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ABSTRACT 
 
Ice collision forces can be determined by energy considerations. A variety of interaction 
geometry cases are considered. The indentation energy functions for eight different cases are 
derived and expressed in a common format. The indentation functions are expressed as 
functions of the indentation model parameters, assuming a pressure-area representation. Two 
types of collisions are identified; simple impacts which can be treated as equivalent to one-
dimensional collisions, and beaching collisions which involve two-dimensional behaviour 
(indentation and sliding). Solutions for the impact cases are presented for all geometry cases. 
A solutions procedure is presented for the beaching collision, with an exact solution for a 
linear case. Design equation development and future directions are discussed. 
 
1. INTRODUCTION 
 
Ice forces on ships and structures are typically the result of collisions. The magnitude of the 
force is determined by some form of limit (see e.g. Croasdale, 1980, Daley, Tuhkuri and Riska 
1998). In some cases the ice strength is the determining factor, while in others the force may 
be limited by available kinetic energy. In such cases the available kinetic energy is expended 
in crushing (irrecoverable) and potential (recoverable) energy. Energy methods provide a 
simple method of determining forces, and have long been used to do so (see Popov et. al. 
1967).   This paper will summarize the general energy approach, derive some old and new 
cases and provide examples.  
 
2. GENERAL APPROACH 
 
The problem under discussion is one of impact between two objects. It is assumed that one 
body is initially moving (the impacting body) and the other is at rest (the impacted body). This 
concept applies to a ship striking an ice edge, or ice striking an offshore structure. The energy 
approach is based on equating the available kinetic energy with the energy expended in 
crushing and potential energy:  
 

 PEIEKEe +=  (1) 
 
The available kinetic energy is the difference between the initial kinetic energy of the 
impacting body and the total kinetic energy of both bodies at the point of maximum force. If 

Expanded version (full derivations) of paper for POAC 99, Proc. of the 15th International Conference 
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the impacted body has finite mass it will gain kinetic energy. Only in the case of a direct 
(normal) collision involving one infinite (or very large) mass will the effective kinetic energy 
be the same as the total kinetic energy. In such a case all motion will cease at the time of 
maximum force. The indentation energy is the integral of the indentation force Fn on the 
crushing indentation displacement ζc ; 
 

 
cn dFIE

m

ζ
ζ

⋅= ∫
0  (2) 

 
The potential energy is the energy that has been expended in recoverable processes, which can 
be either rigid body motions (pitch/heave) or elastic deformation (of either body). The 
potential energy is the integral of the indentation force Fn on the recoverable displacement ζe : 
 

 en dFPE ζ
ζ

⋅= ∫
0

 (3) 

 
These equations are the basis of all solutions. Equation (1) can be solved for Fn provided that 
the required kinematic and geometric values are known. The general approach to determining 
IE and PE will be described next, with specific geometric examples further on.  After that the 
determination of collision forces will be discussed.  
 
 
3. ICE INDENTATION 
 
In order to pose and solve the general energy equations it is necessary to formulate an 
equation relating force to indentation. By using the pressure-area relationship to describe the 
ice pressures, it is easy to derive a force-indentation relationship. This assumption means that 
ice force will depend only on indentation. In this case the maximum force occurs at the time 
of maximum penetration. The collision geometry is the ice/structure overlap geometry. The 
average pressure Pav in the nominal contact area A is related to the nominal contact area as; 
 
 ex

av APP ⋅= 0  (4) 
 
where Po is the pressure at 1m2, and ex is a constant. 
 
