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1 Qubits: A general description
A qubit is the quantum mechanical analogue of a classical bit. For an accurate descrip-
tion of the mathematical and informational properties of these fundamental entities, a
revisit to the concept of a quantum state is needed. Previously we described a quantum
state as a vector living in a Hilbert space, whereby its time evolution is fully deter-
mined by a unitary Hamiltonian. Later we have learned that this idealistic worldview
in which quantum states evolve over time detached from their surroundings is quite
unrealistic. Eventually we came to the conclusion that decoherence due to a coupling
to the environment is inevitable, and hence our state of knowledge of the quantum sys-
tem should be modified accordingly. In order to incorporate noise into our description
of a quantum state, we define a mathematical object known as the density operator ρ.

ρ =
∑
i

pi |ψi〉 〈ψi|

where
∑
i

pi = 1 , such that 0 ≤ pi ≤ 1

As shown in Fig.1 the above formula suggests an input/output description of the noisy
process. After interacting with the system, the environment behaves effectively as a
”black box” in possession of a set of states1. Then according to some probability
distribution, it outputs a state belonging to this set2. The previous statistical description
materializes our incomplete state of knowledge of the quantum system undergoing a
noisy evolution. Thus to summarize, the output of a noisy process is a statistical mixture
of pure state.

1These states are any vector ∈ H.
2When the output is the same as the input we describe the environment as ”noise-free”.
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Figure 1: A mixed state output of a noisy process

1.1 Properties of the density operator
The density operator ρ is Hermitian, positive semi-definite, ρ ≥ 0 with unit trace
Tr(ρ) = 1 (ex.), where the trace of an operator A ∈ L(H) is defined as

Tr(A) =
∑
k

∑
i,j

Aij 〈k|i〉 〈j|k〉 =
∑
i

Aii, where
∑
γ

|γ〉 〈γ| = 1 such that γ = i, j, k.

According to this new description of a quantum state, the Born rule and the expected
value of an operator are redefined respectively as

Pr(n) = Tr
(
|n〉 〈n|

∑
i

pi |ψi〉 〈ψi|
)

=
∑
i

pi|〈n|ψi〉|2

〈A〉 = Tr
(
Aρ
)

where we have used the cyclic property of the trace Tr(AB) = Tr(BA), such that
A,B ∈ L(H).

Moreover, a state is called pure, when pi = 1 and pj = 0 whenever i 6= j.
Otherwise it is called mixed. It is straight forward to show that Tr(ρ2

pure) = 1, whereas,
Tr(ρ2

mixed) < 1 (ex).

1.2 Bloch sphere representation
In a 2-dimensional Hilbert space H2 any unitary transformation can be decomposed
into some elements from the Pauli group3 {I, σx, σy, σy}, and since the density opera-
tor is no different, any arbitrary state can be written as

ρ =
1

2
(I +m · σ̂)

where m = (〈σx〉 , 〈σy〉 , 〈σz〉) is called the Bloch vector, and σ̂ = (σx, σy, σz) is a
vector of Pauli matrices.
This is what we denote as the Bloch representation of a quantum state. Any unitary
transformation on a quantum state can be realized as some rotation applied on the
Bloch vector. Moreover, as we will see later, decoherence effects can be accounted for
without a rigorous derivation of the master equation.

3The Pauli group satisfies some axiomatic properties, such as the existence of an identity element , closure
under commutation relationship, and associativity.
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Figure 2: Bloch sphere representation of a qubit in the ground state.

1.3 State dynamics

For a pure isolated arbitrary qubit cos θ2 |0〉 + eiφ sin θ
2 |1〉, the state time dependence

can be written as (ex).

ρ(t) =

 1
2 (1 + cos θ) e−i(φ+ω0t)

2 sin θ

ei(φ+ω0t)

2 sin θ 1
2 (1− cos θ)


Moreover, the time evolution of the qubit’s density operator is defined by the

Heisenberg equation of motion dρ
dt = −i/~[H0, ρ], where H0 = ~ω0σz/2 is the

Hamiltonian4 of the system .
The diagonal elements of the density operator are called the populations, whereas

the off-diagonal ones are known as coherences. In order to account for different de-
coherence mechanisms we will often rescale the different matrix elements by an ex-
ponentially decaying factor.5Sacrificing rigor for intuition, this method proved to be
successful in characterizing the decoherence phenomenon experimentally, we shall see
later how this can be achieved.

