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This synopsis outlines with minimal explanations what you are meant
to learn in this course. It serves as a guide to orienting your studies and it
is not meant to be self-contained. Additional and more detailed material
can be found on the course web page organized by the week. The lectures
are centered on applications of the material.

In this synopsis, I denote real valued variables by x, y, z, .... In this
course, we deal mostly with real vectors denoted by boldface variables
x,y, z, .... A real vector x with n components is then written as x =
(x1, ..., xn) ∈ Rn. Vectors are interpreted as column vectors. The transpose
of vector x is denoted by x> and x · y is shorthand for the inner product
x>y :=

∑n
i=1 xiyi. The norm (or length) of a vector in Rn is denoted by

‖x‖ :=
√∑n

i=1 x
2
i .

1 Linear models

For x ∈ R, and parameters a, b ∈ R a linear equation is written as:

ax = b.

If a = 0 and b 6= 0, the equation has no solution. If a 6= 0, it has a single
solution given by:

x = a−1b.

The equation has infinitely many solutions if a = b = 0.
For x ∈ Rn, andA an m× n matrix, b ∈ Rm, we have the linear system

of equations:
Ax = b.
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Gaussian elimination is the main methods for determining whether the
system has solutions. Gaussian elimination transforms A into its row ech-
elon form via elementary row operations. The rank of a matrix is the number
of non-zero rows in its row echelon form. When performed on the aug-

mented matrix
(
A

...b
)

where b is added to the matrix as the last column.

When the elementary row operations transforming A to the identity ma-
trix are performed on the augmented matrix, the solution x to the system
of equations can be read in the last column of the transformed augmented
matrix.

The linear equation system:

Ax = b, (1)

has a solution if and only if A and
(
A

...b
)

have the same rank. If the rank

is n, the solution is unique, if the rank is less than n, then the system has
infinitely many solutions.

The most important case is when n = m. Then solution exists and is
unique for all b if and only if A has rank n. In this case, A has an inverse
matrixA−1 and:

x = A−1b.

The inverse matrix can be computed via Gaussian elimination on the aug-

mented matrix
(
A

...I
)

, where I is the n× n identity matrix.

The determinant of a square matrix is a numerical function that depends
on the coefficients aij of the matrix. The most important observation is that
the determinant is non-zero if and only if the matrix has full rank. Cramer’s
rule gives an alternative way for computing the solution to linear systems
such as (??) using determinants:

xi =
det(Bi)

det(A)
,

whereBi is the matrix obtained by replacing the ith column ofA by b.
A collection of vectors {a1,a2, ...,an ∈ Rm} are called linearly indepen-

dent if: ∑
i

λni=1ai = 0 ⇒ λi = 0∀i ∈ {1, ..., n}.
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Similarly for row vectors.
Consider the n×nmatrixA that has {a1,a2, ...,an ∈ Rn} as its columns.

The column rank of A is defined to be the maximal number of linearly
independent columns. Similarly we may consider a matrix A that has
{a>1 ,a>2 , ...,a>n ∈ Rn} as its rows. The row rank of a matrix is the maximal
number of linearly independent rows that it has. The row rank and the
column rank of any matrix are the same and therefore we can speak of the
rank of a matrix without ambiguity.

2 The derivative

Consider a real valued function f : Rn → R of n real variables and an
arbitrary point x̂ ∈ Rn. Fix all the other coordinates xj = x̂j for j 6= i, but
let xi vary. Then we have the function

f̂(x̂1, ...x̂i−1, xi, x̂i+1, ..., xn)

of the single real variable xi. The derivative of this function at xi = x̂i is
called the partial derivative of f with respect to xi at x̂ and denoted by

∂f(x̂)

∂xi
.

The derivative of f at x̂ is a linear function that approximates f well for
x close to x̂. If the partial derivatives with respect to all xi exist and are
continuous in x at x̂, then a derivative at x̂ also exists and is given by the
row vector:

Dxf(x̂) = (
∂f(x̂)

∂x1
, ...

∂f(x̂)

∂xn
).

We have:

f(x)− f(x̂) = Dxf(x̂)(x− x̂) + h.o.t.,

where h.o.t. means terms that vanish in comparison to Dxf(x̂)(x − x̂) as
x is close to x̂.

