
MEC-E8003 Beam, plate and shell models, week 14/2021

1.  Derive the component forms of cylindrical shell force equilibrium equations in the ( , , )z n
coordinate system starting from the invariant form 0 0nF e F b     

  .
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2.  Derive the component forms of cylindrical shell moment equilibrium equations in the ( , , )z n
coordinate system starting from the invariant form 0( ) 0n n nM e M e F c e        
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3.  A thin walled cylindrical body of length L, (mid-surface)
radius R, and thickness t is subjected to shear loading t
[ ] N/mt   at the free end z L  as shown in the figure.
Assuming rotation symmetry, use the membrane equations
in ( , , )z n  coordinate system to derive the relationship
between the moment resultant T  (in the direction of z-
axis) of the shear loading and the angle of rotation of the
free end defined by /u R  .

Answer
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4. Consider a torus shaped balloon under the loading caused by
inner pressure difference p  relative to the ambient pressure.
Use ( , , )n   coordinate system, assume rotation symmetry
with respect to  , and solve for the stress resultant components
from the equilibrium equations:
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5.   Displacement and rotation in rigid body motion are 0u U r 
  and 


 in which U


 and 



are constant vectors in the Cartesian ( , , )x y z  coordinate system. Calculate the cylindrical shell
stress resultant components zM   and zM  in rigid body mode 0x   and

0x y z y zU U U       .

Answer 0z zM M  

6. A steel ring of length L , radius R , and thickness t  is loaded by
radial surface force p  acting on the inner surface. No forces are
acting on the ends. Model the ring as a cylindrical membrane,
write down the equilibrium and constitutive equations, and solve
for the radial displacement. Assume rotation symmetry. Young’s
modulus E  and Poisson’s ratio   of the material are constants.
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7. Consider a simply supported (long) circular cylindrical shell of
radius R , thickness t , and filled with liquid of density   in
cylindrical ( , , )z n coordinates. Determine the mid-surface stress
resultants N , zN  and zzN by assuming that there are no axial
forces at the ends of the shell and bending deformation is negligible.
(J.N.Reddy: Example 11.3.1)

 Answer 2 cosN R p gR      , 1( )sin
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8. Consider a cylindrical shell of radius R , subjected to bending moment zzM M  and shearing
force zQ Q  at the end z L . The other end 0z   is clamped. Assuming rotational symmetry,
derive the boundary value problem of Kirchhoff type for deflection ( )nu z . Start with the
component forms of the Reissner-Mindlin (type) shell equations in cylindrical ( , , )z n
coordinates.
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9.  Consider a circular cylindrical shell of radius R , subjected to bending moment zzM M  and
shearing force zQ Q  at the end z L . The other end 0z    is clamped. Assuming rotational
symmetry, derive the boundary value problem of Reissner-Mindlin type for deflection ( )nu z  and
rotation ( )z .
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10. A strip of cylindrical shell is loaded by shear force P  ([ ] N/mP  ) at
the free end. Write down the boundary value problem of first order
ordinary differential equations consisting of the equilibrium and
constitutive equations according to the Kirchhoff theory. Thickness t,
width H, and the material parameters E ,   are constants. Assume that
the solution depends on   only.
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Derive the component forms of cylindrical shell force equilibrium equations in the ( , , )z n
coordinate system starting from the invariant form 0 0nF e F b     

  .

Solution
The force resultant representations and kinematic quantities of the cylindrical shell ( , , )z n
coordinate system are
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In the shell model, the stress resultants may not be symmetric. Definition 0 c( )ne  
   gives the

curvature tensor
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Let us consider the mid-surface (membrane) and shear parts of n nF N Qe e Q  
      separately. First

the membrane mode term
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Then, the shear part associated with the bending mode
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The second term of the equilibrium equation simplifies to

1 1( )n z ze F Q e Q e Q
R R       

   .

Therefore, combining the terms
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You can check the outcome with Shell.nb of the homepage!



Derive the component forms of cylindrical shell moment equilibrium equations in the ( , , )z n
coordinate system starting from the invariant form 0( ) 0n n nM e M e F c e        

      .