The ice force is also related to the nominal contact area; 
 
 ex

avi APAPF +⋅=⋅= 1
0  (5) 

 
 The available kinetic energy may be the total kinetic energy, in the case of a head-on 
collision, in which all motion ceases at the point of maximum force. Alternatively the 
available energy may be the ‘normal’ or ‘effective’ kinetic energy, as in the case of a glancing 
collision.  
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4. INDENTATION ENERGY  
 
For each geometric case, there is a relationship between the normal indentation ζn  and normal 
contact area; 
 
 ( )nAn fA ζ=  (6) 
 
where fA   is a function that depends on the contact geometry.  This results in a function 
relating force to indentation; 
 
 ( )nFn fF ζ=  (7) 
 
where fF = Po ( fA(ζn) )1+ex . The next step is to determine the indentation energy IE, which is 
found by integrating the force;  
 
   ( )nIEnn fdFIE ζζ == ∫  (8) 
 
where fIE   is a function giving the indentation energy. 
 
5. POTENTIAL ENERGY  
 
For each geometric/kinematic case, there may be a relationship between the normal force Fn  
and potential energy. In the case of ramming the vertical component of the indentation force 
results in potential energy in pitch/heave. This can be expressed in terms of indentation as; 
 
   ( )nPEfPE ζ=  (9) 
 
where fPE   is a function giving the indentation energy. 
 
6. INDENTATION GEOMETRY CASES 
 
The relationship between indentation and nominal crushing area depend on the collision 
geometry. The following cases of interest apply to both ship-ice and ice-structure collision 
problems. 
 
6.1 Case 1 : Symmetric V Wedge 
 
Figure 1 shows a symmetric wedge-shaped indentation in a square edge.  The indentation 
energy is derived as follows. The projected areas, vertical, horizontal and normal are; 
 

 
)(cos

)tan(
2

2

γ
αζ nvA =  (10) 

 
)tan()(cos

)tan(
2

2

γγ
αζ nhA =  (11) 
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)sin()(cos

)tan(
2

2

γγ
αζ nnA =  (12) 

The normal force is related to the normal area by the pressure/area relation. The average 
pressure is:  
 

 ex
no App =  (13) 

 
Force is: 
 
 nn ApF =  (14) 
 
and hence force can be stated as: 
 
 ex

non ApF += 1  (15) 
 
Substituting (12) into (15) we arrive at: 
 

 ex
n

ex

on pF 22
1

2 )sin()(cos
)tan( +

+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ζ

γγ
α  (16) 

 
The indentation energy is found by substituting (16) into (8), to give:  
 

 ex
n

ex
o

ex
p

IE 23
1

2 )sin()(cos
)tan(

23
+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+

= ζ
γγ

α  (17) 

 
 

 
Figure 1. Symmetric V Wedge Indentation 
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6.2 Case 2 : Symmetric Spoon 
 
Figure 2 shows a symmetric spoon-shaped indentation in a square edge.  The indentation 
energy is derived as follows. The projected areas, vertical, horizontal and normal are; 
 

 
)1(

2
)cos(

1

+
⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+

bex
cA

bex
n

v γ
ζ

 (18) 

 
)tan()1(

2
)cos(

1

γγ
ζ

+
⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+

bex
cA

bex
n

h  (19) 

 
)sin()1(

2
)cos(

1

γγ
ζ

+
⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+

bex
cA

bex
n

n  (20) 

 
where  c=Beam/(2 LBbex) 
 Beam is the beam of the vessel 
 LB is the bow length  

(note that the equation for the bow waterline is y=c xbex ) 
.  
Equations (13) to (15) are used again. Substituting (20) into (15) we arrive at: 
 

 )1)(1(

11

)sin()1(
2

)cos(
1 exbex

n

exbex

on bex
cpF ++

++

⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ζ

γγ
 (21) 

 
The indentation energy is found by substituting (21) into (8), to give:  
 

 1)1)(1(

11

)sin()1()cos(
12

1)1)(1(
+++

++

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

= exbex
n

exbex
o

bex
c

exbex
p

IE ζ
γγ

 (22) 

 
 

 
Figure 2. Symmetric Spoon Indentation 
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6.3 Case 3 : Right-Angle Edge 
 
