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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 14:

  Reissner-Mindlin and Kirchhoff shell models and Kirchhoff constraints.

  Shell equilibrium and constitutive equations in their tensor forms.

  Component representations of the membrane and shell equations for cylindrical and

spherical geometries

  Derivation of shell equations by using the principle of virtual work, integration by parts,

and the fundamental lemma of variation calculus.
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EFFECT OF CURVATURE

Sphere subjected to internal pressure:

1
2

N pR  and
1
2

N pR  

1 1( )
2 2

N pR e e e e pRI     
    

(isotropic stress)

Long cylinder subjected to internal pressure:

1
2zzN pR and N pR  

1 ( 2 )
2 z zN pR e e e e  

    
”curvature”

θ
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SHELL MODELS

Kinematic assumption: Straight line segments perpendicular to the mid-surface remain

straight in deformation (Reissner-Mindlin) or straight and perpendicular to the mid-surface

(Kirchhoff) in deformation 0 0 0 0nu u ne u n     
     .

Kinetic assumption: Stress component 0nn  .

thin curved body
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VOLUME AND AREA ELEMENT REPRESENTATIONS

The integrals of the virtual work expression are always over a body. Representations of the

volume and area elements consist of the mid-surface elements and scaling factors taking

into account the offset effect.

2 2( ) ( sin )R ndV dn R d d
R

  


In MEC-E8003, the region occupied by the body is (in most cases) a cuboid of the material

coordinate space!

scaling factor

small dimension

domain element

mid-surface
area element
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The scaling factors for the area elements depend on the direction of the boundary n (the

unit outward normal vector). In terms of curvature of the mid-surface 

dV JdndA    and ( )dA J n dnds
 , where

( ) 1 ( )J n n n 
  and ( ) ( )J J e J e 

  and c( ) ( )n nn n e e n     
     .

For example, in the cylindrical geometry and ( , , )z n  coordinates

1 e e
R    

  
 c

1( ) ( ) ( )( )n n z zn n e e n n e e n
R

        
        



( ) 1 ( ) 1z z
nJ e n e
R

   
  , ( ) 1 ( ) 1J e n e   

  , and ( ) ( ) 1z
nJ J e J e
R  

  .
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 GRADIENT REPRESENTATION

In derivation of equilibrium equations from virtual work expression of shell, gradient needs

to be expressed in terms of the mid-surface gradient 0 , offset scaling D


, and the normal

part:

Generic: 0( )nD e
n


    


 

Cylindrical: 1( ) ( )z z n n z n
Re e e e e e e e e

R n z R n   
  

      
   

        

Spherical: 1 1( ) ( )
sinn n n

R Re e e e e e e e e
R R nR n R n       

  
   

 
  

  
        

In flat geometry D I
 

and in the thin body limit ( / 1t R  ) D I
 

. Notice that integration

by parts formula on curved surfaces is concerned with 0 .

mid-surface partscaling

normal part
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GAUSS THEOREM ON CURVED SURFACES

As a generic vector identity, Gauss theorem is valid also when a thin body has curved mid-

surface geometry. However, all parts of the boundary need to be accounted for correctly.

Assuming that vector a  does not depend on the transverse coordinate, it holds

V V
adV n adA


   
   and 0a

n








0( ) ( )na e a dA n a ds
 

      
     .

In the latter form, the area integral is over the mid-surface and the boundary integral over

the boundary of the mid-surface. Term 0 ne  
  is twice the mean curvature of the mid-

surface or the trace of curvature tensor : I 
 .
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6.1 SHELL EQUATIONS

Virtual work expression of shell, principle of virtual work, integration by parts on curved

surfaces (Kelvin-Stokes), and the fundamental lemma of variation calculus give:

0 0nF e F b     
 

in 

0( ) 0n n nM e M e F c e        
     

0n F F  
     or 0 0 0u u 

 

                                                              on 
( ) 0nn M M e   

      or 0 0 0  
 

Conditions on   need to be expressed finally in the boundary system with component

representations of n  and s ne e n 
   .

https://en.wikipedia.org/wiki/Stokes%27_theorem
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RESULTANT DEFINITIONS

Stress and external force resultants are integrals over the thickness ( 0 0 ne  
  ). Stress

resultant definition gives the constitutive equations:

:
A CF

M C B




        
      

   
     , c2

1
( )

nA C
D E DJ dn

n nC B

   
     
     


     
   , 0 0 0

0 0

nu e 


   
      

 


1 1b f Jdn t J
n nc

     
      

    


  
 ,

1
( )

F
t J n dn

nM

         
     




 
 .

