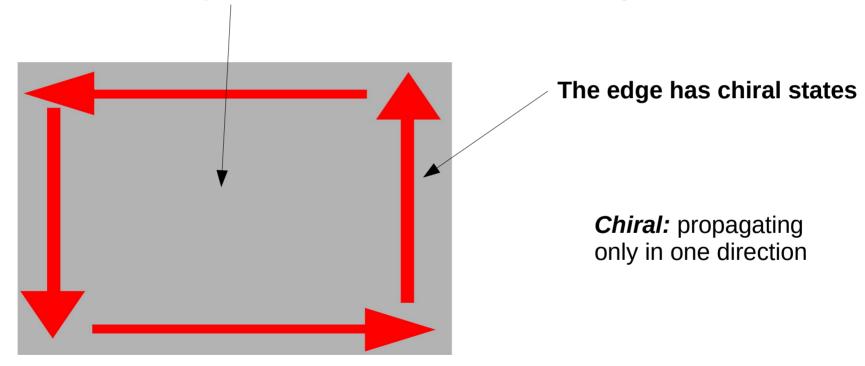
The puzzling quantum Hall effect

How can an insulator have conductivity?

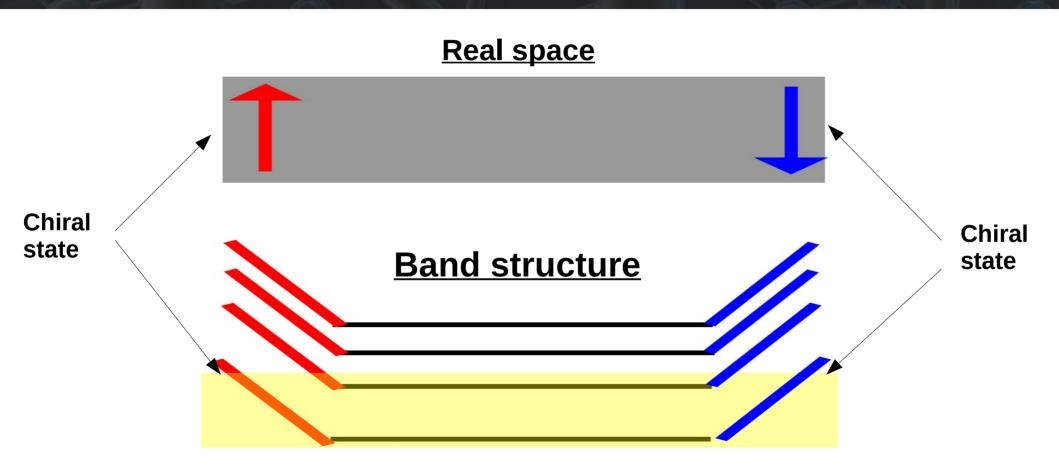


The puzzling quantum Hall effect

The bulk of a quantum Hall state is insulating



The quantum Hall effect



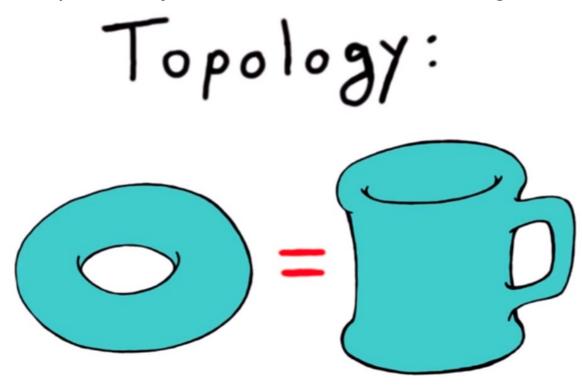
Topology in electronic systems

Topology, doughnuts and knots

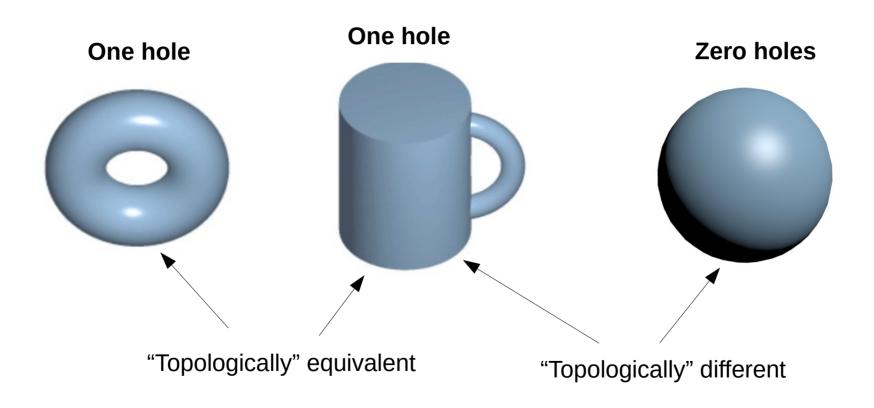
Topology classifies object that cannot smoothly deformed into one another