For small ∆x, we can compute the approximation:

f(x̂+ ∆x)− f(x̂) ≈ Dxf(x̂)∆x.
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We call this the directional derivative of f in direction ∆x at x̂.
The gradient ∇f(x̂) is the transpose of the derivative (i.e. the column

vector of partial derivatives at x̂.
A function f : Rn → Rm is a vector of functions fi : Rn → R:

f(x) =

 f1(x)
...

fm(x)

 .

If all the partial derivatives of all component functions exist and are
continuous at x̂, then the derivative of such a function at x̂ is the m × n
matrix:

Dxf(x) =


∂f1(x̂)
∂x1

. . . ∂f1(x̂)
∂xn

... . . . ...
∂fm(x̂)
∂x1

. . . ∂fm(x̂)
∂xn

 .

Since partial derivatives can be viewed as standard derivatives in a
fixed direction, the rules for computing derivatives remain valid for multi-
variate functions. In particular, we have the chain rule for h(x) := f(g(x)),
where f : Rk → Rm and g : Rn → Rk Let ŷ = (ŷ1, ..., ŷk) = (g1(x̂), ..., g1(x̂)):

Dxh(x)) = Dyf(ŷ)Dxg(x̂).

Writing this matrix multiplication explicitly gives the ijth element of
Dxh(x) as:

∂hi(x̂

∂xj
=

k∑
i=1

∂fi(ŷ)

∂yk

∂gk(x̂)

∂xj
.

2.1 Implicit function theorem

Consider functions f : Rn+m → Rn. Let y ∈ Rn denote endogenous vari-
ables in an economic model and x ∈ Rm the exogenous variables and write
the model as:

f(y,x) = 0.
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Assume that (ŷ, x̂) satisfies the model, i.e. f(ŷ, x̂) = 0. We want to
know how the endogenous variables y behave when x changes a bit from
x̂.

Assume that the derivative of f exists at (ŷ, x̂) and that the derivative
with respect to endogenous variables,

Dyf(ŷ, x̂) =


∂f1(ŷ,x̂)
∂y1

. . . ∂f1(ŷ,x̂)
∂yn

... . . . ...
∂fn(ŷ,x̂)
∂y1

. . . ∂fn(ŷ,x̂)
∂yn


has full rank (i.e. non-zero determinant). Then the implicit function the-
orem tells us that we have a differentiable implicit function y(x) with
y(x̂) = ŷ defined in a neighborhood of x̂ such that for all x in that neigh-
borhood,

f(y(x),x) = 0.

Chain rule gives:

Dyf(ŷ, x̂)Dxy(x) +Dxf(ŷ, x̂) = 0.

Since we have assumed thatDyf(ŷ, x̂) has full rank, it is invertible and:

Dxy(x̂) = −(Dyf(ŷ, x̂))−1Dxf(ŷ, x̂).

The effect on yi of a change in a particular xk can be computed with
Cramer’s rule.

Illustration: indifference curves for a utility function u(x, y)
On an indifference curve, the utility is at a constant level:u(x, y) = u.

How to draw an indifference curve through point (x̂, ŷ)? The level of util-
ity at that point is u(x̂, ŷ). On the indifference curve through that point,
the level of utility is the same:

u(x, y) = u(x̂, ŷ).

If ∂u(x̂,ŷ)
∂y

6= 0, then implicit function theorem tells us that for x near x̂,
we have a function y(x) with y(x̂) = ŷ and

y′(x̂) = −
∂u(x̂,ŷ)
∂x

∂u(x̂,ŷ)
∂y

.
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3 Unconstrained optimization

Consider a function f : Rn → R. A point x̂ is a maximum of f if f(x̂) ≥
f(x) for all x. It is a minimum if f(x̂) ≤ f(x) for all x.

The point x̂ is called a local maximum (local minimum) if f(x̂) ≥ (≤)f(x)
for all x in some neighborhood of x̂.

A necessary condition for local (and therefore also global) minimum
and maximum is that all the partial derivatives of f vanish at x̂ or∇f(x̂) =
0. Necessary condition means that all minima and maxima have this prop-
erty.