Elasticity tensor of plate E


 is assumed to satisfy the minor and major symmetries and the

kinetic assumption 0nn  ‘a priori’.

external force and moment
 per unit area

external force and moment
 per unit length
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MEMBRANE EQUATIONS

Shell equations combine the thin-slab and bending modes of deformation that are always

connected in curved geometry. The membrane model, i.e., thin-slab model in curved

geometry, is useful in cases of non-negligible tension rigidity and negligible bending

rigidity.  Then

0 0N b   


in  ,

0 0:N A u 
  in ,

0n N N  
     or 0 0 0u u 

 
   on .

Equations follow from the shell equations with the kinetic assumptions 0Q 


 and 0M 


for textile materials, skin of balloon, etc. of negligible bending rigidity.
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CYLINDRICAL MEMBRANE ( , , )z n

Equilibrium and constitutive equations of a cylindrical membrane follow from the

coordinate system invariant forms of the membrane equations when gradient etc. are

represented in ( , , )z n -coordinate system:

1

1 0

1

z zz
z

z

n

N N b
R z
N N

b
z R

N b
R



 








 
    

        
 

 
  

,   1 ( )

1

z

zz

n

z
z

u
z

N
u

N t E u
R

N uu
R z


 








 
   
           

   
 

   

,  and z zN N    in .

Conditions on   should be expressed in the boundary system with z zn e n e n  
    and

s n r re e n e n e n    
     .
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In cylindrical geometry and ( , , )z n  coordinates, gradient operator takes the form

0
1( ) ( )z n n

Re e e D e
z R n R n n 
   

       
    

    ,

where 0 ze e
z 


 

  
 

  , 1
1z z n nD e e e e e e

n  
  



       ,  and 1
R

  .

Direct calculation with representations zz z z z z z zN N e e N e e N e e N e e         
         ,

z z n nb b e b e b e   
      and the known derivatives of the basis vectors gives

0
1 1 1( ) ( ) ( ) 0z zzz

z z n n
N N NNN b e b e b e N b

R z z R R
  

   
  

           
   

    .
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  Elasticity tensor A


 of shell depends on the isotropic plate elasticity E


, scaling D


, and

Jacobian 1J n  . Assuming a very thin membrane / 1t R  for simplicity so that

1J   and D I
 

 (the precise expressions will be discussed later)

 

T

c( ) z z z z

z z z z

e e e e

A D E DJ dn e e t E e e
e e e e e e e e

   



   

   
   

       
       



   
        

       
.

Only the translation part z z n nu u e u e u e   
     of the kinematic assumption matters.

Direct calculation with the known derivatives of the basis vectors gives

0 0
1 1 ( )z z

z z z z n
u uu uu e e e e e e u e e

z z R R
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1 ( )n n
z n n

u ue e u e e
z R  

 
 

 
    .

Therefore, the constitutive equation 0 0:N A u 
   takes the form

 

T

1 ( )

1

n

z
z z

z z
z

u
u

Re e
uN e e t E
z

e e e e
u u
z R



 



 






 
   

               
 

   

 
  

   
,  where   2

1
2

1 0
1 0

1
0 0 (1 )

EE 







 
 

  
    

.
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EXAMPLE 6.1 A thin walled cylindrical body of length L, (mid-surface) radius R, and

thickness t is subjected to distributed loading z z n nb b e b e b e  
   

  of constant components

and boundary loading ( )zF t e e  
  

 at the free end z L . Assume rotational symmetry

and use the membrane equations in ( , , )z n  coordinate system to solve for the mid-surface

stress resultants.