Topology, doughnuts and knots

https://www.youtube.com/watch?v=C-eJW0gEm5w

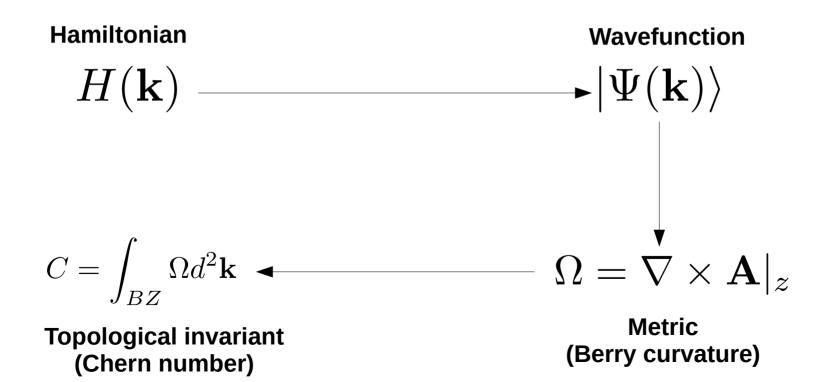


Topology and holes



Topological invariant in a Hamiltonian

We can classify Hamiltonians according to topological invariants

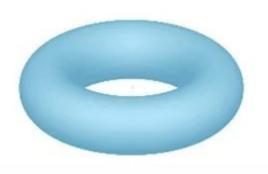


The role of a topological invariant

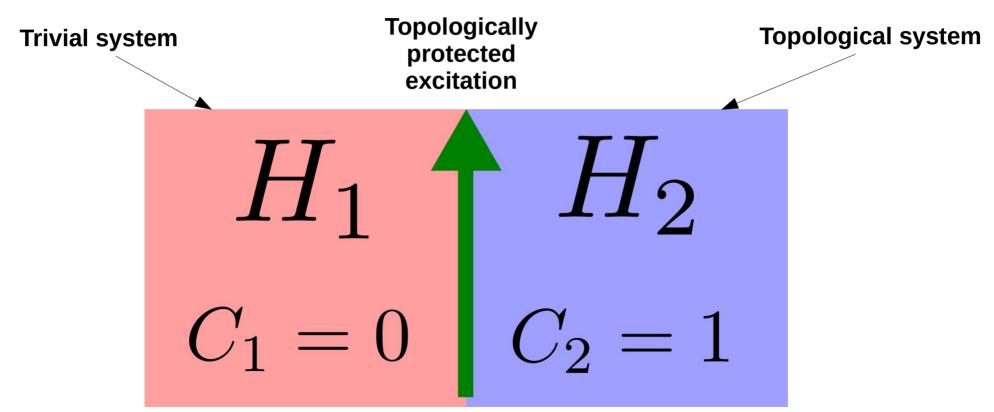
Hamiltonians with different topological invariants can not be deformed one to another