Solution
Component representations of the quantities in the equilibrium equation are (notice that the transverse
normal components are missing)
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In the shell model, the stress resultants may not be symmetric although the stress   always is.
Derivatives of the basis vectors, the unit tensor and curvature tensor are
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Let us consider the mid-surface and transverse parts of the moment separately to shorten the
expressions, First the mid-surface part
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Then, the transverse part
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The second term of the equilibrium equation simplifies to
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Finally, combining the terms (all terms in the normal direction vanish due to the cross product with
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A thin walled cylindrical body of length L, (mid-surface)
radius R, and thickness t is subjected to shear loading t
[ ] N/mt   at the free end z L  as shown in the figure.
Assuming rotation symmetry, use the membrane equations in
( , , )z n  coordinate system to derive the relationship between
the moment resultant T  of the shear loading and the angle of
rotation of the free end defined by /u R  .

Solution
As the solution does not depend on  , equilibrium equations
of the membrane model and boundary conditions at the free end simplify to (a cylindrical membrane
z  strip problem)
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Solution to the boundary value problem for the stress resultants is given by

0zzN N   and ( )zN z t  . 

Knowing the stress resultants, the boundary value problem for the displacement components follows
from the constitutive equations and the boundary conditions at the fixed end (in the membrane model,
a boundary condition cannot be assigned to nu )
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Solution to the boundary value problem is given by
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The polar moment predicted here is 32pI R t  whereas the exact is 2 21 (4 )
2p Rt RI t  .



Consider a torus shaped balloon under the loading caused by inner
pressure difference p  relative to the ambient pressure. Use
( , , )n   coordinate system, assume rotation symmetry with respect
to  , and solve for the stress resultant components from the
equilibrium equations:
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Solution
As the solution should be independent of  , partial derivatives with respect to   vanish and the
equilibrium equations of torus geometry simplify to ordinary diffrential equations. In toroidal system

ne  is directed outwards and therefore nb p  :
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Eliminating N  from the last two equations gives
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Solution to the equation can be obtained by using an integrating factor. Let us write the differential
equation in form
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Continuing with the other equation of the set
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Displacement and rotation in rigid body motion are 0u U r 
  and 


 in which U


 and 


 are

constant vectors in the Cartesian ( , , )x y z  coordinate system. Calculate the cylindrical shell stress
resultant components zM   and zM  in rigid body mode 0x   and 0x y z y zU U U      
.

Solution
The representations of the quantities in the cylindrical ( , , )z n  coordinate system can be obtained
from the relationship between the basis vectors of the Cartesian and cylindrical system
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The displacement and rotation components due to rigid body motion are (rotation does not have a
component in the normal direction)
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Let us consider the rigid body mode obtained with 0x   and 0x y z y zU U U        and
substitute the components obtained into the constitutive equations for zM   and zM  of the formulae
collection:
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A steel ring of length L , radius R , and thickness t  is loaded by radial
surface force p  acting on the inner surface. No forces are acting on
the ends. Model the ring as a cylindrical membrane, write down the
equilibrium and constitutive equations, and solve for the radial
displacement. Assume rotation symmetry and 0u  . Young’s
modulus E  and Poisson’s ratio   of the material are constants.

Solution
According to the formulae collection, equilibrium and constitutive equations of a cylindrical
membrane in ( , , )z n coordinates are (notice that ne  is directed inwards)
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Due to the rotation symmetry, the derivatives with respect to the angular coordinate vanish and 0u 
.  External distributed force nb p   is due to the traction acting on the inner boundary. Therefore,
the equilibrium equations and constitutive equations simplify to a set of ordinary differential
equations
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Solution to the stress resultants, as obtained from the equilibrium equations, are
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Consider a simply supported (long) circular cylindrical shell of radius
R , thickness t , and filled with liquid of density   in cylindrical
( , , )z n  coordinates. Determine the mid-surface stress resultants N
, zN  and zzN by assuming that there are no axial forces at the ends of
the shell and bending deformation is negligible. (J.N.Reddy: Example
11.3.1)