Answer: ( )zz zN t b L z   , ( )zN t b L z    , and nN b R 
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A rotational symmetric solution does not depend on  . Then the equilibrium equations

of the membrane model and the boundary conditions at the free edge simplify to

0zz
z

dN b
dz

  , 0zdN
b

dz


  , 1 0nN b
R      in (0, )L

0zzN t  , 0zN t     at z L .

Solution to the boundary value problem of two ordinary first order differential equations

and one algebraic equation for the stress resultants is given by

( )zz zN t b L z   , ( )zN t b L z    ,  and nN b R   . 
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 SPHERICAL MEMBRANE ( , , )n 

1 ( )

1 [csc cot ( )]

1 [csc cot ( )] 0

n

N N
N N b

N N b
R

R
N N N N b

R

 
  

 




  





 

 
 

 
 

  
      

          
 
 
 






 

csc (cos )

csc sin

csc cot

1

n

n

u
u u

u
N

N t E
R

N
u

uu u





 












 


 


 
 


 







 
 
  
  

   
   
   




 
  



 and N N 
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EXAMPLE 6.2 Consider a balloon in ( , , )n   coordinates under positive pressure

difference in outp p p   . Assuming a rotational symmetric solution with respect to two

axes, so that all stress resultants and displacement components are independent of   and 

, find the membrane stress and displacement of the surface.

Answer: ( )
2
pRN e e e e   


 

       and
2 (1 )
2 n

pR e
tE

u 

 

NOTICE. Linear elasticity theory assumes an equilibrium initial geometry with 0N


, 0p ,

and 0R . The aim is to find the new equilibrium N


, p , and R  due to the change in pressure.

Here, displacement gives the change in radius due to the increase in the pressure difference.
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According to the assumption, derivatives with respect to   and   vanish. The

components of distributed force are 0b b    and nb p   (n  is directed inwards).

Equilibrium equations (N N  ) simplify to

2cot 0N  , cot ( ) 0N N    , 0N N pR     in  

0N  and
2
pRN N 


  . 

Due to the rotational symmetry also 0u u   . With the solution above, constitutive

equations give

2
1

1
(1 )

2n
tE

R
pRuN N 


 





 

2 (1 )
2nu pR
tE


 . 
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6.2 CYLINDRICAL SHELL ( , , )z n

In curved geometry, the thin-slab and bending modes are always connected. In cylindrical

geometry and ( , , )z n coordinates, the equilibrium equations of shell take the forms to

1

0
1 1

z zz
z

z
n

N N b
R z

N N
Q b

z R R



 
 





 
             

,

1 1

1 0

1 1

n zn
n

zzz
nz z

z
n n

Q Q N b
R z R

MM Q c
z R

M M
M Q c

z R R






 
  







 
     

        
  

    
   

.

The boundary conditions on   need to be deduced from the generic forms for the boundary

system with z zn e n e n  
    and s n z ze e n e n e n    

     . The non-zero constitutive

equations for a thin shell 2( / ) 1t R  ) take the forms
continues ...
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2 2

2

2

1[ (

1 1[ ( ) ]
1

1 1 1( (1
2

1 1

1)]
1

1( ) (1
2

) )

)

z

zz

z

z

n

z z
n

z z

z

uu utE
z R

utE uu D
R

D
R z

N
N

N
G

z R
uu

R z R z
uu

R z R

t D
N

Gt D































 











 

 
  

  
  

 
  

  
 

  
 

 
  

   
   
      
   
   
   

 
  

,
( )1

n
z

n
z

u
Q z
Q u

Gt

R
u




 



            
  


,

2

2

1

1 1 (

1 1 1(1 )

1

)
2

1 1 1(

)

[( ]

[(1 ) ) ]
2

z z

zz z
n

z z

z

z z

z R
M u

uM z R R
M u

R z R zM
u

R z

u
R z

D

R

 


  





 


 
 
 

 
 

  










 
   

    
    

                     
        

, 1 1 1[ ((1 ) ) ]
2

n
n z

uM D u
R R  
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EXAMPLE 6.3 Consider a cylindrical container of radius R  subjected to distributed force

nb due to internal excess pressure p. Assuming rigid end plates and rotation symmetry

(derivatives with respect to   vanish and 0zu   ), derive the differential equation and

the boundary conditions for the transverse deflection ( ) ( )nw z u z according to the

Kirchhoff model. Material is linearly elastic with properties E  and  . Thickness of the

container wall is t .