$$C=1$$

$$C=2$$

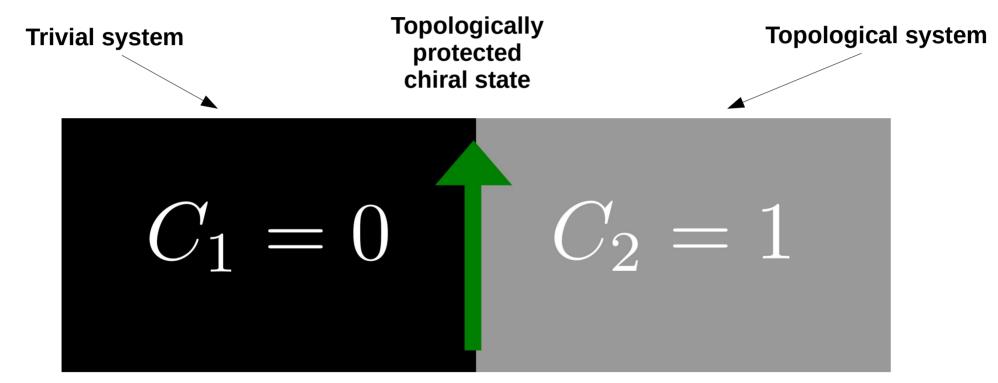


The consequence of different topological invariants



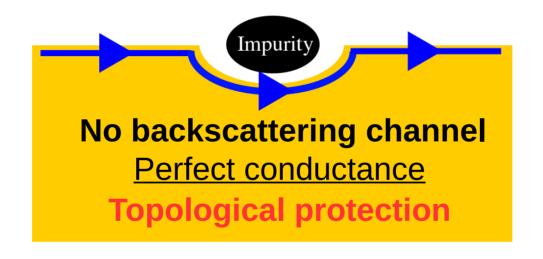
Topological excitations appear between topologically different systems

The edge states of the quantum Hall effect



The edge states of the quantum Hall effect are topological excitations

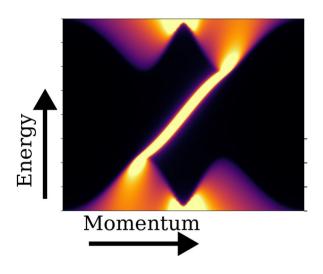
The edge states of the quantum Hall effect