Points satisfying the necessary condition are called critical points of
f . In order to classify the critical points, we need to look at the Hessian
matrix of second derivatives of f at x̂.

Second order Taylor approximation gives:

f(x)− f(x̂) = Dxf(x̂)(x− x̂) +
1

2
(x− x̂) ·Hxf(x̂)(x− x̂) + h.o.t.,

where

Hxf(x̂) =


∂2f(x̂)

∂x21
. . . ∂2f(x̂)

∂x1∂xn
... . . . ...

∂2f(x̂)
∂xn∂x1

. . . ∂2f(x̂)
∂x2n

 ,

and the h.o.t. vanish in comparison to the first and second order terms for
x close to x̂.

At a critical point, Dxf(x̂) = 0 so that the first term on the right-hand
side vanishes. By Young’s theorem, the Hessian matrix is a symmetric
matrix and hence defines a quadratic form.

A necessary condition for a local maximum (minimum) at a critical
point x̂ is that for all x,

(x− x̂) ·Hxf(x̂)(x− x̂) ≤ (≥)0.

A sufficient condition for local maximum or at x̂ is that the inequality
above is strict for all x.

A symmetric matrix is said to be positive (negative) definite if x ·Ax >
(<)0 for all x. It is positive (negative) semi-definite if the x · Ax ≥ (≤)0
for all x.
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If x ·Ax is strictly positive for some x and strictly negative for some x,
A is said to be indefinite. The criteria for checking definiteness are given
in the textbook and in the lecture notes and slides.

Notice that for functions of a single real variable, the Hessian is just the
second derivative of the function.

3.1 Convex and concave functions

A set X ∈ Rn is convex if the line connecting any two points x,y in the set
also belongs to X . A function f on a convex set is said to be concave if its
graph on any line connecting x,y ∈ X lies above the line joining f(x) and
f(y), i.e. for all x,y ∈ X and all λ ∈ [0, 1],

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y).

A function is convex if for all x,y ∈ X and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Examples and criteria for convex sets and concave and convex func-
tions are given in the lecture notes.

Every critical point of a concave (convex) function f is a global maxi-
mum (minimum) of f .

A twice differentiable function f is concave (convex) if and only if the
Hessian at x is negative (positive) semi-definite for all x.

If g(x,a) are affine (linear plus a constant) functions of a, then f(a) =
maxx g(x,a) is a convex function of a. Similarly, the minimum of affine
functions is concave.

A function f on a convex set X is quasiconcave if for all x,y ∈ X and all
λ ∈ [0, 1],

f(λx+ (1− λ)y) ≥ min{f(x), f(y)}.

It is quasiconvex if

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.
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An alternative characterization is that function f is quasiconcave (qua-
siconvex) if and only if its upper (lower) contour sets {x : f(x) ≥ (≤)f(x̂)}
are convex for all x̂ ∈ X .

Any critical point of a quasiconcave (quasiconvex) function with non-
vanishing derivative is a global maximum (minimum).

4 Optimization with equality constraints

Consider the maximization problem:

max f(x1, ..., xn)

subject to
g1(x1, ..., xn) = 0,

...
gk(x1, ..., xn) = 0.

If f is continuous and the feasible set is compact, then Weierstrass’ the-
orem guarantees that a maximum exists.

Constraint qualification at x requires that the matrix of the derivatives
of the constraints Dxg(x) has full rank at x. For a single constraint, this
just requires a non-zero gradient.

With a single constraint, consider the following intuition. The feasible
set cannot intersect the level curve of the objective function at optimum. If
there was such an intersection, part of the feasible set would give a strictly
higher value to the objective function than the intersection point. There-
fore an intersection point cannot be optimum and we get the tangency of
the level curve and the feasible set. Since the feasible set is the level curve
of the constraint function, the gradients of the objective function and the
constraint must be collinear.

A necessary condition for a maximum at a point x̂ where constraint
qualification holds is that x̂, µ̂ be a critical point of the following Lagrangean
function

L(x,µ) = f(x)−
k∑
j=1

µjgj(x).

