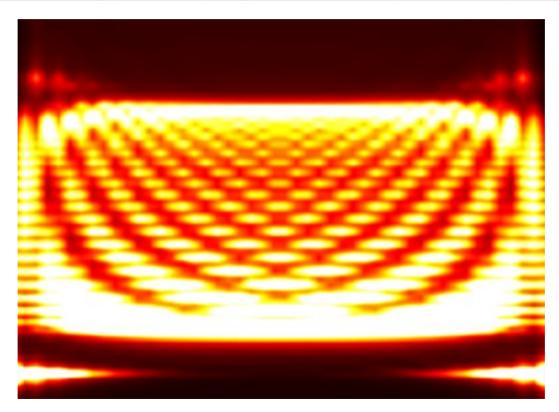
Numerical methods: Density functional theory and tensor network formalism



May 17th 2021

Today's learning outcomes

- Density functional theory allows to study the electronic structure of real materials
- Tensor networks provide a method to tackle quantum many-body problems

A reminder from previous lectures

We can consider two broad groups of interacting quantum matter

$$H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} V_{ijkl} c_i^{\dagger} c_j c_k^{\dagger} c_l$$

With a mean field description
$$H \approx \sum \bar{t}_{ij} c_i^{\dagger} c_j$$
Without a mean field description
$$Q Q Q Q$$

Approximate quadratic Hamiltonian Effective single particle description

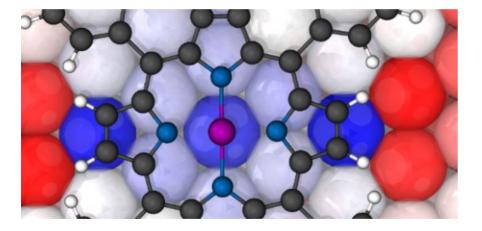
Weakly correlated matter

No good quadratic approximation Requires exact solutions or numerical

Strongly correlated matter

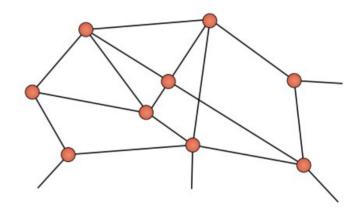
Computational methods for quantum materials

Density functional theory



Real quantum materials Especially in the weakly interacting limit

Tensor-networks



To solve effective models Captures many-body entangled states

Density functional theory

The many-electron problem

The Hamiltonian for electrons in a solid

$$H_{\rm el} = -\frac{1}{2} \sum_{j=1}^{N} \nabla_j^2 - \sum_{j=1}^{N} \sum_{l=1}^{M} \frac{Z_l}{\tilde{r}_{jl}} + \sum_{j=1}^{N} \sum_{k>j}^{N} \frac{1}{r_{jk}},$$

Has an associated electronic density

$$\rho(\mathbf{r}) = N \int d^3 \mathbf{r}_2 \cdots \int d^3 \mathbf{r}_N |\Psi(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N)$$

The Hohenberg-Kohn theorem

For the ground state of a system, there is a one-to-one relation between the electronic density and the many-body wavefunction (Hohenberg-Kohn theorem)

$\rho_0 \leftrightarrow |\Psi\rangle$

The total energy can be written as a functional of the electronic-density

 $E(\rho_0)$

The ground state energy can be computed if we know the functional (which we do not)

The Kohn-Sham equations

We do not know the "true" functional for density-functional theory

Let us take an "imaginary" non-interacting electron gas, with the same density as the real one

For this "imaginary" system, we can write the functional as

$$F_{\rm HK}[\rho] = T_{\rm S}[\rho] + J[\rho] + E_{\rm XC}[\rho]$$

where

$$T_{
m S} = -\frac{1}{2} \sum_{j=1}^{N} \left\langle \psi_{j} | \boldsymbol{\nabla}^{2} | \psi_{j} \right\rangle, \qquad \rho_{
m S}(\boldsymbol{r}) \sum_{j=1}^{N} |\psi_{j}(\boldsymbol{r})|^{2} \stackrel{!}{=} \rho(\boldsymbol{r}), \qquad \qquad E_{
m XC}[\rho]$$
And this is approximately a set of the set of the

And this is approximated (LDA, GGA, metaGGA, etc)

The Kohn-Sham equations

Given a certain density-functional
$$~F_{KS}(
ho)$$
 .