Figure 3 shows a right-angle wedge indentation.  The indentation energy is derived as follows. 
The projected areas, vertical, horizontal and normal are; 

 
`)(cos)cos()sin( 2

2

βαα
ζ n

vA =  (23) 

 
`)cos(`)sin()cos()sin(

2

ββαα
ζ n

hA =  (24) 

 
`)(cos`)sin()cos()sin( 2

2

ββαα
ζ n

nA =  (25) 

 
Equations (13) to (15) are used again. Substituting (25) into (15) we arrive at: 
 

 ex
n

ex

on pF 22
1

2 `)(cos`)sin()cos()sin(
1 +

+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ζ

ββαα
 (26) 

 
The indentation energy is found by substituting (26) into (8), to give:  
 

 ex
n

ex
o

ex
p

IE 23
1

2 `)(cos`)sin()cos()sin(
1

)23(
+

+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ζ
ββαα

 (27) 

 
 
 

 
Figure 3. Right-apex Oblique Indentation 
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6.4 Case 4 : General Wedge (Normal to hull)  
 
Figure 4 shows a general wedge-shaped edge indentation (normal to hull).  The indentation 
energy is derived as follows. The projected areas, vertical, horizontal and normal are; 
 

 
`)(cos

)2/tan(
2

2

β
φζ ⋅

= n
vA  (28) 

 
`)cos(`)sin(
)2/tan(2

ββ
φζ ⋅

= n
hA  (29) 

 
`)(cos`)sin(

)2/tan(
2

2

ββ
φζ ⋅

= n
nA  (30) 

 
Equations (13) to (15) are used again. Substituting (30) into (15) we arrive at: 
 

 ex
n

ex

on pF 22
1

2 `)(cos`)sin(
)2/tan( +

+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ζ

ββ
φ  (31) 

 
The indentation energy is found by substituting (31) into (8), to give:  
 

 ex
n

ex
o

ex
p

IE 23
1

2 `)(cos`)sin(
)2/tan(

)23(
+

+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ζ
ββ

φ  (32) 

 

 
Figure 4. General Wedge-shaped Edge (normal to hull). 

 
   
6.5 Case 5 : General Round Edge  
 
Figure 5 shows a general round indentation.  The indentation energy is derived as follows. The 
projected areas, vertical, horizontal and normal are; 
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 RA nv 2
`)(cos3

4 5.1
5.1 ζ

β⋅
=  (33) 

 RA nh 2
`)tan(`)(cos3

4 5.1
5.1 ζ

ββ⋅
=  (34) 

 RA nn 2
`)sin(`)(cos3

4 5.1
5.1 ζ

ββ⋅
=  (35) 

 
Equations (13) to (15) are used again. Substituting (35) into (15) we arrive at: 
 

 ex
n

ex

on RpF 5.15.1
1

5.1 2
`)sin(`)(cos3

4 +

+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

= ζ
ββ

 (36) 

 
The indentation energy is found by substituting (36) into (8), to give:  
 

 ex
n

ex
o R

ex
p

IE 5.15.2
1

5.1 2
`)sin(`)(cos3

4
)5.15.2(

+

+

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅+
= ζ

ββ
 (37) 

 
 
 

 
Figure 5. General Round Edge . 

 
 
6.6 Case 6 : Round Vertical Cylinder  
 
Figure 6 shows a general round indentation.  The indentation energy is derived as follows. The 
projected normal area is; 
 
 nn RHA ζ22=  (38) 
 
Equations (13) to (15) are used again. Substituting (38) into (15) we arrive at: 
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 ( ) ex
n

ex

on RHpF 5.5.1
22 ++

⋅= ζ  (39) 
 
The indentation energy is found by substituting (39) into (8), to give:  
 

 ( ) ex
n

exo RH
ex

p
IE 5.5.11

22
)5.5.1(

++
⋅

+
= ζ  (40) 

 
 
 