Answer:
4 2

4 2 2 2
2 1 ( 0)n

d w d w Et Nw b
D Rdz R dz DR
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 In the Kirchhoff model, constitutive equations for the shear forces are replaced by

Kirchhoff constraints. With relationship /ndu dz    and the assumptions of the

problem, the non-zero constitutive equations for the stress resultants simplify to

2

2 2) 1(
1

1z
zz n

nduN u
d

d uE
dzz

t D
R R







 ,

2
1( )

1
z

n
dutEN u
dz R 


 


,

2

2
1 )( n z

zz
dM
d

u duD
Rz dz

   .

 Equilibrium equations simplify to

0zzdN
dz

 , 0Q   , 1 0z
n

dQ N b
dz R    ,  and 0zz

z
dM Q

dz
   .
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and after elimination of the shear force (using the moment equation)

0zzdN
dz

  and
2

2
1 0zz

nN bd
R

M
dz    .

The constitutive equations for N  and zzM  can be expressed in terms of nu  by using

the equilibrium and constitutive equations for zzN :

0zzdN
dz

 
2

2 2) 1(
1

1 .z
n

n
zz

d udu u
dz

tEN D N const
dzR R

    




22

2
1 1 ( )1 nz

n
d udu u N D

dz R t zRE d
 

   .

Hence after elimination of /zdu dz  and with /a t R
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2

2 2
1( ) )(

1
1z

nn
nu d udutE tEN u D

dz R R dR z
N


    


,

2 22

22

2

2
1 1 1 1) [(1 ) ]

2
(

1
n nz

zz n
u d udu aM D D N u

R dz R tEdz R
d
dz

 
      .

 Using notation nu w , equilibrium equation in the transverse direction gives

2 2 4 2

2 4 2 2 2
2[(1 ) ]

12
1 0zz

n n
d M a d wN d w tE ND w

Rdz dz R dz R
b b

R             . 

 Assuming that the end plates are rigid so that the displacement and rotation vanish at

ends of the cylindrical container and 2 1a  , the boundary value problem for the

transverse displacement (positive inwards) takes the form
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4 2

4 2 2 2
2 01 ( )n

d w d w tE Nw
D Rdz R d DR

b
z

         in (0, )L , 

0dww
dz

     on {0, }L . 

The fourth order differential equation can further be simplified by omitting the second

derivative term as negligible compared to the fourth order derivative term.
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6.3 SPHERICAL SHELL

In spherical geometry and ( , , )n  coordinate system, the equilibrium equations of shell

simplify to

1 ( csc 2cot

1 ( csc cot cot 0

1 ( csc cot

)

)

) n

N N N Q b
R

N N N N Q b
R

Q Q Q N N b
R

    

     

    

 
 

  
 

 
 

 


 
 


 

 
  
 
 

 


 

    
 

 


 


 




,

1 ( csc cot

1 ( cs

2

c cot

)

0
co )t

M M M Q c
R

M M M M Q c
R

    

     

 
 

  
 

    
   
 

 
 

 
 

 
 



,

continues...
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2

( cot csc ( )

( cot csc ( )

1 ( cot csc )
2

1 ( cot csc )

)

1

2

)
1

n n

n n

u uu u u

u uu u u

uu

N

N Et
N R

u

u
N

uu

 


 

















  
 

  
 

  
 

  
 



 
   
 
 

   
 


  

 


 
 
 

   
   
      

   
   
   

 



  

  

,   ( 1csc
sin




  )

cot csc
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1 ( cot csc )
2

1 ( cot csc )
2

1

M

M
D

M R
M
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1 ( csc )

1 ( )

n

n
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uu
R

Q
tG
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.
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6.4 VIRTUAL WORK DENSITIES

Virtual work densities of the plate and shell models coincide

T
int

c
: Fw

M





  
    

   


 , where 0 0 0

0 0

nu e 


   
      

 


T
ext u bw

c





  
    
   


  ,

T
ext u Fw

M





  
    
   




in which

c
1F JD dn
nM


   

    
  


   ,

1 1b fJdn tJ
n nc

     
      

    


  
 ,  and

1
( )F J n tdn

nM
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 All the kinematical quantities need to be expressed in terms of the kinematical quantities

of the mid-surface 0u , 0


, 0   etc. With 0 0 ne  
  , displacement gradient

0 0 0( )( ) ( )nu D e u n D n
n

  
        



      ,

where 0 0 0nu e  
      and 0 0 

 
  are the strain measures.