In other words, we must look for (x̂, µ̂) such that
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∂f(x̂)

∂xi
−

k∑
j=1

µ̂j
∂gj(x̂)

∂xi
= 0 for all i ∈ {1, ..., n},

gj(x̂1, ..., x̂n) = 0 for all j ∈ {1, ..., k}.

For a linear constraint, the feasible set is convex and therefore by the
results in the previous section, critical points are global maxima if the ob-
jective function is concave (or quasiconcave with a non-zero gradient).

Otherwise, one must check whether the critical points are maxima or
minima using the bordered Hessian at the critical point as explained in the
textbook.

5 Optimization with inequality constraints

The problem is now to

max f(x1, ..., xn)

subject to
g1(x1, ..., xn) ≤ 0,

...
gk(x1, ..., xn) ≤ 0.

The difficulty is now that we do not know which of the constraints are
binding. The necessary conditions can be formulated using a Lagrangean
function, but now we need also complementary slackness conditions for
the constraints. If the constraint binds, its multiplier is positive, if it does
not bind, the multiplier is zero.

The Lagrangean of the problem is:

L(x,λ) = f(x)−
k∑
j=1

λjgj(x).

The necessary first-order Kuhn-Tucker conditions for the problem at a
point where the constraint qualification holds (i.e. the derivatives of the
binding constraints are linearly independent) are given by:
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∂f(x)

∂xi
−

k∑
j=1

λj
∂gj(x)

∂xi
= 0 for all i ∈ {1, ..., n},

λjgj(x) = 0 for all j ∈ {1, ..., k},

gj(x) ≤ 0 for all j ∈ {1, ..., k},

λj ≥ 0 for all j ∈ {1, ..., k}.

If the objective function is quasiconcave and has a nonzero gradient
and if the feasible set is convex, then any point satisfying the K-T condi-
tions is a global maximum.

Of course, it is a nightmare to solve a system such as this one in general.
Therefore it is advisable to look carefully at the problem and argue which
of the constraints cannot bind at optimum (this can often be done for non-
negativity constraints) and argue which constraints are binding (typically
budget constraints). The art of solving optimization problems is often the
art of simplifying the constraints.

5.1 Utility maximization: an example

Consider the problem of maximizing

u(x, y) = (axx
ρ + ayy

ρ)
1
ρ ,

subject to
pxx+ pyy ≤ w, x, y ≥ 0,

where ρ < 1, ρ 6= 0 and ax, ay > 0.
The constraint set is compact and the utility function is convex so there-

fore an optimum exists by Weierstrass’ theorem. The utility function is
quasiconcave with non-vanishing gradient and the feasible set is convex
and thus K-T conditions are also sufficient. The binding constraints are
also linearly independent (since the non-negativity constraints are orthog-
onal and the budget constraint cannot bind simultaneously with all the
other constraints).

Lagrangean for the problem:

L(x, y, λ, λx, λy) = (axx
ρ + ayy

ρ)
1
ρ − λ(pxx+ pyy − w) + λxx+ λyy.
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Kuhn-Tucker conditions:

∂u(x, y)

∂x
− λpx + λx = ρaxx

ρ−1 1

ρ
(axx

ρ + ayy
ρ)

1
ρ
−1 − λpx + λx = 0,

∂u(x, y)

∂y
− λpy + λy = ρayy

ρ−1 1

ρ
(axx

ρ + ayy
ρ)

1
ρ
−1 − λpy + λy = 0,

λ(pxx+ pyy − w) = 0,

λxx = λyy = 0,

λ, λx, λy, x, y ≥ 0.

Since ρ < 1, ∂u(0,y)
∂x

and ∂u(x,0)
∂y

are not defined and we see that the first
and second lines in K-T conditions cannot be satisfied at x = 0 or y = 0.
Therefore we know that λx = λy = 0. Budget constraint must bind since:

∂u(x, y)

∂x
> 0 and

∂u(x, y)

∂y
> 0 for all (x, y) > 0.

Solving for λ from the first two lines and cross-multiplying gives:

∂u(x,y)
∂x

∂u(x,y)
∂y

=
px
py
.

Also, the budget constraint holds with equality:

pxx+ pyy = w.