 
Figure 6. Round Vertical Cylinder 

 
 
6.7 Case 7 : Rectangular Vertical Cylinder  
 
Figure 7 shows a general rectangular indentation.  The indentation energy is derived as 
follows. The projected normal area is; 
 
 HWAn =  (41) 
 
Equations (13) to (15) are used again. Substituting (41) into (15) we arrive at: 
 
 ( ) ex

on HWpF += 1  (42) 
 
The indentation energy is found by substituting (42) into (8), to give:  
 
 ( ) n

ex
o HWpIE ζ⋅= +1  (43) 
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Figure 7. Rectangular Vertical Cylinder 

 
6.8 Case 8 : Spherical Contact  
 
Figure 8 shows a spherical indentation.  The indentation energy is derived as follows. The 
projected normal area is; 
 
 nn RA ζπ ⋅⋅⋅= 2  (44) 
 
Equations (13) to (15) are used again. Substituting (44) into (15) we arrive at: 
 
 ( ) ex

n
ex

on RpF ++ ⋅⋅⋅= 112 ζπ  (45) 
 
The indentation energy is found by substituting (45) into (8), to give:  
 

 ( ) ex
n

exo R
ex

p
IE ++ ⋅⋅⋅

+
= 212

)2(
ζπ  (46) 

 
 

 
Figure 8. Spherical Contact 
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7. SUMMARY OF CASES 
 
In each case the force and indentation energy can be stated as;  
 
 1−⋅⋅= fx

non fapF ζ  (47) 

 fx
n

o fa
fx
p

IE ζ⋅=  (48) 

 
where fx is a function of ex, and fa is a function of the geometric parameters. Table 1 
summarizes the fx and fa functions for each of the cases.   
 
Table 1 Indentation functions  
Geometric Case fx fa 
Case 1 :  
Symmetric V 
Wedge 

)23( exfx ⋅+=  ex

fa
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2 )sin()(cos
)tan(

γγ
α  

Case 2 :  
Symmetric Spoon 

)1)1)(1(( +++= exbexfx  
 

exbex

bex
cfa

++

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

11

)sin()1()cos(
12

γγ
 

Case 3 :  
Right-Angle Edge 

)23( exfx ⋅+=  ex

fa
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2 `)(cos`)sin()cos()sin(
1

ββαα
 

Case 4 :  
General Wedge  
(Normal to hull)  

)23( exfx ⋅+=  ex

fa
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2 `)(cos`)sin(
)2/tan(
ββ

φ  

Case 5 :  
General Round 
Edge  

)5.15.2( exfx ⋅+=  ex

Rfa
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

=
1

5.1 2
`)sin(`)(cos3

4
ββ

 

Case 6 :  
Round  
Vertical Cylinder  

)5.05.1( exfx ⋅+=  ( ) ex
RHfa

+
=

1
22  

Case 7 :  
Rectangular  
Vertical Cylinder  

1=fx  ( ) exHWfa += 1  

Case 8 :  
Spherical Contact  

)2( exfx +=  ( ) exRfa +⋅⋅= 12 π  

 
 
 
8. COLLISION TYPES 
 
There are two types of collisions that can (presently) be solved by energy methods. The first is 
a ‘normal’ type of impact. For general ship collisions this is referred to as a ‘Popov’ (see 
Popov et. al. 1967) type of impact. The second is a beaching impact. Both will be described 



  

 12 

and applied to various cases. Figure 9 shows a sketch of the two conditions, as they may exist 
in a head-on ram. Either force may be larger, depending on the circumstances. 
 
In the normal impact case the collision is idealized as a one-dimensional (normal) impact. The 
normal kinetic energy is equated to the indentation energy. Potential energy (for example, due 
to beaching) is ignored. Typically friction from sliding is also ignored. This type of analysis 
can be used with any of the geometric cases described above, and for ship-ice and ice-
structure collisions. The analysis is valid within the range of the assumptions. 
 