The edge states of the quantum Hall effect are topologically protected

Three important topological materials

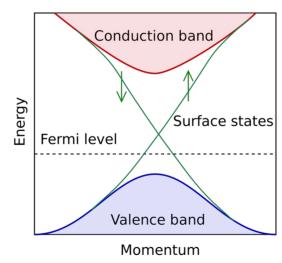
Chern insulators



Chiral states

Electronics

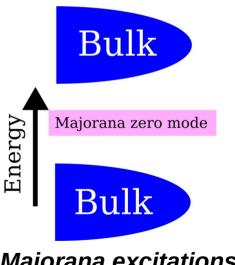
Quantum spin Hall insulators



Helical states

Spintronics

Topological superconductors

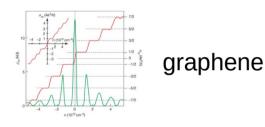


Majorana excitations

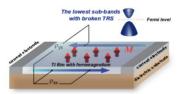
Topological quantum computing

Materials and topological states of matter

Quantum Hall effect

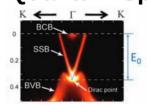


Quantum Anomalous Hall effect



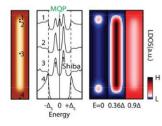
Cr-doped (Bi,Sb)₂Te₃

Quantum Spin Hall effect



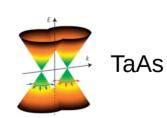
Bi₂Se₃

Topological superconductor

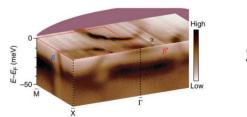


Fe@Pb

Weyl semimetal



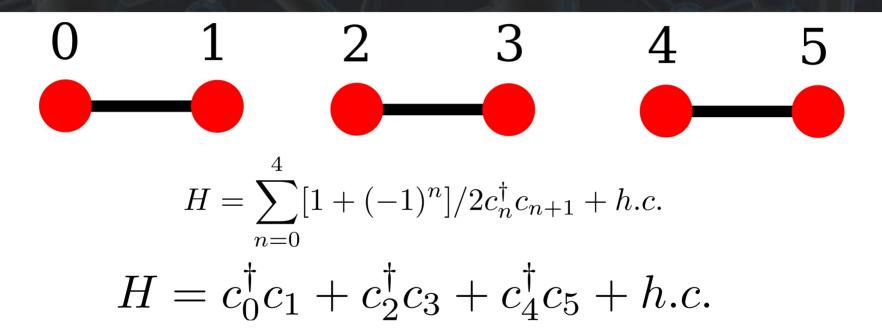
Topological Kondo insulator



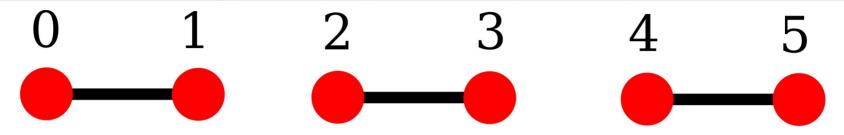
 SmB_6

Many different topological states in nature

A toy model for a topological insulator: the SSH model



Let us consider a finite dimerized chain

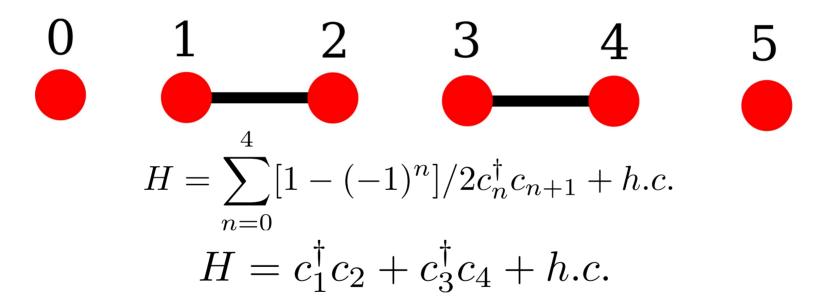


$$H = \sum_{n=0}^{4} \left[1 + (-1)^n\right] / 2c_n^{\dagger} c_{n+1} + h.c.$$

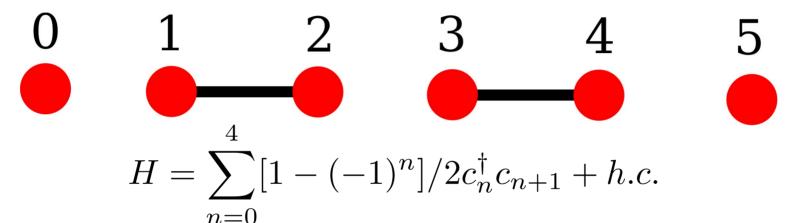
What is the spectra of this Hamiltonian?

$$\epsilon_n = \pm 1$$

$$\epsilon_n = 0, \pm 1$$



Let us consider now the other dimerization (with dangling sites)



What is the spectra of this Hamiltonian?

$$\epsilon_n = \pm 1$$

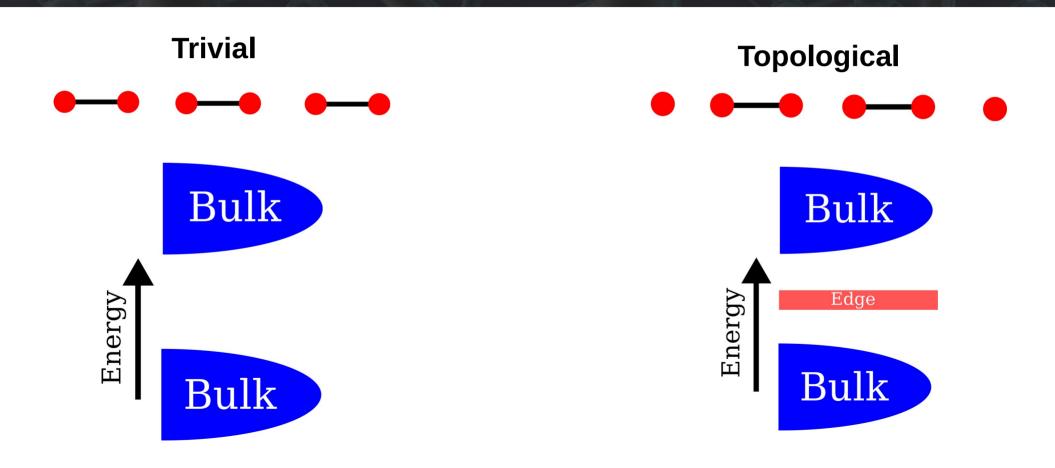
$$\epsilon_n = 0, \pm 1$$

The two phases of the SSH model

"Trivial" phase (gaped everywhere)