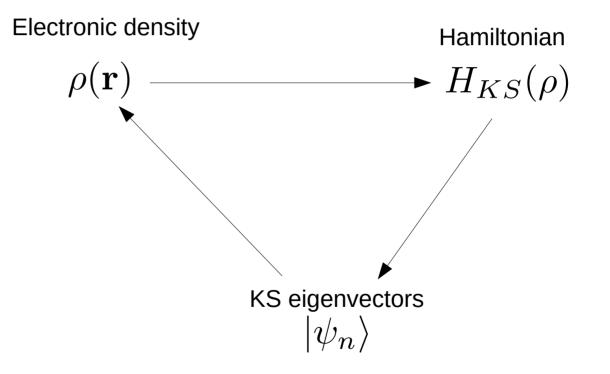
An effective single-particle Hamiltonian must be solved, taking the form $H_{KS}|\psi\rangle=\epsilon_n|\psi_n\rangle$

Where the Hamiltonian is obtained as a functional derivative

$$H_{KS} = \frac{\delta F_{KS}}{\delta |\psi_n\rangle}$$

The Kohn-Sham equations

Define your crystal (atomic positions) (\mathbf{r})



Solved selfconsistently in a certain basis (plane-waves, LAPW, etc)

Density-functional theory spectra

DFT maps the many-body electron problem to a new non-interacting problem

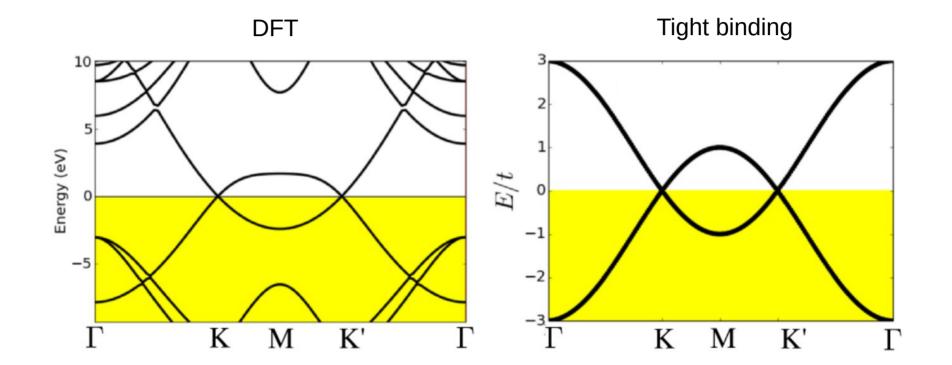
$$H_{KS}|\psi\rangle = \epsilon_n |\psi_n\rangle$$

DFT eigenvalues

Effectively, the DFT procedure requires solving a selfconsistent set of equations, similar to those of mean-field methods (yet with additional terms)

The eigenvalues obtained in DFT are understood as the effective single-particle energies of the true electronic state

DFT VS tight binding



Graphene electronic structure

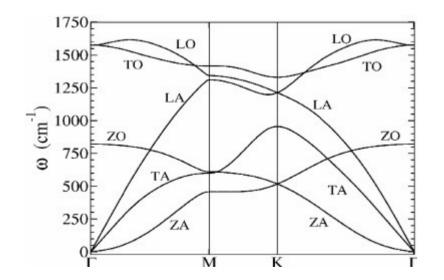
What can we study with densityfunctional theory?

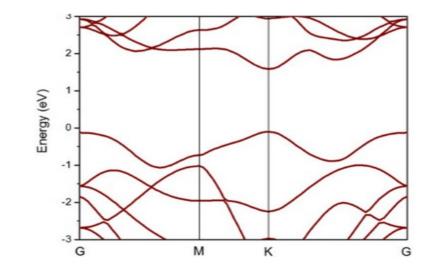
- Structural, magnetic and optical properties
 - Anything related to the structure of the material
 - Anything related with the single-particle eigenvalues
- Topological properties
 - Single-particle eigenstates can be accessed
- Starting point for many-body methods and effective models
 - Low-energy models can be extracted (Wannierization)

What can we study with densityfunctional theory?