Solution
The membrane equations of the cylindrical coordinate system are (formulae collection)
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Definition of the external distributed force (let us assume that / 1t R  so that 1J   to simplify the
setting somewhat)

b fdn t 
  

takes into account the volume forces acting on the body and tractions acting on the outer and inner
surfaces. In the present case 0f 


 and the traction part is due to the hydrostatic pressure of the liquid

inside the cylinder. Therefore
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in which 0outp p p    is a constant. The equations to be solved become (notice that ( , )zzN z  .
( , )N z  , ( , )zN z   and direct integration of a partial differential equation involves unknown

functions instead of integration constants)
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In the solution, ( )A   and ( )B   are arbitrary functions subjected to ( ) (2 )A A     and
( ) (2 )B B      (periodicity) as the domain is closed in the  direction.  Also, according to

the assumption, zzN vanishes at the ends. Therefore

21 1( , ) cos ( ) ( ) 0
2zzN z g z z A B

R
        {0, }z L 

( ) 0B   and 21 1cos ( ) ( ) 0
2

g L L A B
R

      
1( ) cos
2

A gR L    

1( ) sin
2

A gR L A      (a constant now).

Solution to force resultants becomes
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in which pressure difference p  and integration constant A  cannot be determined with the
information given.



Consider a cylindrical shell of radius R , subjected to bending moment zzM M  and shearing force

zQ Q  at the end z L . The other end 0z   is clamped. Assuming rotational symmetry, derive the
boundary value problem of Kirchhoff type for deflection ( )nu z . Start with the component forms of
the Reissner-Mindlin (type) shell equations in cylindrical ( , , )z n  coordinates.

Solution
Cylindrical shell Reissner-Mindlin equilibrium and constitutive equations in ( , , )z n -coordinate
system are given in the formulae collection. Under the assumption of rotational symmetry, derivatives
with respect to   vanish and 0u  . As the loading is through the boundary conditions, the
equilibrium equations of cylindrical shell in ( , , )z n coordinate system simplify to
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Constitutive equations for the stress resultant components simplify to (notice that the constitutive
equation for the shear force is replaced by the Kirchhoff constraint / 0ndu dz    which is used to
eliminate rotation   from the constitutive equations)
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Force equilibrium equation in the axial boundary condition, constitutive equation for the axial stress
resultant and the boundary condition at the free edge give
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The moment equilibrium equation is used next to eliminate the shear force from the remaining
equilibrium equation to get
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Boundary conditions at the loaded end take the forms
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Consider a circular cylindrical shell of radius R , subjected to uniform bending moment zzM M
and shearing force zQ Q  at the end z L . The other end 0z    is clamped. Assuming rotational
symmetry, derive the boundary value problem of Reissner-Mindlin type for deflection ( )nu z  and
rotation ( )z .

Solution
As derivatives with respect to the angular coordinate vanish, the equilibrium equations of cylindrical
shell in ( , , )z n  coordinate system simplify to
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Constitutive equations for the stress resultant components in the equilibrium equations simplify to
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Force equilibrium equation in the axial boundary condition, constitutive equation for the axial stress
resultant and the boundary condition at the free edge give
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With the relationship, the constitutive equation for N  and zzN  simplify to ( /a t R )
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When the constitutive equations are substituted there, equilibrium equations in terms of nu  and 
take the forms
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Boundary conditions at the ends are
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A strip of cylindrical shell is loaded by shear force P  ([ ] N/mP  ) at the
free end. Write down the boundary value problem of first order ordinary
differential equations consisting of the equilibrium and constitutive
equations according to the Kirchhoff theory. Thickness t, width H, and the
material parameters E ,   are constants. Assume that the solution depends
on   only.

Solution
Equilibrium and constitutive equations of cylindrical shell in ( , , )z n  coordinate system are given in
the formulae collection. In a shell strip problem, it is enough to consider the force equilibrium
equations in the plane of the figure and the moment equilibrium in the normal direction of the plane
and constitutive equations for the stress resultants (appearing in the equilibrium equations). In the
Kirchhoff model, the constitutive equation for the shear force is replaced by the Kirchhoff constraint.
Also, derivatives with respect to z vanish. Therefore the differential equations and constitutive
equations simplify to
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where 0nM    due to the Kirchhoff constraint. The boundary conditions are

0

N

Q P

M







 
    
 
  

  at
2
     and 0n

z

u

u
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As the force resultants are known on one edge, equilibrium equations can be solved for the force
resultants. Knowing these, displacements and rotation follow from the constitutive equations.