2 Qubit basis: Computational vs Fourier
Qubits are objects of the Hilbert space, they can be expressed as a linear combination
of its complete ONB. As pointed out earlier in a previous session, different basis are
related to one another via unitary transformations. From an information processing
perspective we are interested in specifically two types. The first one we denote as
the computational basis, this is simply the Dirac representation of the N-dimensional

4After shifting the ground state energy level.
5This is of course guided by the exact derivation of the master equation which is unfortunately out of the

scope of this course.
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standard unit vectors {ε0, ε1, ε2, ...., εN−1} ∈ H(N)

|0〉 =


1
0
0
...
0

 , |1〉 =


0
1
0
...
0

 , |2〉 =


0
0
1
...
0

 . . . , |N − 1〉 =


0
0
0
...
1


By recalling the definition of an inner product from week 1, we can show that this set
indeed constitute an orthonormal basis (ex).
On the other hand, the Fourier basis set accounts for all the interesting quantum phe-
nomena 6. They are extremely valuable resources, especially when we consider n-qubit
systems. Mathematically, they are defined as

|em〉 =


em(0)
em(1)

...
em(N − 1)

 , m = 0, 1, 2, ..., N − 1. |e0〉 = |0̃〉 , |e1〉 = |1̃〉 , ..etc.

where em(n) = 1√
N
e2πinm/N , n = 0, 1, 2, .., N − 1.

In other words, they are superpositions of the computational basis. Similarly, we can
show that the Fourier basis is an ONB from the properties of the inner product map (ex).
To shift back and forth between the two basis, a unitary operation called the quantum
Fourier transform (QFT) is utilised. Later in this course, we shall see the crucial role
played by the QFT in implementing different quantum algorithms.

3 Tensor product
For our operational purposes, we define the tensor product as a mathematical procedure
in which n-qubits are accommodated within a single extended Hilbert space H⊗n =
H1 ⊗ H2 ⊗ . . . ⊗ Hn. An n-qubit state in this new space is written as |ϕ〉⊗n =
|ϕ1〉 ⊗ |ϕ2〉 ⊗ . . . ⊗ |ϕn〉. Moreover, operators are defined in a similar fashion A1 ⊗
A2 ⊗ . . .⊗ An, such that each one acts locally on its respective state. As an example,
we consider the case of two qubitsH⊗2. Suppose now that the first qubit was prepared
in the |0〉 state, whereas the second one is in the |1〉 state. The overall state of the 2
qubits is written as

|ϕ〉⊗2
= |0〉 ⊗ |1〉 =


1 ·
[
0
1

]

0 ·
[
0
1

]
 =


0
1
0
0


6“At the heart of quantum mechanics lies the superposition principle”- Dirac.
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Furthermore, let us assume that the Pauli σx is acting on the first, while the Pauli σz is
acting on the second. Their tensor product acting on the overall state is written as

σx ⊗ σz =

(
0 · σz 1 · σz
1 · σz 0 · σz

)
=


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


Therefore

(σx ⊗ σz) |0〉 ⊗ |1〉 = σx |0〉 ⊗ σz |1〉 = |1〉 ⊗ |−1〉 =


0 ·
[

0
−1

]

1 ·
[

0
−1

]
 =


0
0
0
−1


The most famous two-qubit set of states in the 2-dimensional Hilbert space are the
so-called entangled Bell states7. Due to the fact that they constitute a basis for H⊗2,
most non-classical quantum information tasks rely heavily on their interesting proper-
ties(ex).

|Φ+〉 =
1√
2

(|00〉AB + |11〉AB)

|Ψ+〉 =
1√
2

(|01〉AB + |10〉AB)

|Ψ−〉 =
1√
2

(|01〉AB − |10〉AB)

|Φ−〉 =
1√
2

(|00〉AB − |11〉AB)

4 Controlling the qubit
Ultimately for practical quantum information tasks, we would like to be able to ma-
nipulate the state of a single qubit efficiently. To drive transitions between the qubit
computational basis |0〉 ←→ |1〉, a rotation around the Bloch sphere’s x-axis8 has to be
implemented. By making the dipole approximation 9, this can be achieved by utilizing
a sinusoidal driving field. The overall qubit-field Hamiltonian is defined as

Hq-f =
~ω0

2
σz︸ ︷︷ ︸

free

+ ~γEd cos (ωdt+ φ)[σ+ + σ−]︸ ︷︷ ︸
interaction

7Sometimes it is more convenient to use a contracted version of the tensor product state as in the Bell-
basis.

8In nuclear magnetic resonance (NMR) a particle spinning along the z-axis will precesses around mag-
netic field applied in a plane perpendicular to the z-axis, this is known as Larmor precession.

