
3-1

3 FINITE DIFFERENCE METHOD

3.1 APPROXIMATION TO DERIVATIVES  ............................................................ 5

3.2 FINITE DIFFERENCE METHOD  ..................................................................... 15

3.3 TIME INTEGRATION (CN)  ............................................................................... 30



3-2

SIMULATION EXPERIMENT
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The outcome of the simulation experiment is the dataset 0 0 1 1{( , ),( , ), , ( , )}n nx x x  
consisting of axial rotation angles on a regular grid on the axis. Processing of data is
required to find the derivative of the rotation with respect to the axial coordinate.

Interpolation of the dataset gives a continuous representation (in blue on the left) of
continuous derivative (in blue on the right). The dataset (in black on the left) can also be
used directly to find the dataset for derivates (in black on the righ). The outcomes differ
but not much.
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PROCESSING OF DATA

In a typical design, dataset of an experiment 1 1{ ,( , ),( , ), }i i i ix f x f    is considered as
sampling of the underlying continuous dependent quantity ( )f x  at values 1{ , , , }i ix x    of
the independent quantity x . In further processing of data, one may

  use the dataset to find a continuous approximation ( )g x  to ( )f x . Thereafter finding the
value at any point, calculation of derivatives, integration etc. with generic methods is
possible.

  use the dataset directly to find, e.g., derivatives at the sampling points, integrals, etc.
using dedicated methods like difference approximations and quadratures (numerical
integration).

Although the details of the methods differ, the results at the sampling points may not differ
too much from the engineering viewpoint.
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3.1 APPROXIMATION TO DERIVATIVES

Judging from the figure, central difference ( ) [ ( ) ( )] / (2 )f x f x x f x x x        gives
the best approximation to the first derivative at x .

centralforward
backward
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TAYLOR’S THEOREM

Taylor’s series with the remainder term is an important tool in numerical methods. Theorem
tells how to approximate a function in some neighborhood of a point by a polynomial (below

( ) ( )if x  denotes the i:th derivative of ( )f x )

1D: (1) ( 1) 1 ( )1 1 1( ) ( ) ( ) ( ) ( )
1! ( 1)! !

n n n nf x x f x f x x f x x f x
n n

          




nD:
1

0

1 1( a) ( ) ( ) [( ) ( )]
! !

n i n
x

i
f x x f x x f x

i n 





          

Theorem assumes existence of the n:th derivative. In the remainder term,   is some point
to the interval which is different in each occurrence. In the finite difference method,
approximations to derivatives in terms function values at certain points are often derived
with the aid of the theorem.
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DIFFERENCE APPROXIMATIONS TO ( )f x

For function ( )f x  values on a regularly spaced grid of resolution x , an order k difference
approximation to ( )f x   on the grid points has a remainder term proportional to kx .  The
approximation is exact to a polynomial ( )f x  of degree k.

 Type ( )f x Order

 Backward ( ) ( )f x f x x
x

 


1

 Forward ( ) ( )f x f x x
x

   


1

 Central ( ) ( )
2

f x x f x x
x

    


 2

 Central ( 2 ) 8 ( ) 8 ( ) ( 2 )
12

f x x f x x f x x f x x
x

          


 4
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Difference approximations follow from the Taylor’s representation truncated at certain
term and written for points x k x  . The central differences can be derived using the
versions

2 (3) 3
1

1 1( ) ( ) ( ) ( ) ( )
2 6

f x x f x f x x f x x f x          ,

2 (3) 3
2

1 1( ) ( ) ( ) ( ) ( )
2 6

f x x f x f x x f x x f x          .

