Topological band structure theory

March 29th 2021

Today's learning outcomes

- Topological states of matter show quantum phenomena resilient to perturbations
- Non-trivial topological invariants give rise to gapless surface excitations

Today's plan

- The quantum Hall effect and its edge states
- The concept of topology in physics
- A minimal model for a topological insulator
- Topology beyond electrons

If you want to know more, there are nice resources online

https://topocondmat.org/

A reminder from session #4: The transverse conductivity

Take a two-dimensional material

Apply a voltage in y

$$J_x = \sigma_{xy} V_y$$

Full Hamiltonian $H = H_0 + \lambda V$

Perturbation $V \sim y \sim i \partial_{k_x}$

Measure

 $J_x \sim \langle \partial H / \partial k_x \rangle$

A reminder from session #4: the quantum Hall state

 $C_2 = 1$

Band-structure in the quantum Hall state

$$C_1 = 1$$

Hall conductivity

$$\sigma_{xy} = \sum_{\alpha \in occ} \int \Omega_{\alpha} d^2 \mathbf{k} = \sum_{\alpha} C_{\alpha} = C$$

$$\Omega_{\alpha} = \partial_{k_x} A_y^{\alpha} - \partial_{k_y} A_x^{\alpha}$$
$$A_{\mu}^{\alpha} = i \langle \partial_{k_{\mu}} \Psi_{\alpha} | \Psi_{\alpha} \rangle$$

Each band (a.k.a Landau level), contributes with Chern number +1

A reminder from session #4: the quantum Hall state

The puzzling quantum Hall effect

How can an insulator have conductivity?

The puzzling quantum Hall effect

The bulk of a quantum Hall state is insulating

The quantum Hall effect

Topology in electronic systems

Topology, doughnuts and knots

Topology classifies object that cannot smoothly deformed into one another

Topology, doughnuts and knots

https://www.youtube.com/watch?v=C-eJW0gEm5w

Topology and holes

Topological invariant in a Hamiltonian

We can classify Hamiltonians according to topological invariants

The role of a topological invariant

Hamiltonians with different topological invariants can not be deformed one to another

$$C=1$$

$$C=2$$

The consequence of different topological invariants

Topological excitations appear between topologically different systems

The edge states of the quantum Hall effect

The edge states of the quantum Hall effect are topological excitations

The edge states of the quantum Hall effect

The edge states of the quantum Hall effect are topologically protected

Three important topological materials

Chern insulators

Chiral states

Electronics

Quantum spin Hall insulators

Helical states

Spintronics

Topological superconductors

Majorana excitations

Topological quantum computing

Materials and topological states of matter

Quantum Hall effect

Quantum Anomalous Hall effect

Cr-doped (Bi,Sb)₂Te₃

Quantum Spin Hall effect

Bi₂Se₃

Topological superconductor

Fe@Pb

Weyl semimetal

Topological Kondo insulator

 SmB_6

Many different topological states in nature

A toy model for a topological insulator: the SSH model

Let us consider a finite dimerized chain

$$H = \sum_{n=0}^{4} \left[1 + (-1)^n\right] / 2c_n^{\dagger} c_{n+1} + h.c.$$

What is the spectra of this Hamiltonian?

$$\epsilon_n = \pm 1$$

$$\epsilon_n = 0, \pm 1$$

Let us consider now the other dimerization (with dangling sites)

What is the spectra of this Hamiltonian?

$$\epsilon_n = \pm 1$$

$$\epsilon_n = 0, \pm 1$$

The two phases of the SSH model

"Trivial" phase (gaped everywhere)

"Topological" phase (gapless zero modes)

The two phases of the SSH model

Coupling the dimers

$$H = tc_0^{\dagger}c_1 + c_1^{\dagger}c_2 + tc_2^{\dagger}c_3 + c_3^{\dagger}c_4 + h.c.$$

Does this Hamiltonian have a surface zero mode?

Coupling the dimers

For t<1, both Hamiltonians are topologically equivalent

They can be deformed into one another without closing the bulk gap

The bulk Hamiltonian in the SSH model

For a finite system of this form

The unit cell is

What is the Bloch Hamiltonian for this unit cell?

Hint: the Hamiltonian is a 2x2 matrix

The bulk Hamiltonian in the SSH model

For a finite system of this form

The unit cell is

The Hamiltonian is

$$H = \begin{pmatrix} 0 & t + e^{ik} \\ t + e^{-ik} & 0 \end{pmatrix}$$

The bulk invariant in the SSH model

The Hamiltonian is

$$H = \begin{pmatrix} 0 & t + e^{ik} \\ t + e^{-ik} & 0 \end{pmatrix}$$

 $|\Psi(k)
angle$ — Lowest energy wavefunction

The topological invariant for this system is the Zak phase

$$\phi = \int_{BZ} Adk$$
Zak phase

$$A = i\langle \Psi(k) | \partial_k | \Psi(k) \rangle$$

The bulk invariant in the SSH model

Hamiltonian

$$H = \begin{pmatrix} 0 & t + e^{ik} \\ t + e^{-ik} & 0 \end{pmatrix}$$

Zak phase

$$\phi = \int_{BZ} Adk$$
$$A = i\langle \Psi(k) | \partial_k | \Psi(k) \rangle$$

Two different possible values for the Zak phase

$$\phi = 0$$

Trivial insulator

$$\phi = 0$$
$$\phi = \pm \pi$$

Topological insulator

The bulk-boundary correspondence in the SSH model

Two-dimensional topological insulators

Chern insulators

The bulk of a quantum Hall state is insulating

The edge has chiral states

Hall conductivity (Chern number)

$$\sigma_{xy} = \sum_{\alpha \in occ} \int \Omega_{\alpha} d^2 \mathbf{k} = \sum_{\alpha} C_{\alpha} = C$$

$$\Omega_{\alpha} = \partial_{k_x} A_y^{\alpha} - \partial_{k_y} A_x^{\alpha}$$

$$A^{\alpha}_{\mu} = i \langle \partial_{k_{\mu}} \Psi_{\alpha} | \Psi_{\alpha} \rangle$$

Chern insulators (interactively)

https://github.com/joselado/quantum-honeycomp

Bulk boundary correspondence

Topology beyond electrons

Topological modes beyond electrons

Topological edge modes are a signature of systems that can be described with matrices

Other systems can be described with mathematically analogous tools

Photonic systems

Classical (mechanical) systems

Topological lasers

https://www.youtube.com/watch?v=qlg6PVbs1BI

Take home

- Topological systems have protected edge modes
- The existence of edge modes is associated with a non-trivial topological invariant
- Reading material:
 - Bernevig & Hughes 15-25

In the next session

Quantum Hall effect

A starting point toward fractional excitations