Plugging in the marginal utilities gives:

axx
ρ−1

ayyρ−1
=
px
py
,

or

x

y
= (

aypx
axpy

)
1
ρ−1 ,

11



or
y = x(

aypx
axpy

)
1

1−ρ . (2)

Substituting into the budget constraint, we get:

pxx+ pyx(
aypx
axpy

)
1

1−ρ = w.

We can solve for x1 to get

x =
w

px + py(
aypx
axpy

)
1

1−ρ
.

Substituting this into (??) lets us solve for y:

y =
w

py + px(
axpy
aypx

)
1

1−ρ
.

5.2 Value function and envelope theorem

Consider an unconstrained maximization problem of a function of a single
real variable x, where the objective function depends on a parameter α ∈
R.

max
x∈R

f(x, α).

Let x(α) be the solution to this problem. Consider the maximum value
of the objective function that is achievable at the parameter α̂

V (α) := f(x(α), α).

At the (unconstrained) optimum x(α̂), by the first-order condition:

∂f(x(α̂), α̂)

∂x
= 0.

Compute the change in V from a change in the parameter:

V ′(α̂) =
∂f(x(α̂), α̂)

∂x
x′(α̂) +

∂f(x(α̂), α̂)

∂α
=
∂f(x(α̂), α̂)

∂α
,

since ∂f(x(α̂),α̂)
∂x

= 0 by the first order condition for maximizing with respect
to x.
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This observation is called the envelope theorem. For x ∈ Rn, the mes-
sage is exactly the same. The first order-condition is now:

∂f(x(α̂), α̂)

∂xi
= 0 for all i ∈ {1, ..., n}.

Assuming the conditions for implicit function theorem, we have by chain
rule:

V ′(α̂) =
n∑
i=1

∂f(x(α̂), α̂)

∂xi
x′i(α̂) +

∂f(x(α̂), α̂)

∂α
.

Again, the first term vanishes by first-order condition and we are left with

V ′(α̂) =
∂f(x(α̂), α̂)

∂α
.

Suppose that we have an equality constrained parametric maximiza-
tion problem for x ∈ Rn:

max
x

f(x, α)

subject to g(x, α) = 0.

The value function is still defined as before:

V (α) = f(x(α), α).

Begin the analysis by forming the Lagrangean:

L(x, µ;α) = f(x, α)− µg(x, α).

The envelope theorem relates the derivative of the value function with
respect to the parameter to the partial derivatives of the Lagrangean.

Theorem 1 (Envelope theorem). In an optimization problem subject to an
equality constraint, we have:

V ′(α) =
∂L(x, µ;α)

∂α
.

13



The envelope theorem gives us a nice way of understanding the La-
grange multipliers in utility maximization problems. The Lagrangean for
the UMP with a single binding equality constraint is:

L(x, λ) = u(x)− µ

[
n∑
i=1

pixi − w

]
.

The maximum value function

v(p, w) = maxu(x) subject to p · x = w,

is called the indirect utility function. It computes the optimal utility level
for all combinations of prices p ∈ Rn

++ and income w > 0.
Envelope theorem tells us that:

∂v(p, w)

∂w
= µ.

The multiplier tells that if income goes up (down) by dw, then utility goes
up (down) by λdw. Because of this the multiplier is called the shadow
price of income.

6 Difference equations

Difference equations relate the future state xn+1 ∈ Rm of a dynamical sys-
tem to its current state xn ∈ Rm:

xn+1 = f(xn) for all n ∈ Z+.

The function f is called the system equation. The unknown in the problem
is the sequence of vectors {xn}∞n=0 satisfying the system equation. Think
back to the linear exchange model of Lecture 2 for a concrete example.

The simplest form of difference equations are linear difference equa-
tions with constant coefficients. These can be written as:

xn+1 = Axn + bn,

where bn is a given sequence. If bn = 0 for all n, we have a homogenous
equation. We start with the simplest homogenous equations where xn ∈ R
andA = a ∈ R.
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Solving the homogenous equation is very easy. If xn+1 = axn for all
n, then xn+k = akxn. Hence any sequence of the form xn = can solves
the difference equation. If we are given the initial value x0, the solution is
xn = x0a

n. In other words, the initial value pins down the coefficient c of
the general solution.