9Where the field spatial variation is assumed unity eik·r ≈ 1 + ik · r + . . . , where, k · r << 1.

v



where γ is a coupling constant, σ+ |0〉 = (|1〉 〈0|) |0〉 = |1〉, and σ− |1〉 = (|0〉 〈1|) |1〉 =
|0〉. Hence the interaction part contributes to the off-diagonal elements ofHq-f.
In a frame rotating with the qubit’s frequency (ex), the Hamiltonian Hq-f can be made
simpler by getting rid of the first term (ex)

H̃q-f = ~γEd cos (ωdt+ φ)[σ+e−iω0t + σ−eiω0t]

Then eliminating the non energy conserving terms gives the final rotating-wave ap-
proximation (RWA) Hamiltonian10

H̃RWA =
~ΩR

2
(σ+e(i∆t+φ) + σ−e−i(∆t+φ))

where ∆ = ωd−ω0 is the field detuning, and ΩR = γEd is called the Rabi- frequency.

5 Phenomenological description of decoherence
In this section we define two characteristic times that capture the qubit relaxation pro-
cesses.

5.1 T1 (longitudinal relaxation)
When a single qubit interacts with an environment bath, energy can be either drawn
from or injected into the bath. Under the principle of detailed balance both rates are
equal, and consequently the qubit’s diagonal elements decays over time. Guided by
the intuition that this process resembles a radioactive decay, we define accordingly an
exponentially decaying factor as e−t/T1 . In order to measure T1 we initiate the qubit
in the ground state, then we apply a π − pulse that takes the qubit to the excited state.
Finally we observe the time taken by the qubit to spontaneously decay to the ground
stste.

5.2 T2 (transverse relaxation)
The off-diagonal elements will also eventually decohere when the qubit interacts with
the environment. However, this decoherence mechanism doesn’t necessarily alter the
populations occupation probabilities. Thus, only the qubit’s relative phase information
is destroyed during the process, in other words, the qubit is left in the maximally mixed
state ρnoise = 1

2 (|0〉 〈0| + |1〉 〈1|). Similarly, we define a corresponding exponentially
decaying factor as e−t/T2 . To measure T2 a procedure known as Ramsey interferom-
etry is often implemented. Firstly a slightly detuned, yet intense π

2 pulse in the x − y
plane is applied to the qubit, then the qubit is left to freely evolve for a short period of
time τ . Finally, a second π

2 pulse followed by a projective measurement is a performed

10The surviving co-rotating terms account for two possible physical processes, namely, absorption and
emission.
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on the qubit. As a result, T2 is imprinted in the probability of finding the qubit in the
ground state (ex).

ρdecoherence =

1 + ( 1
2 (1 + cos θ)− 1)e−t/T1 e−iφ

2 e−t/T2 sin θ

eiφ

2 e−t/T2 sin θ 1
2 (1− cos θ)e−t/T1


6 Single qubit gates
Single qubit operations are carried out by 2 × 2 matrices. These are called gates in
the language of quantum computing. The Pauli spin matrices11 X , Y , and Z are re-
sponsible for all qubit manipulations, namely, bit-flip, bit & phase flip, and phase flip
respectively. Two more important gates are the Hadamard and phase-shift gates. The
former switches back and forth between the computational and Fourier basis, whereas
the later applies a relative phase shift to any arbitrary qubit.

X

( 0 1
1 0 )

Y(
0 −i
i 0

) Z(
1 0
0 −1

) H(
1√
2

1√
2

1√
2

−1√
2

) Θ(
1 0
0 eiθ

)
Figure 3: Different qubit operations.

7 Two-qubit gates

7.1 Controlled-U gates

U

Figure 4: A digram of the controlled-U operation.

Controlled operations have two-qubit inputs, the first is called control, whereas the
second is denoted as target. If the control qubit is |0〉, the gate applies the identitiy
operator to the target qubit. If the control qubit is |1〉, the unitary U is applied to the
target. Of particular interest to us are the CNOT and C-PHASE gates12. In the former
the unitary U is the Pauli X operator, whereas the later utilizes the Pauli Z as the
unitary U .

11Here we use quantum computing notation
12In general, any of the single qubit operations defined earlier can be plugged in for U .
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7.2 iSWAP gate
Another powerful two-qubit gate is the iSWAP gate. The Hamiltonian describing the
capacitive coupling of two Transmon qubits is defined as

H =
~g
2

(σx ⊗ σx + σy ⊗ σy)

Then by exponentiating the previous Hamiltonian we can write down the gate’s matrix
representation (ex)

Uqq(t) =


1 0 0 0
0 cos (gt) −i sin (gt) 0
0 −i sin (gt) cos (gt) 0
0 0 0 1


On resonance and for interaction time t′ = π

2g we can realize the iSWAP gate

Uqq(
π

2g
) =


1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1


For t′′ = π

4g we realize the square-root iSWAP gate
√

iSWAP

Uqq(
π

4g
) =


1 0 0 0

0 1/
√

2 −i/
√

2 0

0 −i/
√

2 1/
√

2 0
0 0 0 1


The square-root iSWAP gate can be used to create 2-qubit entangled states(ex).
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