With the vector identities : ( ) ( ) :a b c a b c  
      and c c c( )a b b a  

   , the virtual work

density of internal forces takes the form

T
int c

c c c c
cc

( ) : ( ) : ( ) :V
D

w u n D
nD

 
     

 
  

           
   

       .

 Integration over the domain occupied by the body gives  writing the volume element in

the form dV JdndA , in which dA is the mid-surface area element,
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T T
int

c
c c

1
[ : ( )] ( : )FW JD dn dA dA

n M
 

 
  

      
           

       
  

     

in which the stress resultants

c
1F JD dn
nM


   

    
  


  

are work conjugates to the strain measures. It is noteworthy that F


and/or M


 of shell

theory need not to be symmetric although the balance law of moment of momentum

requires that c  
.

Volume and area forces contribute to the virtual work of external forces. The surface

contribution needs to be divided into parts coming from the outer and inner surfaces and

from the edge extW   and extW  , respectively:
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extW f udV t udA  
 

    
   

T
0ext

0

1 1
[ ( ) )]

u
W fJdn tJ dA

n n



 

     
       

    
 

  
 

T
0ext

0

u bW dA
c




 

  
    

   



  ,    where

1 1
)b fJdn tJ

n nc
     

      
    


  
 . 

T
0ext

0

1
[ ( ( ) )]

u
W tJ n dn ds

n



 

   
    

  
 

  
 

T
0ext

0

u FW ds
M




 

  
    

   



 ,   where

1
( )F tJ n dn

nM
   

   
  




  . 
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6.5 EQUILIBRIUM EQUATIONS

Virtual work expression of shell, principle of virtual work, integration by parts on curved

surfaces (Kelvin-Stokes), and the fundamental lemma of variation calculus give:

0 0nF e F b     
 

in 

0( ) 0n n nM e M e F c e        
     

0n F F  
     or 0 0 0u u 

 

                                                               on 
( ) 0nn M M e   

      or 0 0 0  
 

Conditions on   need to be expressed finally in the boundary system with component

representations of n  and s ne e n 
   .

https://en.wikipedia.org/wiki/Stokes%27_theorem
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 Virtual work expression of the shell model coincides with the plate model. However, as

the mid-surface is not flat, the simple Gauss theorem is replaced by a version valid on

curved surfaces

T TT
0 0

0 0c

( : )
u uF Fb

W dA dA ds
M Mc

 


   

                                   
                   

  
  

    .

 Integration by parts in terms containing derivatives of the variations gives (mean

curvature 0 ne  
 ) with the version of the Gauss theorem and the tensor identity

c( ) ( ) :b a b a b a       
       gives

0 0 c 0 0 0: ( ) ( ) ( )nF u dA F e F u dA n F u ds   
  

            
        ,

0 0 c 0 0 0: ( ) ( ) ( )nM dA M e M dA n M ds   
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and thereby an equivalent but a more useful form of the virtual work expression

T T
0 0

0 0

n

n n

u uF e F b n F F
W dA ds

M e M e F c n M M

 


  

                            
                   

 
     

         .

