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1 Density operator

(1) Show that the density matrix ρ =
∑
i pi |ψi〉 〈ψi| is Hermitian, positive semidefinite (PSD), and has a unit

trace. Where for a PSD matrix (operator) A ∈ H the following holds 〈x|A|x〉 ≥ 0 ∀x ∈ H.

(2) Starting with the definition of a density operator, show that for a pure state the trace of ρ2 is always equal to 1,
whereas when the state is mixed the trace is always < 1.

(3) Suppose that the pure qubit state |ϕ〉 = cos θ2 |0〉 + eiφ sin θ
2 |1〉 is undergoing a unitary evolution according to

the Hamiltonian H0 = ~ω0σz/2. Derive the time-dependent density operator of the state ρ(t) = |ϕ(t)〉 〈ϕ(t)|.

2 The Hilbert space basis

(1) Demonstrate the ONB property for both the computational and the Fourier basis in a Finite dimensional Hilbert
spaceHN . Hint: The general formula for geometric progression is given by

∑n
j=1 γr

j−1 = γ(1−rn)
1−r .

(2) A qutrit is a quantum mechanical information carrier that lives in the three dimensional Hilbert spaceH3.

(a) Write down explicitly the qutrit computational basis, and verify that they constitute an ONB. What would
an arbitrary qutrit state look like?

(b) Similarly, write down the qutrit’s Fourier basis and verify that they are indeed orthonormal.

3 Qubit teleportation

Let us assume that party A possesses an arbitrary quantum state |ϕ〉 = α |0〉+ β |1〉 and wants to transmit it to another
party B. A doesn’t know a priori the exact values of the state’s probability amplitudes, moreover, any attempt to
measure the qubit would only yield a partial information about the state1. Instead, when both parties share one of the
Bell states, B will be able to reconstruct A’s state without the need for any physical transmission of the state itself.

(1) Suppose that A and B share the Bell state |Φ+〉. At this point A possesses the qubit to be teleported and her
share of the Bell state. Write down the the overall tensor product state of the three qubits.

(2) Now observe that the state |00〉 can be written in terms of the Bell states as 1√
2
(|Φ+〉+ |Φ−〉). Similarly, you can

find expressions for |01〉 , |10〉 , |11〉. After some algebraic manipulations, rewrite the state derived in (1), such
that A possesses one of the Bell states, whereas B possesses a single qubit with the same original probability
amplitudes. You should get a three qubit state in a superposition of 4 possible combinations.

(3) Describe the action of the following set of qubit operations on the original qubit at A’s lab, {X,Z,XZ}. Con-
sider each operation separately.

(4) Assume now thatA has the following set of Bell state projectors {|Φ+〉 〈Φ+| , |Ψ+〉 〈Ψ+| , |Ψ−〉 〈Ψ−| , |Φ−〉 〈Φ−|},
and she projects the two qubits in her possession onto one of these Basis. Write down the four possible qubit
states that end up at B’s lab.

(5) B equally likely to end up with one of the previous qubit states. Following (c) what kind of operations he has to
perform on his qubit to retrieve the original one? Consider each case separately.

1Recall the Born rule.
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4 Qubit control

Consider the qubit-field Hamiltonian given by Hq-f =
~ω0

2
σz︸ ︷︷ ︸

free

+ ~γEd cos (ωdt+ φ)[σ+ + σ−]︸ ︷︷ ︸
interaction

. Now define a frame

rotating at the qubit’s frequency as U(t) = e−iω0
σz
2 t, such that |Ψ〉RF = U(t) |Ψ〉Sch, HRF = U(t)HSchU

†(t) −
i~U(t)U̇†(t). Show that in the rotating frame the qubit-field Hamiltonian is off-diagonal.
Hint: eiγABe−iγA = B + iγ[A,B] + (iγ)2

2! [A, [A,B]] + . . ..

4.1 Measuring T1

In order to measure the qubit’s population relaxation time. First, a pulse is applied to the qubit to put it in the excited
state, then the time taken by the qubit to decohere is observed. To see this in action, consider the on-resonance RWA
Hamiltonian HRWA = ~Ω

2 (σ+ + σ−), where we have neglected the drive’s phase off-set. Assume further that the qubit
was initiated in the ground state |ϕ(0)〉 = |0〉.

(1) Define a unitary U = e−iHRWAt/~, then calculate the qubit’s state at time t.
Hint: e−iθU = I − iθU + (i)2 θ2

2!U
2 + . . .

(2) Let t = π
Ω , what is the final state of the qubit?

4.2 Ramsey interferometry

Let us assume now that we have the same qubit in (4.1) undergoing the same unitary evolution. However, t is now set
to π

2Ω .

(1) What is the state of the qubit after the RWA interaction in this case?

(2) Perform the following phase transformation on the output in (1)

(
eiδ

τ
2 0

0 e−iδ
τ
2

)
(3) Apply now another π2 pulse similar to that in (1) and write down the state of the qubit accordingly. Describe the

action of the π/2 pulse in the language of quantum gates.

(4) Finally, calculate the probability of finding the qubit in the ground state.

5 Quantum gates

(1) Given the definitions of single qubit operations, show the following properties
(a)XYX = −Y (b)HXH = Z (c)HYH = −Y (d)HZH = X (d)Θπ

2
XΘ†π

2
= Y

(e)Θπ
2
YΘ†π

2
= −X (f)Θπ

2
ZΘ†π

2
= Z

(2) Suppose that |ϕin〉 = α |0〉+ β |1〉. What is the final state |ϕout〉 in each of the following two cases?

|ϕin〉
X H Z

|ϕout〉 |ϕin〉
Z H X

|ϕout〉
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(3) Consider a qubit in the |0〉 state entering a Hadamard gate. Then, the Hadamard output is fed into a CNOT gate
as the control qubit while the target in initiated in the |0〉.

(a) Draw a diagram of the above circuit, and write down its final output state.

(b) Now perform separately the following 2-qubit operations on the circuit’s output I⊗X , I⊗Y , I⊗Z. What
is the output state in each case?

(4) The Hamiltonian of the iSWAP gate is defined as H = ~g
2 (σx ⊗ σx + σy ⊗ σy). Define a unitary evolution as

U = e−iHt/~.

(a) Derive the matrix representation of this transformation.
Hint: eiθA = cos θI + i sin θA. eA+B = eAeBe−1/2[A,B]. where A,B ∈ L(H).

(b) Describe the action of the
√

iSWAP on the state |0〉 ⊗ |1〉.
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