"Topological" phase (gapless zero modes)

The two phases of the SSH model



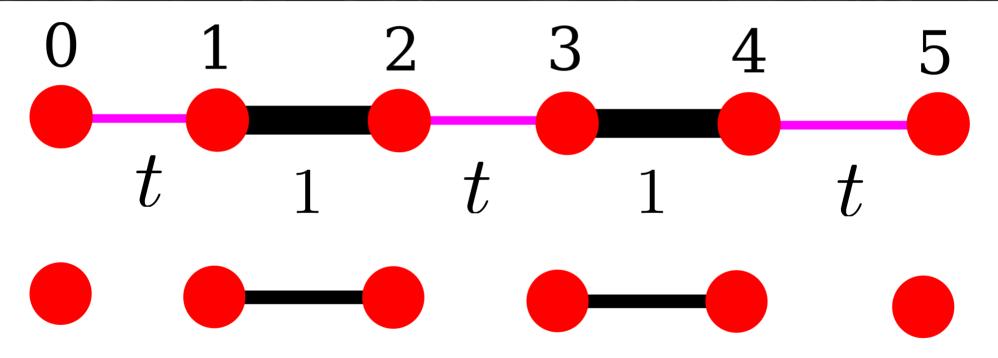
Coupling the dimers



$$H = tc_0^{\dagger}c_1 + c_1^{\dagger}c_2 + tc_2^{\dagger}c_3 + c_3^{\dagger}c_4 + h.c.$$

Does this Hamiltonian have a surface zero mode?

Coupling the dimers

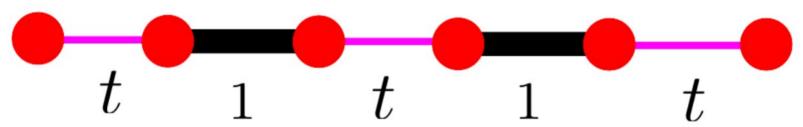


For t<1, both Hamiltonians are topologically equivalent

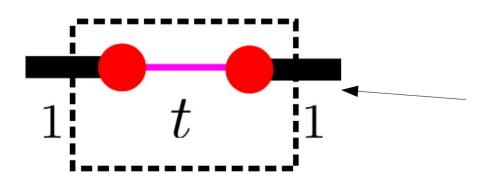
They can be deformed into one another without closing the bulk gap

The bulk Hamiltonian in the SSH model

For a finite system of this form



The unit cell is

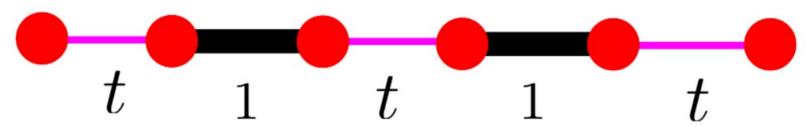


What is the Bloch Hamiltonian for this unit cell?