Adding and subtracting on both sides, rearranging, and dividing with an appropriate

power of x

(3) (3) 2
1 2

( ) ( ) 1( ) [ ( ) ( )]
2 12

f x x f x x f x f f x
x

        


,

(3) (3)
1 22

( ) 2 ( ) ( ) 1( ) [ ( ) ( )]
6

f x x f x f x x f x f f x
x

          


.
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DIFFERENCE APPROXIMATIONS TO ( )f x

 Type ( )f x Order

 Backward 2
( 2 ) 2 ( ) ( )f x x f x x f x

x
     


1

 Forward 2
( ) 2 ( ) ( 2 )f x f x x f x x

x
     


1

 Central 2
( ) 2 ( ) ( )f x x f x f x x

x
     


 2

 Central ( 2 ) 16 ( ) 30 ( ) 16 ( ) ( 2 )
12

f x x f x x f x f x x f x x
x

           


    4
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Difference approximations follow from the Taylor’s representation truncated at certain
term and written for points x k x  . Backward differences can be obtained by using the
versions

2 (3) 3
1

12 ( ) 2 ( ) 2 ( ) ( ) ( )
3

f x x f x f x x f x x f x          ,

2 (3) 3
2

4( 2 ) ( ) 2 ( ) 2 ( ) ( )
3

f x x f x f x x f x x f x            .

Adding and subtracting on both sides, rearranging, and dividing with an appropriate

power of x

2 (3) 3 (3) 3
1 2

1 42 ( ) ( 2 ) ( ) ( ) ( ) ( )
3 3

f x x f x x f x f x x f x f x             ,

2 (3) 3 (3) 3
1 2

1 42 ( ) ( 2 ) ( ) ( ) ( ) ( )
3 3

f x x f x x f x f x x f x f x            
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EXAMPLE A straightforward way to construct difference formulas for derivatives uses a
polynomial interpolant to dataset 1 1{ ,( , ), ( , ), }i i i ix f x f    and derivatives of the
interpolant at the grid points. As an example, let us consider the interpolant ( )p x  to

1 1 1 1{( , ),( , ),( , )}i i i i i ix f x f x f     to find the difference approximations to the first and second
derivatives at ix  by calculating the derivatives of the interpolant at that point. Assume a
regular grid of points of spacing x .

Answer 1 1( )
2

i i
i i

f ff p x
x

    


 and 1 1
2

2( ) i i i
i i

f f ff p x
x

    

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The well-known Lagrange interpolation polynomial ( )np x  of degree n  and its error
formula are for dataset 0 0 1 1{( , ),( , ), ( , )}n nx f x f x f

{0,1, 1, 1, , }{0,1, , }( ) j
n i j i i ni n

i j

x x
p x f

x x  


 

   ,

( 1)
{0,1, , }

1( ) ( ) ( ) ( )
( 1)!

n
n i n if x p x f x x

n


   
   .

Notice the removal of index i in the product term inside the sum of the interpolation
formula. With dataset 1 1 1 1{( , ),( , ),( , )}i i i i i ix f x f x f   

1 1 1 1
1 1

1 1 1 1 1 1 1 1
( ) i i i i i i

i i i
i i i i i i i i i i i i

x x x x x x x x x x x xp x f f f
x x x x x x x x x x x x

   
 

       

     
  

     
. 

Selection ix i x   and representation with monomials of increasing powers, which is
more convenient in calculation of derivatives, gives the (equivalent) form
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2

1 1 1 12( ) ( 2 ))
2 2

( i i i i i i
x xf f f f f f

x
p x

x
        

 
 .

Therefore, the calculation with the interpolant to the dataset implies the well-known 2:nd
order accurate difference approximations to the first and second derivatives

1 1(0)
2

i i
i

f ff p
x

    


   and 1 1
2

2(0) i i i
i

f f ff p
x

    


. 

The power 2x  in the remainder term can be verified by a direct calculation with the
remainder expression.
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DIFFERENCE STENCILS

https://en.wikipedia.org/wiki/Finite_difference_coefficient
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3.2 FINITE DIFFERENCE METHOD

Finite Difference Method is a numerical technique for solving ordinary and partial
differential equations by approximating derivatives with finite difference formulas. If
applied with a regular grid to the string and bar models, the discrete equations by the FDM

Interior 1 12 ( 2 )i i i i
k a a a f m a
h

 


      {1,2, , 1}i n 

Boundary 0 0a a  or 1 0 0( )k a a F
h


     and n na a  or 1( )n n n
k a a F
h 


 

Initial conditions 0i ia g     and 0i ia h  {1,2, , 1}i n 

Then, the outcome is a set of Ordinary Differential Equations of the same type as by the
Particle Surrogate Method. Therefore, the matrix and difference equation techniques for
PSM also apply to FDM.
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Continuum model of bar or string of  known displacement or loading at the end points
and known initial position and velocity is given by equations

2 2

2 2
a ak f m

x t
    
 

x 0t 

a a   or ( )x
an k F
x
 


x 0t  ,

a g    and a h
t





x 0t  .