The beaching impact is a two-dimensional analysis. The total kinetic energy is equated to the 
sum of indentation and potential energy. Again, friction is typically ignored. This type of 
analysis can be used with geometric cases 1 and 2 described above, for ship-ice collisions. 
And again, the analysis is valid within the range of the assumptions. 
 
 
 

 
Figure 9. Collision conditions, initial impact and beached condition 
 
 
 
9. INITIAL IMPACT COLLISIONS 
 
A wide variety of collision scenarios can be analyzed as ‘normal’ collisions. The general 
approach is presented followed by the force values that occur for the set of cases in Table 1. 
Start by equating the normal kinetic energy with the ice crushing energy. 
 
 IEKEe =  (49) 
 
where  

 2

2
VnMeKEe ⋅=  (50) 

 
which ,using equation (48) can be stated as; 
 

 fx
n

o
e fa

fx
p

KE ζ⋅=  (51) 
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Solving for the normal indentation:  
 

 
fx

o

e
n fap

fxKE
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

=ζ  (52) 

 
The normal force can be found by substituting eqn. (52) into (47) to give  
 

 
fx

fx

o

e
on fap

fxKE
fapF

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

⋅⋅=  (53) 

 
The values from Table 1 can be substituted into eqn. (53), together with (50) to get impact 
force equations for each case. Table 2 shows the equations. The effective kinetic energy 
depends on the nature of the collision. For simple direct collisions the effective kinetic energy 
(eqn.  (50)) is the total kinetic energy. For ship-ice collisions (see Figure 10) , the effective 
mass and velocity properties at the point of impact are determined as follows (see Appendix 
for the lx and Co terms) ; 
 
 lxVV shipn ⋅=  (54) 
 
where Vn is the normal velocity at the point of impact 
 Vship is the x-direction velocity (all others are zero) 
 lx is the x-direction cosine  
 

 
Co

M
M ship

e =  (55) 

 
where Me  is effective mass at the point of impact 
 Mship is the ship’s mass (displacement) 
 Co  is the mass reduction factor 
 
 
 

          
Figure 10.  Head-on (Symmetrical) and Shoulder (Oblique) Impacts.  
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Table 2 Force equations – valid for initial impact (normal impact) conditions  
Case 1: 

F n p o
tan α( )

cos γ( )2 sin γ( ).

1 ex( )
.

1
3 2 ex.( )

1
2

Me. Vn2. 3 2 ex.( ).

2 2 ex.( )
3 2 ex.( )

.

 
 
Case 2: 

F n p o 2. 1
cos γ( )

bex 1( )
. c

bex 1( ) sin γ( ).( )
.

1 ex( )

.

1
bex 1( ) 1 ex( ). 1

1
2

Me. Vn2. bex 1( ) 1 ex( ). 1( ).

bex 1( )
1 ex( )

bex 1( ) 1 ex( ). 1( )
.

.

 
Case 3: 

F n p o
1

sin α( ) cos α( ). sin β '( ). cos β '( )2.

1 ex( )
.

1
3 2 ex.

1
2

Me. Vn2. 3 2 ex.( ).

2 2 ex.( )
3 2 ex.( )

.

 
Case 4: 

F n p o

tan 1
2

φ.

sin β '( ) cos β '( )2.

1 ex( )

.

1
3 2 ex.

1
2

Me. Vn2. 3 2 ex.( ).

2 2 ex.( )
3 2 ex.( )

.

 
Case 5: 

F n p o
4

3 cos β '( )1.5 sin β '( )..
2. R.

1 ex( )
.

1
2.5 1.5 ex.

1
2

Me. Vn2. 2.5 1.5 ex.( ).

1.5 1.5 ex.( )
2.5 1.5 ex.( )

.

 
 Case 6: 

F n p o 2 H. 2. R.
1 ex( )

.

1
1.5 .5 ex.