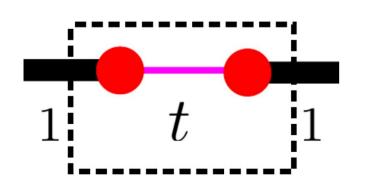
Hint: the Hamiltonian is a 2x2 matrix

The bulk Hamiltonian in the SSH model

For a finite system of this form



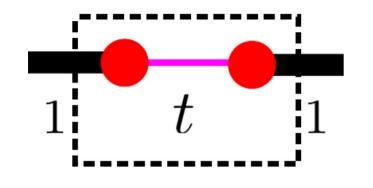
The unit cell is



The Hamiltonian is

$$H = \begin{pmatrix} 0 & t + e^{ik} \\ t + e^{-ik} & 0 \end{pmatrix}$$

The bulk invariant in the SSH model



The Hamiltonian is

$$H = \begin{pmatrix} 0 & t + e^{ik} \\ t + e^{-ik} & 0 \end{pmatrix}$$

 $|\Psi(k)
angle$ — Lowest energy wavefunction

The topological invariant for this system is the Zak phase

$$\phi = \int_{BZ} Adk$$
Zak phase

$$A = i\langle \Psi(k) | \partial_k | \Psi(k) \rangle$$

The bulk invariant in the SSH model

Hamiltonian

$$H = \begin{pmatrix} 0 & t + e^{ik} \\ t + e^{-ik} & 0 \end{pmatrix}$$

Zak phase

$$\phi = \int_{BZ} Adk$$
$$A = i\langle \Psi(k) | \partial_k | \Psi(k) \rangle$$

Two different possible values for the Zak phase

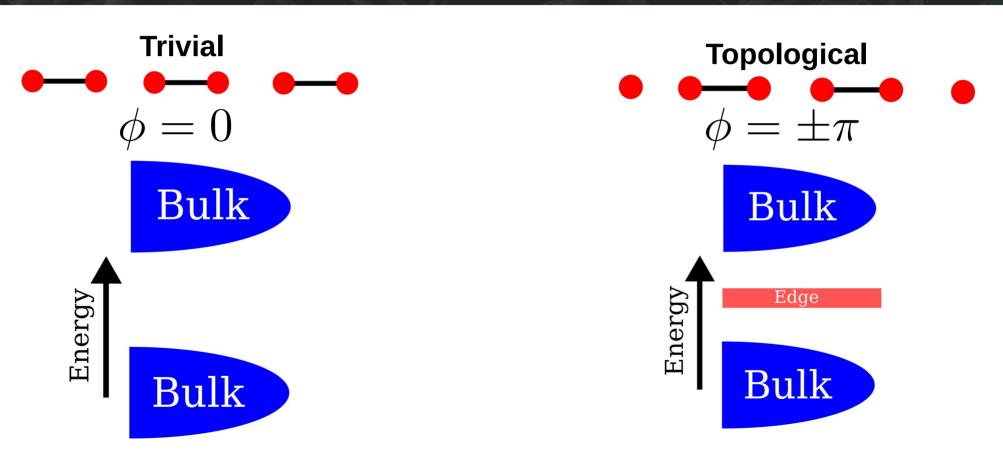
$$\phi = 0$$

Trivial insulator

$$\phi = 0$$
$$\phi = \pm \pi$$

Topological insulator

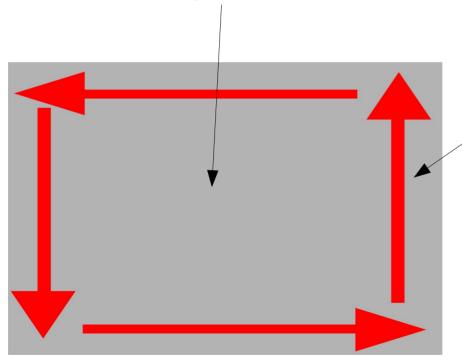
The bulk-boundary correspondence in the SSH model



Two-dimensional topological insulators

Chern insulators

The bulk of a quantum Hall state is insulating



The edge has chiral states

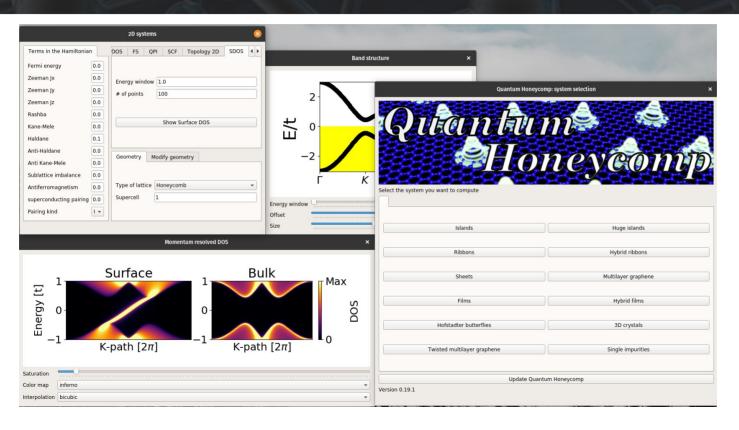
Hall conductivity (Chern number)