By using the 2:nd order accurate central difference approximation for the second partial
derivative in the equation of the motion and 1:st  order accurate difference approximation
for the derivative in the boundary condition, one obtains

1 12 ( 2 )i i i i
k a a a f m a
h

 


      {1,2, , 1}i n 
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0 0a a  or 1 0 0( )k a a F
h


     and n na a  or 1( )n n n
k a a F
h 


 

0i iw g     and 0i iw h  {1,2, , 1}i n  0t  .

Multiplication of both sides of the equation of motion by h  (here spacing of the grip
points) gives the final form which differs only in the equations for the boundary points
from those for the Particle Surrogate Method. As the starting point of FDM are the
differential equations of the continuum model, e.g., point forces, point masses etc.  not
located at the boundaries need to be represented correctly in the continuum model before
the use of FDM.  At non-regular points, the differential equation should be replaced by
jump conditions implied by the first principles of mechanics. Also, the grid should be
adjusted to have a grid point at positions of point forces and masses.
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1st ORDER BOUNDARY CONDITIONS FOR BAR

0 0,   0nu u u   1
0 0,   0n n

n
u uu EA F

h


  

1
0 0,   0n n

n
u uu EA mu

h


   1
0 0,   0n n

n
u uu EA ku

h


  

F

L

, A, E
Lu

x

m k
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EXAMPLE The elastic bar shown is loaded by a point force at the right end. The left end
is fixed. Determine the stationary solution displacement using the Finite Difference Method
on a regular grid {0,1, , }i n   on the solution domain of length L. Material properties and
cross-sectional area are constants. What is limit solution when n   and /h L n  ?

Answer i i
F Fu ih x
EA EA

   , limit solution ( ) Fu x x
EA



F

L
x
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Using the 2:nd order accurate central difference approximation to the second derivative
in the equilibrium equation for typical grid point {1,2, , 1}i n   and first order
accurate approximation to the first derivative in the boundary condition at the loaded
end

1 1
2

2( ) 0i i iu u uEA
h

  
 {1,2, , 1}i n  , 0 0u   ,  and 1n nu uEA F

h


 .

When substituted into the difference equation, the solution trial i
iu ar  implies the

condition 2 21 2 (1 ) 0r r r      so the generic solution is iu a bi   (double root 1r 
) . The two constants follow from equations for the boundary points

0 0u a     and ( 1)a bn a b nEA F
h

   
  0a    and hFb

EA
 .

Hence i i
F Fu ih x
EA EA

    (in the limit ( ) Fu x x
EA

 ). 
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EXAMPLE A string of length L , tightening S , cross-sectional area A , and density  ,  is
loaded by a point force P at its center point.  If the ends are fixed and the initial geometry
without loading is straight, find the solution to the transverse displacement as function of x
using the finite difference method on a regular grid of three points {0,1,2}i .

Answer 1 4
PLw

S


L

P

x

z
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The boundary value problem is given by equilibrium equations for the regular interior
points, jump conditions at the center point (non-regular point due to the point force), and
boundary conditions for the end points

2

2 0d wS
dx

 ]0, [
2
Lx    or ] , [

2
Lx L ,

0dwS P
dx

 
    

 ,   0w 
2
Lx  ,  and ( ) 0w x  {0, }x L .