Phonon dispersions

Electronic dispersions

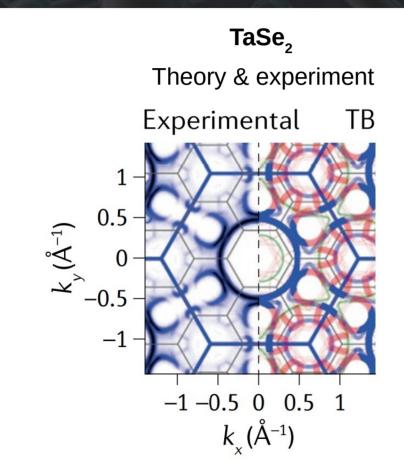


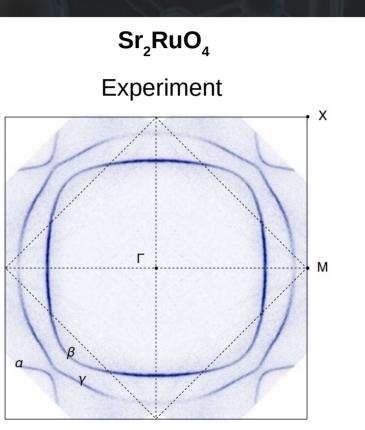


When does density-functional theory fail?

- Strongly correlated systems
 - Mott insulators, rare earth compounds
- Many-body states that cannot be captured at the single particle level
- Other situations, as a result of the approximate nature of the XC functional

Fermi surfaces

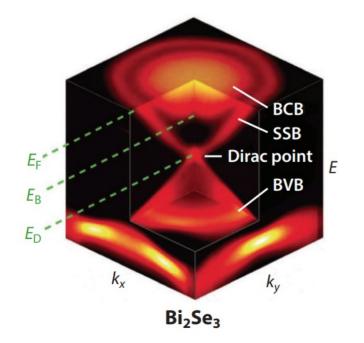


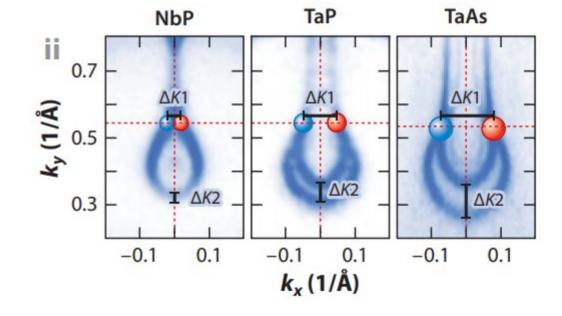


Topological surface states

Bi₂Se₃

Quantum spin-Hall insulators





Open-source software for density-functional theory

Quantum Espresso

https://www.quantum-espresso.org/

Pseudopotentials

Elk

https://elk.sourceforge.io/

All-electron

(and many others)

Beyond density-functional theory

- DFT-DMFT
 - Using DFT as a starting point for DMFT (dynamical meanfield theory), suitable for Mott insulators
- GW
 - Many-body corrections to the DFT eigenenergies
- Bethe-Salpenter equation
 - To compute excitons from DFT

Tensor networks

The quantum many-body problem

Let us go back to a simple many-body problem

And let us imagine that we have L different sites on our system and S=1/2

What is the dimension of the Hilbert space?

The quantum many-body problem

Let us go back to a simple many-body problem

And let us imagine that we have L different sites on our system and S=1/2

What is the dimension of the Hilbert space?

$$d = 2^L$$

The quantum many-body problem

Let us go back to a simple many-body problem

$$\mathcal{H} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

A typical wavefunction is written as

$$|\Psi\rangle = \sum c_{s_1,s_2,\ldots,s_L} |s_1,s_2,\ldots,s_L\rangle$$

We need to determine in total 2^L coefficients

Is there an efficient way of storing so many coefficients?

The matrix-product state ansatz

For this wavefunction
$$\ket{\Psi} = \sum c_{s_1,s_2,...,s_L} \ket{s_1,s_2,...s_L}$$

Let us imagine to propose a parametrization in this form

$$c_{s_1,s_2,...,s_L} = M_1^{s_1}M_2^{s_2}....M_L^{s_3}$$
 dimension 2^L dimension $\sim Lm^2$

(m dimension of the matrix)

The matrix-product state ansatz

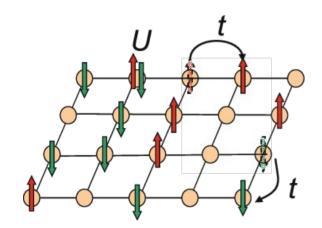
- This ansatz enforces a maximum amount of entanglement entropy in the state $S \sim \log m$
- One-dimensional problems, have ground states that can be captured with this ansatz

$$c_{s_1,s_2,\ldots,s_L} = M_1^{s_1} M_2^{s_2} \ldots M_L^{s_3}$$

This ansatz can be generalized for time-evolution, excited states, open systems, etc...