When definition 0 0 ne  
  and the vector identity ( ) ( )a b c a b c    

     are used

there (to recover the original rotation variable), the principle of virtual work and the

fundamental lemma of variation calculus imply that

0 0nF e F b     
  in 

0( ) 0n n nM e M e F c e        
         in 

0n F F  
     or 0 0 0u u 

 
  on 

( ) 0nn M M e   
      or 0 0 0  

 
  on 

boundary conditions

equilibrium eqs.
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6.6 CONSTITUTIVE EQUATIONS

Constitutive equations 0 0( , )F F u 
   , 0 0( , )M M u 

   follow from the generalized Hooke’s

law, the definition of small strain, and the kinetic and kinematic assumptions of the model:

:
A CF

M C B




        
      

   
     , where c2

1
( )

nA C
D E DJ dn

n nC B

   
     
     


     
  

Elasticity tensor E


 is assumed to satisfy the minor and major symmetries and condition

: 0n ne e E 
  . Elasticity tensors A


, B


 and C


 of  shell depend on the material, positioning of

the mid-surface (actually the reference surface), thickness of the shell, and curvature of the

mid-surface. Assuming a thin shell so that D I
 

 and 1J  , the expressions boil down to

the plate expressions.

notice this!
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 Constitutive equations follow from the stress resultant definitions when the stress

expression is substituted there

c
1

( )F JD dn
nM


   

    
  


   .

Notice that the stress resultant tensors may not be symmetric even though the stress

tensor always is. The gradient expression was earlier found to be

T

0 0 0
1

( )( )nu D e u n D
nn





   

              

   
 , where 0 0 0

0 0

nu e 


   
      

 
 .

Let us assume a linearly elastic material and an elasticity tensor satisfying the minor and

major symmetries and condition : 0n ne e E 
  . Stress-strain relationship gives (tensor

identity : ( ) ( ) :a b c a b c  
      )
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T1
: ( ) :E u E D

n





   
      

   

    
 .

The stress-resultant definition gives now expression

c c2

11
( ) ( ) :

nF JD dn JD E D dn
nM n n





      

          
       

 
      

:
A CF

M C B




        
      

   
     , where c2

1
( )

nA C
JD E D dn

n nC B

   
     
     


     
   . 

 which depends on the material properties, position of the mid-surface (actually the

reference surface), thickness of the shell, and curvature of the reference surface. Without

simplifications the membrane and bending modes are always connected.
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CYLINDRICAL SHELL CONSTITUTIVE EQUATIONS

Derivation of the constitutive equations is a straightforward but somewhat tedious task. If

the origin of the n axis is placed at the mid-surface, constitutive equations take the forms

( 0nn nnF M  )

2 2
1 1 1[ (( ) )]

1 1
zz zz

z
zz n

uuF u D
R

t
R

E
R

E D
z

t
z





  

 





 

     
   

,

2 2
1[ ( 1) ] [ ( ) ( 1) ]

1 1
z z

zz n
u utE tEF g g R g u g

R z


  
   

  

  
        

   
,

1 1 1 1 1( ) (1 (
2

) (1
2

) )z z
z z z zD Gt

u uF Gt
z R R z

D
R


   

  


 
  

      
  

 ,

1[ ( 1) ] [ ( 1) ]z
z z z z Gt

uuF Gt g g R g g
R z

 
   


  

 
 

       
  

,

continues...
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11 (1 (
2

( ) ) ( ) )n
zn nz zn nz zn

uF Gt D G
R z

t      
    


  ,

11 (1 (
2

( ) ) ( ) )n
nz nz zn nz zn

uF Gt D G
R z

t      
    


  ,

1[ ( 1) ] [ ( ) ]n
n n n zn

uF Gt g g R Gtg u
R      




     


,

1( ) ) 1(1 (
2

[ )]n
n n zn n

uF G
R

Gt D t u     


   





   ,

1 1 1(( ) )z z
zz zz zz

uM
R z R R

D D
z




    


  
   

  
  ,

2
1 1 1( ) [ )](z

zz n
u

M D f f f f u
R R z

D
R

 
  

   
 

 
    





 


,

continues...
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1 1 1 1 1(1 ) (1( ) [( )
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R R R z
 

   
    


 
 

      
  

,

2
1 1 1 1 1(1 ) ( ) ( (1 ) )
2 2z

z z
z z z

uM D f f D f f
R R z R




  
    
 


  

      
  

 ,

1 1 1 1(1 ) [ ( )] (1 ) ( )
2 2

n
zn nz z zz nn n

uD D
R R z

M       
       


 ,

1 1 1 1(1 ) [ ( )]
2 2

(1 ) ( )nz zn n z
n

z nnz D
R R

uM D
z          


   


,

1 1
2

(1 ) ( ) 0n n n nM
R

D          ,

1 1 1 1 1[ ( )]
2 2

(1 ) ( ) (1 ) n
n n n n z

uM f f f u
R R R

D D      


  
      


  ,

where the functions depending on the relative thickness /a t R
continues...
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2 41 2log( ) 1
2 12 80

a a ag
a a


    


 ,   and 2

112 ( 1)f g
a

 .