Consider next an inhomogenous equation,

xn+1 = axn + b,

where bn = b for all n. Clearly the constant solution xn = b
1−a for all n

solves the equation. I claim that also xn = can + b
1−a solves the equation.

But this follows immediately from the fact that can+1 = acan.
This principle holds more generally. If you have a particular solution

xPn to the inhomogenous equation and the general solution of the homoge-
nous equation xHn , then the general solution to the problem is xPn +xHn . This
is called the principle of superposition and it arises from the linearity of
the equations in xn+1, xn. It is valid also for the case with xn ∈ Rm.

Consider next linear systems with constant coefficients. Let xn ∈ Rm

for all n and let A be an m ×m matrix of real numbers. A linear homoge-
nous system is then given by:

xn+1 = Axn.

As before, we can ’solve’ this by repeated substitution to get

xn+k = Akxn.

Hence I could write the general solution as xn = Anc for some vector c =
(c1, ..., ck). I do not consider this a real solution since it is almost impossible
to see what An is except in some very special cases. If A is a diagonal
matrix with diagonal elements a1, ..., ak, then the solution becomes:

xi,n = cia
n
i for i ∈ {1, ...,m}.

Here we have essentially independent variables and the difference equa-
tion for each can be solved separately.

To deal with the general case, we want to change the basis in Rm so that
A is diagonal in that basis. This involves the eigenvectors and eigenval-
ues of A. You can visualize the effect of matrix multiplication on vectors
as consisting of two operations: a rotation and a stretching or shrinking.
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Eigenvectors of A are those vectors that are not rotated, i.e. if x 6= 0 is an
eigenvector ofA, then for some λ ∈ R,

Ax = λx.

We may write this more compactly as

(A− λI)x = 0,

where I is the m × m identity matrix. But from basic linear algebra, we
know that a homogenous linear equation can have a non-zero solution
only if the matrix does not have full rank, i.e. if det(A− λI) = 0. The
values of λ for which this determinant is zero are called the eigenvalues of
A.

The determinant of (A − λI) is called the characteristic polynomial of
A so the eigenvalues are the roots of the characteristic polynomial. If A
has n distinct eigenvelues λ1, ..., λm, then it has also n linearly independent
eigenvectors v1, ...,vm so that

Avi = λivi.

In this case, we can express any x ∈ Rn given in the usual coordinate
system in the new coordinate system spanned by the eigenvectors by sim-
ple matrix multiplication. Let P = [v1 v2 . . .vn] be the matrix formed
by the eigenvectors. Then for any vector y expressed in the coordinate
system of the eigenvectors, we can translate it to the standard system by
x = Py. Similarly any x in the standard system is y = P−1x in the system
of the eigenvectors.

yn+1 = P−1xn+1 = P−1Axn = P−1APyn.

Now we want to show that P−1AP = Λ, where Λ is the diagonal
matrix of eigenvalues. But this is the same claim (as can be seen by pre-
multiplying by P ) as:

AP = PΛ.

But this follows immediately from the fact that P consists of the eigenvec-
tors ofA.

Hence we have: yn = (y1,n, ..., yk,n) = (c1λ
n
1 , ..., ckλ

n
k). Since xn = Pyn,

we have the general solution:
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xn = c1λ
n
1v1 + ...+ ckλ

n
kvk.

The values of the ci are determined from the initial condition for x0.
Note thatAk = PΛP−1. Therefore we could have also concluded that

xn = PΛkP−1x0.

The two methods give the same results since Pc = x0 or c = P−1x0.
The general solution to a non-homogenous equation is the sum of a

particular solution and the general solution of the homogenous problem.
Higher orders difference equations such as

xn = a1xn−1 + a2xn−2,

can be transformed into a system of first order difference equations.
The analysis of linear equations with non-constant coefficients such as

xn+1 = anxn,

for a nonconstant sequence an of coefficients is a lot more tricky, but prob-
lems of this type arise frequently in e.g. combinatorics (where n has no
connection to time but refers to the size of the problem).

The analysis of non-linear difference equations such as

xn+1 = µxn(1− xn),

is often very hard and only qualitative characterizations relying on phase
diagrams are possible.
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