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René Magritte: Les promenades d' Euclide (1955)



https://youtu.be/d-Krgh_v2ds

https://youtu.be/d-Krgh_v2ds


Gnomonic projection
From Wikipedia, the free encyclopedia

A gnomonic map projection displays all great
circles as straight lines, resulting in any straight
line segment on a gnomonic map showing a
geodesic, the shortest route between the segment's
two endpoints. This is achieved by casting surface
points of the sphere onto a tangent plane, each
landing where a ray from the center of the sphere
passes through the point on the surface and then on
to the plane. No distortion occurs at the tangent
point, but distortion increases rapidly away from it.
Less than half of the sphere can be projected onto a
finite map. Consequently, a rectilinear
photographic lens, which is based on the gnomonic
principle, cannot
image more than
180 degrees.
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History
The gnomonic projection is said to be the oldest map projection, developed by Thales in the 6th century
BC. The path of the shadow-tip or light-spot in a nodus-based sundial traces out the same hyperbolae
formed by parallels on a gnomonic map.

Properties
Since meridians and the equator are great circles, they are always shown as straight lines on a

Great circles transform to straight lines via gnomonic
projection

Examples of gnomonic projections
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24-cell

Schlegel diagram
(vertices and edges)

Type Convex regular 4-polytope

Schläfli symbol {3,4,3}

r{3,3,4} = 

{31,1,1} = 

Coxeter
diagram  or 

 or 

Cells 24 {3,4}

Faces 96 {3}

Edges 96

Vertices 24

Vertex figure Cube

Petrie polygon dodecagon

Coxeter group F4, [3,4,3], order 1152
B4, [4,3,3], order 384
D4, [31,1,1], order 192

Dual Self-dual

Properties convex, isogonal, isotoxal,
isohedral

Uniform index 22

24-cell
From Wikipedia, the free encyclopedia

In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with
Schläfli symbol {3,4,3}. It is also called C24, icositetrachoron, octaplex (short for "octahedral complex"),
icosatetrahedroid,[1] octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.

The boundary of the 24-cell is composed of 24 octahedral cells with six meeting at each vertex, and three at
each edge. Together they have 96 triangular faces, 96 edges, and 24 vertices. The vertex figure is a cube. The
24-cell is self-dual. In fact, the 24-cell is the unique convex self-dual regular Euclidean polytope which is
neither a polygon nor a simplex. Due to this singular property, it does not have a good analogue in 3
dimensions.
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Constructions
A 24-cell is given as the convex hull of its vertices. The vertices of a 24-cell centered at the origin of 4-space,
with edges of length 1, can be given as follows: 8 vertices obtained by permuting

(±1, 0, 0, 0)

and 16 vertices of the form

(±1
2, ±1

2, ±1
2, ±1

2).

The first 8 vertices are the vertices of a regular 16-cell and the other 16 are the vertices of the dual tesseract.
This gives a construction equivalent to cutting a tesseract into 8 cubical pyramids, and then attaching them to
the facets of a second tesseract. This is equivalent to the dual of a rectified 16-cell. The analogous construction
in 3-space gives the rhombic dodecahedron which, however, is not regular.

We can further divide the last 16 vertices into two groups: those with an even number of minus (−) signs and those with an
odd number. Each of groups of 8 vertices also define a regular 16-cell. The vertices of the 24-cell can then be grouped into
three sets of eight with each set defining a regular 16-cell, and with the complement defining the dual tesseract.

The vertices of the dual 24-cell are given by all permutations of

(±1, ±1, 0, 0).

The dual 24-cell has edges of length √2 and is inscribed in a 3-sphere of radius √2.

Another method of constructing the 24-cell is by the rectification of the 16-cell. The vertex figure of the 16-cell is the
octahedron; thus, cutting the vertices of the 16-cell at the midpoint of its incident edges produce 8 octahedral cells. This
process also rectifies the tetrahedral cells of the 16-cell which also become octahedra, thus forming the 24 octahedral cells
of the 24-cell.

Tessellations
A regular tessellation of 4-dimensional Euclidean space exists with 24-cells, called an icositetrachoric honeycomb, with Schläfli symbol {3,4,3,3}. Hence, the
dihedral angle of a 24-cell is 120°.[2] The regular dual tessellation, {3,3,4,3} has 16-cells. (See also List of regular polytopes which includes a third regular
tessellation, the tesseractic honeycomb {4,3,3,4}.)

Symmetries, root systems, and tessellations
The 24 vertices of the 24-cell represent the root vectors of the simple Lie group D4. The vertices can be seen in 3 hyperplanes, with the 6 vertices of an octahedron
cell on each of the outer hyperplanes and 12 vertices of a cuboctahedron on a central hyperplane. These vertices, combined with the 8 vertices of the 16-cell,
represent the 32 root vectors of the B4 and C4 simple Lie groups.

The 48 vertices (or strictly speaking their radius vectors) of the union of the 24-cell and its dual form the root system of type F4. The 24 vertices of the original 24-
cell form a root system of type D4; its size has the ratio √2:1. This is likewise true for the 24 vertices of its dual. The full symmetry group of the 24-cell is the
Weyl group of F4, which is generated by reflections through the hyperplanes orthogonal to the F4 roots. This is a solvable group of order 1152. The rotational
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REYE’S
CONFIGURATION

12 points
16 lines

12 planes

4 lines and 6 planes per point
3 points and 3 planes per line

6 points and 4 lines per plane (a complete quadrilateral)

Stick model building video (slightly blurry)
https://youtu.be/fby53U_n4o8

https://youtu.be/fby53U_n4o8


Space Hug at the West Bund Art Centre,
Shanghai

https://www.aalto.fi/en/news/aalto-math-arts-in-
shanghai-future-lab-exhibition

https://www.aalto.fi/en/news/aalto-math-arts-in-shanghai-future-lab-exhibition




LARGE SCALE CONFIGURATION WORKSHOP



DESARGUES’
CONFIGURATION

REYE’S
CONFIGURATION

SCHLÄFLI’S
DOUBLE–SIX

COMPLETE
HEXACHORON

COMPLETE
HEXAHEDRON

26th of April 27th of April 28th of April 29th of April 30th of April

WORKSHOP SCHEDULE
PAINTING & ASSEMBLING

Each day the workshop will last from 10am - 6 pm / Location: Otakaari 1

Please put 'X' under date which suits you the best. 
https://docs.google.com/spreadsheets/d/1UvnS0dWmE-KsuagHXrfNHHl_o4OSCdoezlgDK3gbX7c/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1UvnS0dWmE-KsuagHXrfNHHl_o4OSCdoezlgDK3gbX7c/edit?usp=sharing




SCHLÄFLI’S
DOUBLE–SIX

30 points
12 lines

2 lines per point
5 points per line



Clebsch surface