In the simplified constitutive equations, shell is assumed to be thin in the sense that

/ 1a t R   so that the first ( 1g  , 0f  ) or the first two terms ( 2 / 21 1g a  , 1f  ) of

g  give an accurate enough representation. No matter the number of terms used, constitutive

equations satisfy the moment balance of the domain element

0nz znF F   , 1 0z z zF F M
R     ,  and 1 0n n nF F M

R    

‘a priori’. Also, stress resultants vanish in the rigid body motion of the shell

0 0 0( , , )u z n U r   
     and 0( , , )z n   

 

in which 0U


 and 0


 are constant vectors.
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SIMPLIFIED CONSTITUTIVE EXPRESSIONS

The practical expressions of constitutive equations are often simplified by omitting the

“small terms”. The simplified expressions of the stress resultants should

(1) vanish in rigid body motion of the shell 0u U r 
   and   

 
 in which U


 and 


 are

constant vectors in the Cartesian ( , , )x y z  coordinate system

(2) satisfy the moment equilibrium 0 0 0( ) ( ) 0n n ne F e F M e        
     , in which

the underbars denote constants with respect to the gradient operator.

Both conditions are satisfied by the constitutive equations of spherical shell and by the

cylindrical no matter the number of terms used for g  (not all simplifications of the

constitutive equations satisfy conditions (1) and (2)).
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The latter requirement means that a material element should be in equilibrium under

constant stress resultants and vanishing external loading (symmetry of stress c    of

classical elasticity is one of the outcomes of the requirement). In curved geometry with

t n  
    and 0 nr r ne 

  

( ) 0nF tdnds n Fds F e F dA
  

           
      ,

0 0 0[ ( ) ( )] 0n n nM r tdnds F r M e e F r M e dA
 

                
          .

The generic equilibrium equations of plate show that the first condition is satisfied and

the second implies (as  is arbitrary)

0 0 0( ) ( ) 0n n ne F e F r M e        
      .

in which the underbars denote constants with respect to the gradient operator.
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EXAMPLE 6.4 Consider a cylinder subjected to shear forces acting on the inner and outer

surfaces as shown. Use the Reissner-Mindlin type shell model in ( , , )z n coordinate

system to derive the expression of displacement ( )u n . Assume that the only non-zero

displacement/rotation component z  is constant and that the cylinder is in equilibrium so

that the shear forces per unit area satisfy 2 2(1 / 2) (1 / 2)a a        where /a t r .

Answer u ne
G 



   when 1ta

R
 

x

y

R
ϕ

t
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As all other displacement/rotation components except z  are assumed to vanish, the

equilibrium and constitutive equations ( 21 /12g a    and 1f  ) take the forms

1 0nM Q c
R      , zQ Gt   ,  and

2

12 zn
atM G R   .

The distributed force and moment follow from definition

1 1b f Jdn t J
n nc

     
      

    


  


in which f


 is the external volume force (due to gravity for example) and t


 is the given

area force acting on the outer and inner surfaces. The sum is over the coordinates

{ , }n n   of surfaces. Notice that – side is the outer surface and + the inner surface since
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n is directed inwards in ( , , )z n  coordinates. Here 0f 


 and scaling coefficient

expression 1 /J n R   for the cylindrical shell

2(1 )( )( ) (1 )( )( )
2 2 2 2 1 ( / 2)
a t a t ac tnJ e e R e

a
            




    .

When the constitutive equations are substituted there, equilibrium equation simplifies to

(assuming that 2 1a  )

0zt RG a     z G
 

  .

Finally, using the kinematic assumption of the shell-model z z n zu e ne n e    
    and

therefore

u ne
G 



  . 