As the end points are fixed and there is a discontinuity at the midpoint, only the jump
condition applies. Let us use the first order accurate backward and forward two-point
difference approximations to the left and right derivatives, to get ( 0 2 0w w    and

/ 2x L  ):

1 02 1( ) 0w ww wS P
x x


  

 
 1 4

PLw
S

 . 
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EXAMPLE Write the equations of motion for the free vibrations of the bar shown by using
FDM. Use the matrix formulation on a regular grid with {0,1,2,3}i . Material properties

,E   and the cross-sectional area A  are constants. Also, determine the two lowest angular
velocities and the corresponding modes of the free vibrations.

Answer 1 1
2

2 2

2 1 1 0
0

1 2 0 1
u uEA A
u uh


       

             


  where

3
Lh 

x

L
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 The equations for the points inside the domain, as given by the 2:nd order accurate
central difference approximation to the second derivative (with respect to x), are

0 0u   , 0 1 2 12 ( 2 )EA u u u Au
h

     , 1 2 3 22 ( 2 )EA u u u Au
h

    , and 3 0u  .

 In matrix notation and /k EA h , m Ah , and / 3h L , the equations for points 1 and
2 are (when the known displacements at the boundary points are used there)

1 1

2 2

2 1 1 0
0

1 2 0 1
u u

k m
u u

       
             


. 

Frequencies and modes of the free vibrations follow with the trial solution
exp(i )tu A . Using the notation 2 /m k 

1

2

2 1 1 0
( ) 0

1 2 0 1
A
A


     

          
 .
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The homogeneous linear equation system can yield a non-zero solution to the mode only
if the matrix in parenthesis is singular so its determinant needs to vanish

22 1
det (2 ) 1 0

1 2





  
      

 1 1    or 2 3  .

Knowing the possible  :s and also the angular velocities from 2 /m k  , solution to
the modes are given by the linear equation systems:

1 1  : 1
k
m

    and 1

2

2 1 1
0

1 2 1
A
A

    
      

   so 1 1
1

( , ) ( , )
1

k
m


 

  
 

A . 

2 3  : 2 3 k
m

    and 1

2

2 3 1
0

1 2 3
A
A

    
      

   so 2 2
1

( , ) ( 3 , )
1

k
m


 

   
A . 
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EXAMPLE Consider the free vibrations of the bar shown, when material properties ,E 
and cross-sectional area A  are constants. Use finite difference method with a second order
accurate central difference approximation to find the displacement as the function time on
a regular grid {0,1, , }i n   when the initial displacement and velocity are

{1,2, , 1} sin( / )i kk nu k i n     and 0iu  {0,1, , }i n   respectively. Hint. Use the
displacement assumption {1,2, , 1} ( )sin( / )i kk nu a t k i n  

Answer {1,2, , 1}( ) sin( )cos( )k ki k n
iu t t k
n

       and 2
2 [1 cos( )]2

k n
L n
E k 




x

L



3-27

Lets start with the difference equations

1 12 ( 2 )i i i i
EA u u u Au
h

       and 0iu  {0, }i n

and use the solution assumption motivated by the form of the initial condition (can be
considered as the discrete fourier series of some continuous initial displacement at the
grid points)

{1,2, , 1}( ) ( )sin( )i kk n
iu t a t k
n

   .

Notice that the number terms correspond to the number of interior grid points)
{1,2, , 1}i n  . As the differential equation is linear it is enough to consider a typical

term k giving when substituted into the difference expression and second time derivative

1 1 [cos( ) 1]sin( )2 2 ( )i i i ku u u a t k ik
n n

        and sin( )i k
iu k a
n

  .
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Consequently, the difference-differential equation and the initial conditions associated
with the k:th term boil down to an initial value problem for the unknown ( )ka t  of the
displacement assumption

2 0k k ka a  0t   , (0) kka   and 0(0)ka    where 2 [1 cos( )]2
k

h
k
n

E 


 

whose solution is cos( )( ) k kka t t  . Putting everything together, the solution to the
vibration problem with initial displacement in terms of the discrete Fourier sine series
becomes