$$\sigma_{xy} = \sum_{\alpha \in occ} \int \Omega_{\alpha} d^2 \mathbf{k} = \sum_{\alpha} C_{\alpha} = C$$

$$\Omega_{\alpha} = \partial_{k_x} A_y^{\alpha} - \partial_{k_y} A_x^{\alpha}$$

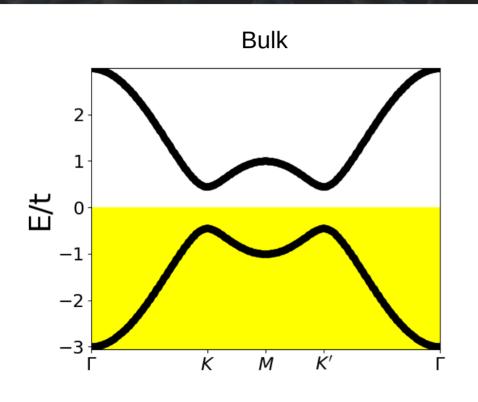
$$A^{\alpha}_{\mu} = i \langle \partial_{k_{\mu}} \Psi_{\alpha} | \Psi_{\alpha} \rangle$$

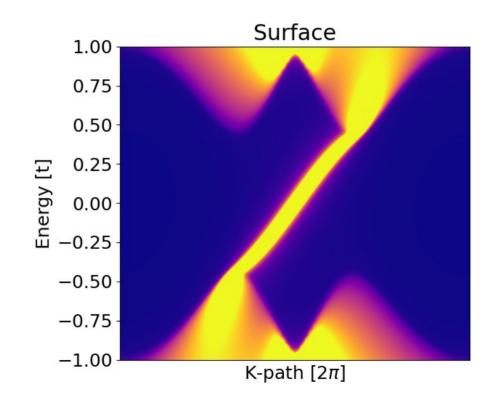
Chern insulators (interactively)



https://github.com/joselado/quantum-honeycomp

Bulk boundary correspondence





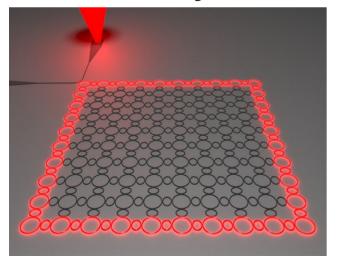
Topology beyond electrons

Topological modes beyond electrons

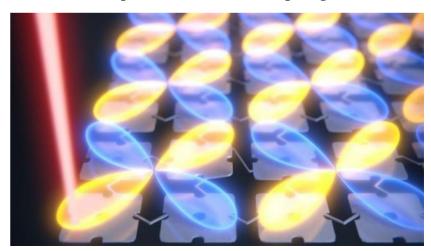
Topological edge modes are a signature of systems that can be described with matrices

Other systems can be described with mathematically analogous tools

Photonic systems

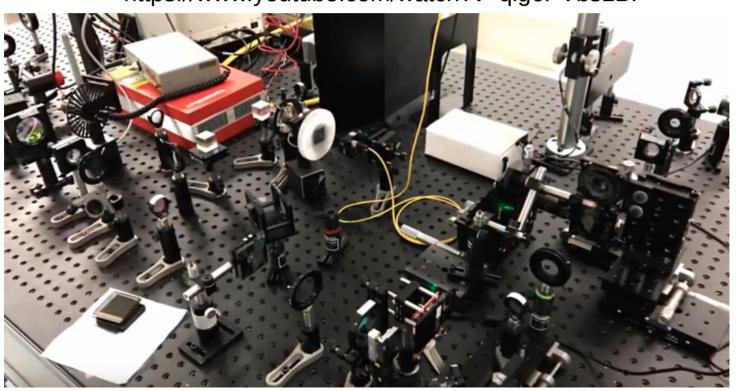


Classical (mechanical) systems



Topological lasers

https://www.youtube.com/watch?v=qlg6PVbs1BI



Take home

- Topological systems have protected edge modes
- The existence of edge modes is associated with a non-trivial topological invariant
- Reading material:
 - Bernevig & Hughes 15-25

In the next session

Quantum Hall effect



A starting point toward fractional excitations