1
2

Me. Vn2. 1.5 .5 ex.( ).

.5 .5 ex.( )
1.5 .5 ex.( )

.
 

Case 7:  
F n p o H W.( ) 1 ex( ).p op o  
Case 8: 

F n p o 2 π. R.( ) 1 ex( ).

1
2 ex 1

2
Me. Vn2. 2 ex( ).

1 ex( )
2 ex( )

.
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10. BEACHING IMPACT COLLISIONS 
 
Head-on collisions between a ship and ice can result in the ship sliding up and beaching on the 
ice. The general approach to these collisions is presented followed by the force values that 
occur for the set of cases 1 and 2  in Table 1. To start we assume that initial kinetic energy is 
equal to the sum of ice indentation (crushing) energy and pitch/heave potential; 
 
 PEIEKE +=  (56) 
 
The kinetic energy is; 
 
 KE  =  1/2 M V2 (57) 
 
The potential energy, assuming linearity in heave and pitch is; 
 
 PE = 1/2 Fv

2/Kb (58) 
 
where Kb is the effective vertical stiffness at the bow; 
 
 Kb = ρ g Awp /(1+(L/2/λ)2) (59) 
 
where  
λ is the radius of gyration of the waterplane (i.e. Iwp = λ2 Awp).  
 
Letting Kh = ρ g Awp,  and assuming that, for most ships; 
 
  Kb = Kh /5 (60) 
 
This gives; 
 

 
h

v

K
F

PE
2

2
5 =  (61) 

 
The vertical force and normal force are related as:  
 
 Fv = Fn  n (62) 
 
so that:  

 
h

n

K
nF

PE
22

2
5 

⋅
=  (63) 

 
The force equation (42) can be re-written as: 
 
 1−⋅= fx

nicen KF ζ  (64) 
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where 
 
 fapK oice ⋅=  (65) 
 
This allows the indentation energy equation to be written as: 
 

 fx
n

ice

fx
K

IE ζ=  (66) 

 
which with (64) can be rearranged to give: 
 

 
( ) 11

1

−−
−

= fx
fx

n

fxice F
fx

K
IE  (67) 

 
The general beaching impact equation with (66) and (63) substituted into (56) is: 
 

 
( ) 11

1
22

2

2
5  

2
1 −−

−

+
⋅

=⋅ fx
fx

n

fxice

h

n F
fx

K
K

nFVM  (68) 

 
This equation can be solved for Fn . For certain special cases there is an analytical solution. 
For the general cases, a numerical solution is required. For the simple linear case (for example 
Case 1, ex= -.5)  (68) reduces to:  
 

 
ice

n

h

n

K
F

K
nF

VM
⋅

+
⋅

=⋅
22

5
2
1 222

2  (69) 

 
The force Fn can be solved for : 
 

 VKM
n

F hn ⋅⋅⋅
+⋅

=

κ
15

1
2

 (70) 

 

where:     
k

ice

K
K

=κ  

               
5.0

2 )sin()(cos
)tan(

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅=

γγ
α

oice pK  

                Kh = ρ g Awp 
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It is obvious that the beaching force, for the linear case, is proportional to velocity and the 
square root of mass. It is also weakly dependant on the ice strength parameter po.  Note that 
this is just the solution for the beaching condition. The equivalent case for the initial impact 
(with linear assumptions) is:  
 

 lV
Co
MKF icen ⋅⋅⋅=  (71) 

 
Comparison of (70) and (71) indicates that the beaching force is less dependent on hull form 
than is the impact force.   
 
11. DESIGN EQUATIONS 
 
For longitudinal strength assessment equation (68) may be used as a simple check. It does not 
include the effects of initial impact or any dynamics. Nevertheless, for cases which are 
primarily beaching (i.e. large ships) the equation is valid. It is not analytically solvable for 
most values of  fx. A design equation could be formed by using equations for both impact and 
beaching, covering a range of possible conditions. An equation of the form: 
 

 VKMnCF h
ba

v ⋅⋅⋅⋅⋅= κ1  (72) 
 
could be determined. Such an equation was first proposed by Riska (1994) (see also Daley and 
Riska 1994).  The constants C1, a, b would be determined by fitting the calculated results.  
 
