
COE-C3005 Finite Element and Finite difference methods

1. Find the five point difference approximation to (4)
if  (fourth derivative) using the dataset

 2 1 1 2( 2 , ), ( , ), (0, ), ( , ), (2 , )i i i i ix f x f f x f x f        . Use the Lagrange interpolation
polynomial ( )p x  to the dataset and calculate the derivative approximation using (4) (4) (0)if p
(Mathematica may be useful).
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2.  Derive the Crank-Nicolson time integration iteration using (1) Taylor series of displacement ( )a t
and velocity ( )a t  with respect to time and the mean value approximation to the remainder
containing the second time derivative, and (2) differential equation 0ma ka   written at the
end points of the time interval of length t .
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3.  The bar shown is loaded by its own weight. Determine the displacements at
the grid points 1 and 2 using the Finite Difference Method. Cross-sectional
area A , Young’s modulus E , and density   of the material are constants.
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4. Consider the string of tightening S and mass per
unit length A  shown. Use the Finite Difference
Method with second order accurate central
differences on a regular grid {0,1, , }i n   to find
the angular velocities k  of the free vibrations
using the solution trial ( )sin( / )iw a t k i n

{1, 2 , 1}k n  .
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5. A bar is free to move in the horizontal direction as shown.
Write the equation system 0 Ka Ma  given by the
Finite Difference Method on a regular grid with {0,1, 2}i
. Also, determine the angular velocities and modes of the
free vibrations. Cross-sectional area A, density   of the
material, and Young’s modulus E  of the material are
constants.
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6. Consider the string of tightening S and mass per
unit length A  shown. First, use the Finite
Difference Method with the second order accurate
central differences on a regular grid {0,1, 2}i  to
find the equations of motion of the form

0ka ma  . Second, write the iteration equation
for a typical time-step of size t  according to
Crank-Nicolson method giving the values of
displacement and velocity on the temporal grid.
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Find the five point difference approximation to (4)
if  (fourth derivative) using the dataset

 2 1 1 2( 2 , ), ( , ), (0, ), ( , ), (2 , )i i i i ix f x f f x f x f        . Use the Lagrange interpolation polynomial
( )p x  to the dataset and calculate the derivative approximation using (4) (4) (0)if p (Mathematica

may be useful).

Solution
Let us start with the Lagrange interpolation polynomials taking the value one at grid points and
vanishing at all the other grid points of the dataset. The fourth derivatives of the fourth order
polynomial are given by denominators multiplied by 4 3 2 1 24     (fourth derivative of the
nominator):
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The fourth derivative of the Lagrange interpolation polynomial ( )p x  gives an approximation to
derivative of the assumed continuous ( )f x  (evaluated at the grid points to get the dataset) at 0ix 
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Derive the Crank-Nicolson time integration iteration using (1) Taylor series of displacement ( )a t  and
velocity ( )a t  with respect to time and the mean value approximation to the remainder containing the
second time derivative, and (2) differential equation 0ma ka   written at the end points of the time
interval of length t .

Solution
Taylor series of displacement ( )a t  and velocity ( )a t  with respect to time with remainders containing
the second time derivative are

21( ) ( ) ( ) ( )
2

a t t a t a t t a t          and ( ) ( ) ( )a t t a t a t      ,

where  ,t t t     is different in all its occurrences.  Denoting the end points of the time interval
 ,t t t   and values of ( )a t  by indices by 1i   and i  and the mean value approximations to the
second derivatives
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Differential equation 0ma ka   written at the end points of the time interval and index notation for
the end points give

1 1 0i ima ka      and 0i ima ka  .

Eimination of second derivatives in the Taylor’s series using the differential equations gives the forms
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In matrix form, containing ia   and ia  on the left-hand side and 1ia    and 1ia   on the right-hand
side, the equations are
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or after left multiplication by the inverse of the matrix on the left-hand side
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which gives finally the iteration
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The bar shown is loaded by its own weight. Determine the displacements at the
grid points 1 and 2 using the Finite Difference Method. Cross-sectional area A
, Young’s modulus E , and density   of the material are constants.

Solution
The discrete equations for the Finite Difference Method on a regular grid and stationary case are
given
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In the present case of a bar and regular grid with {0,1, 2}i , a u , k EA , f Ag   ,  and
x L  , the equations for the grid points are
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Consider the string of tightening S and mass per unit
length A  shown. Use the Finite Difference Method
with second order accurate central differences on a
regular grid {0,1, , }i n   to find the angular velocities

k  of the free vibrations using the solution trial
( )sin( / )iw a t k i n {1, 2 , 1}k n  .

Solution
The trial solution is chosen in such manner that the zero displacement conditions at the end points are
satisfied ‘a priori’. Let us use the difference equation for the generic point inside the domain

{1, 2 , 1}i n   (no external forces)
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to deduce the expression for ( )a t  which is the unknown of the solution trial. Substituting the trial
solution and using the trigonometric identity sin( ) sin( )cos( ) sin( ) cos( )a b a b b a   (or letting
Mathematica to do the manipulation)
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Therefore, the difference equation for the generic point takes the form
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The equation to hold, ( )a t  should be the solution to 2( ) ( ) 0ka t a t   which is a linear combination
of  sin( )k t  and cos( )k t . As a conclusion, the angular velocity of the free vibration
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which is the angular velocity given by the continuum model.
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A bar is free to move in the horizontal direction as shown. Write
the equation system 0 Ka Ma  given by the Finite
Difference Method on a regular grid with {0,1, 2}i . Also,
determine the angular velocities and modes of the free
vibrations. Cross-sectional area A, density   of the material,
and Young’s modulus E  of the material are constants.

Solution
The generic equation set for the model problems and the Finite Difference Method on a regular grid
with the simplest possible difference approximations to the derivatives is given by
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In the bar application external forces vanish, k EA , m A  , and / 2x L  . Initial conditions do
not matter in modal analysis. Equations for {0,1, 2}i simplify to
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In solution methods for time dependent problem, algebraic equations are used to eliminate the
displacements of the boundary points from the differential equation, which simplifies to

1 0u  .

Using the solution trial of the modal analysis i
1

tu Ae   gives the angular velocity value 0   the
corresponding mode being 1A  (say), so trial gives 1 1u   (not the solution to the problem but
solution to the mode) and then with use of the algebraic equations 0 1 2 1u u u    so
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Consider the string of tightening S and mass per unit
length A  shown. First, use the Finite Difference
Method with the second order accurate central
differences on a regular grid {0,1, 2}i  to find the
equations of motion of the form 0ka ma  . Second,
write the iteration equation for a typical time-step of
size t  according to Crank-Nicolson method giving the
values of displacement and velocity on the temporal
grid.

Solution
The generic equation set for the model problems and the Finite Difference Method on a regular grid
with the simplest possible difference approximations to the derivatives is given by
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In the string application external forces vanish, k S , m A  , and / 2x L  . Initial conditions do
not matter in modal analysis. Equations for {0,1, 2}i simplify to
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 , and 2 0w  0t 
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In solution methods for time dependent problem, algebraic equations are used to eliminate the
displacements of the boundary points from the differential equation, so the initial value problem
simplifies to
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With definition 1w a , time integration by Crank-Nicolson method is given by iteration
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