{1,2, , 1}( ) sin( )cos( )k ki k n
iu t t k
n

       where 2
2 [1 cos( )]2

k n
L n
E k 


 . 
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DISCRETE SINE SERIES

The discrete Fourier series (various forms exist) can be used to represent a list as the sum of
lists of harmonic terms. For example, the sine-transformation pair for a list ia

{1,2, , 1}i n    is given by

{1,2, , 1}
2 sin( )j ii n

ij a
n n

     {1,2, , 1}j n 

{1,2, , 1} sin( )i jj n
ia j
n

    {1,2, , 1}i n 

The transformation pair is based on the orthogonality of the modes (Cronecker delta 1jl 
if j l   and 0jl   if j l )

{1,2, , 1} sin( )sin( )
2jlj n

i i nj l
n n

      .
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3.3 TIME INTEGRATION

In time integration, the solution is sought step-by-step using a regular grid on the temporal
domain it i t  {0,1, }i  , where t  is the step size. The exact one particle vibration
solution to displacement and velocity at the grid points represents the generic idea of a
recursive one-step time-integration method:
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Let us consider free vibration of one particle with known position and velocity at the
initial time described by the initial value problem

0mu ku  0t  , (0)u h , (0)u g .

The exact solutions to displacement and velocity can be expressed in the form
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Solution at point it i t   of the regular temporal grid
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In recursive form, initial conditions give the solution at the end of the first time-
interval to be treated as the initial conditions for the next time-interval and so on.
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REGULAR TEMPORAL GRID

On a regular grid, the grid points are distributed evenly. The number of the point at the
origin is 0 and the numbering increases in the direction of the t axis without gaps. The
time intervals are referenced by their end point indices (i.e., interval i is between grid points

1i    and i.

As the temporal domain for an initial value problem does not have an upper bound (strictly
speaking), the length of the intervals can (and often are) chosen to match the behavior of the
solution (small steps for the rapid changes).

0 1 2
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TIME INTEGRATION

 Method Iteration {1,2, }i          Initial 0i 
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The methods coincide at the limit of vanishing step-size when 0k t
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ACCURACY AND STABILITY

Numerical integration involves discretization error in each step and error accumulation may
spoil the solution after certain number of steps. Crank-Nicolson does not reduce the
amplitude but the phase error is clear from comparison of the exact and numerical solutions
to a vibrating particle problem.

With multiple particles and various time-scales of vibrations, certain amount of numerical
dumping is actually a desirable property of a numerical integration method!
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TIME INTEGRATION

 Method Iteration {1,2, }i  Initial 0i 
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The proper step-size t depends on the largest eigenvalue of parameter 1 2t M K . The
numerical damping of DG exceeds that of CN whereas the phase error of CN exceeds that
of the DG method.
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Derivation of the Crank-Nicolson method uses Taylor series with respect to time for
displacement and velocity with the mean value approximation to the remainder
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and the differential equation written at the ends of the time interval
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Solving for ia   and ia   in terms of 1ia   and 1ia  from the equations
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ONE-STEP METHOD

Taylor series with respect to time and the mean value approximation to the remainder (the
number of terms or the approximation may differ from those below) give, e.g.,
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Differential equations written at the end points of the time interval contain the derivatives
of the remainder terms (the equation may be differentiated more with respect to time

1 1 1 0i i i    Ma Ka F   and 0i i i  Ma Ka F .

Solving the equations for ia  and ia   in terms of 1ia   and 1ia  gives the well-known Crank-
Nicolson method. The same recipe applies with more terms in the Taylor series
approximations to displacement and velocity.
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EXAMPLE Finite Difference Method is applied to the bar problem shown using a regular
grid with {0,1,2,3}i . Thereafter, Crank-Nicolson methods is applied to find the solution
at the temporal grid jt j t  {0,1, }j  . Derive the iteration formula giving the
displacements and velocities of points of the spatial discretization for any initial
displacement and velocities. Material properties ,E   and cross-sectional area A  are
constants.
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Use of the Finite Difference Method and 2:nd order central difference approximation on
a regular grid with {0,1,2,3}i  gives the ordinary differential equations
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the time-integration according to the Crank-Nicolson method follows from
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