For oblique collisions equations from Table 2 may be used. A design equation based on Case 
4 has been suggested for Polar Rule Harmonization work (see Kendrick and Daley 1998, 
Daley 1999). The design equation for force has the form: 
 
 28.164.36. VMpfaF on ⋅⋅⋅=  (73) 
 
where: 
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xfa  (74) 

 
 
12. CONCLUSION 
 
A variety of ice force equations have been presented. All are based on energy methods. These 
results should be viewed as  useful approximate values of force. More accurate results may be 
obtained by solving the interaction equations directly, as a time series for instance. 
Nevertheless, these energy solutions give insight into the process, particularly for cases in 
which the energy balance governs the outcome.  



  

 18 

 
The next important step required is the general solution of the oblique collision, with sliding 
motions taken into account. While the impact idealization is essentially one-dimensional, and 
the beaching collision is two-dimensional, the sliding-oblique collision is three-dimensional.      
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APPENDIX:  Description of the Mass Reduction Coefficient Co 
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Figure A1 Collision point geometry 
 
 
A collision taking place at point 'P' (see Figure A1), will result in a normal force Fn. Point P 
will accelerate, and a component of the acceleration will be along the normal vector, with a 
magnitude an. The collision can be modeled as if point P were a single mass (a 1 degree of 
freedom system) with an equivalent mass Me of; 
 
Me = Fn/an  
  
The equivalent mass is a function of the inertial properties (mass, radii of gyration, hull angles 
and moment arms) of the ship. The equivalent mass is linearly proportional to the mass 
(displacement) of the vessel, and can be expressed as; 
 
Me = M/Co 
 
where Co is the mass reduction coefficient. This approach was first developed by Popov 
(1972). 
 
The inertial properties of the vessel are as follows;  
 
Hull angles at point P: 
 
α : waterline angle 
β : frame angle 
β' : normal frame angle 
γ : sheer angle 
 
The various angles are related as follows: 
 
tan(β) = tan(α) tan(γ) 
tan(β') = tan(β) cos(α) 
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Based on these angles, the direction cosines, l,m,n are 
 
l = sin(α) cos(β') 
m = cos(α) cos(β') 
n =  sin(β') 
 
NOTE: for a symmetrical collision on the stem the direction cosines are 
l = cos(γ) 
m = 0 
n =  sin(γ) 
 
 
and the moment arms are; 
λ1 = ny-mz     (roll moment arm) 
µ1 = lz-nx     (pitch moment arm) 
η1 = mx-ly     (yaw moment arm) 
 
The added mass terms are as follows (from Popov); 
 
AMx = added mass factor in surge = 0 
AMy = added mass factor in sway = 2 T/B 
AMz = added mass factor in heave = 2/3 (B Cwp2)/(T(Cb(1+Cwp)) 
AMrol = added mass factor in roll = 0.25 
AMpit = added mass factor in pitch = B/((T(3-2Cwp)(3-Cwp)) 
AMyaw = added mass factor in yaw = 0.3 + 0.05 L/B 
 
The mass radii of gyration (squared) are; 
 
rx2 = Cwp B2/(11.4 Cm) + H2/12     (roll) 
ry2 = 0.07 Cwp L2   (pitch)  
rz2 = L2/16    (yaw) 
 
With the above quantities defined, the mass reduction coefficient is; 
 
Co = l2/(1+AMx) + m2/(1+AMy) + n2/(1+AMz)  
+ λ12/(rx2(1+AMrol) + µ12/(ry2 (1+AMpit)) + η12/(rz2 (1+AMyaw))  
 