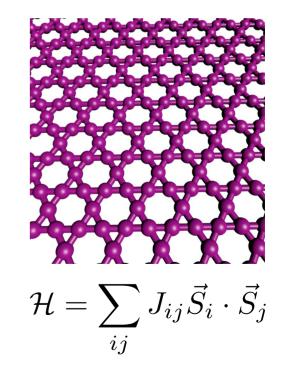
Some (non-trivial) problems tackled with MPS

Solving the 2D Hubbard model at finite doping



$$H = \sum_{ij,s} t_{ij} c_{is}^{\dagger} c_{js} + \sum_{i} U c_{i\uparrow}^{\dagger} c_{i\uparrow} c_{i\downarrow}^{\dagger} c_{i\downarrow}$$

Solving the 2D Heisenberg model in frustrated lattices

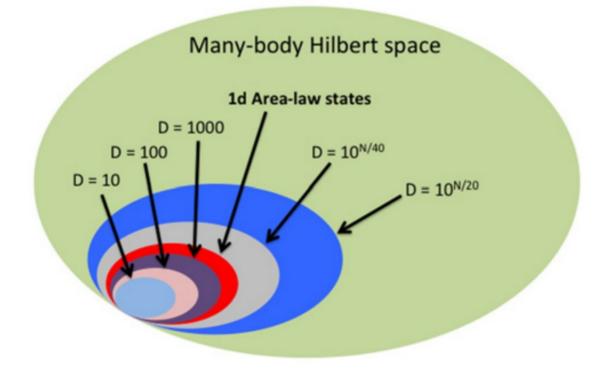


When do MPS fail?

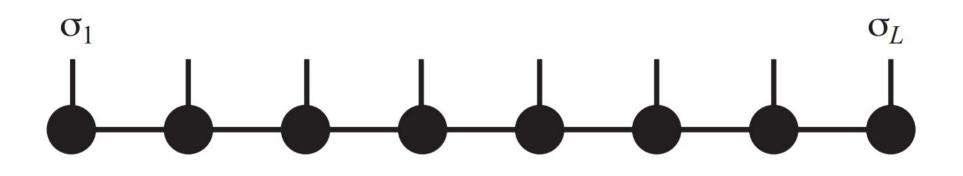
- This ansatz enforces a maximum amount of entanglement entropy in the state $\ S \sim \log m$
- If the states have too much entanglement, MPS do not capture the state properly
 - Time-evolution to long times
 - Many-body problems above 1D
 - Highly excited states
 - Far from equilibrium states

When do MPS fail?

Sketch of the space parametrized with bond dimension D



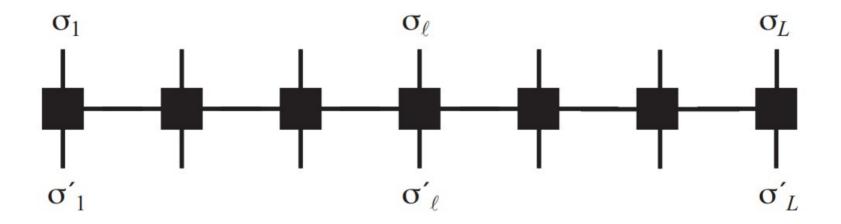
The matrix product state representation



$$|\psi\rangle = \sum_{\boldsymbol{\sigma}} M^{\sigma_1} \dots M^{\sigma_L} |\boldsymbol{\sigma}\rangle$$

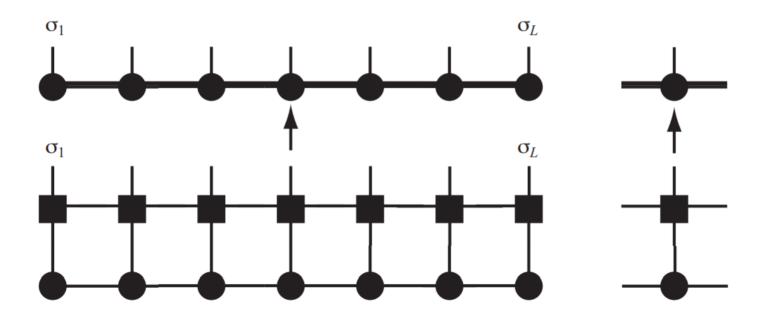
Matrix product operators

Operators can be represented in an analogous form



Operator state product

Products of operators and states can be represented graphically

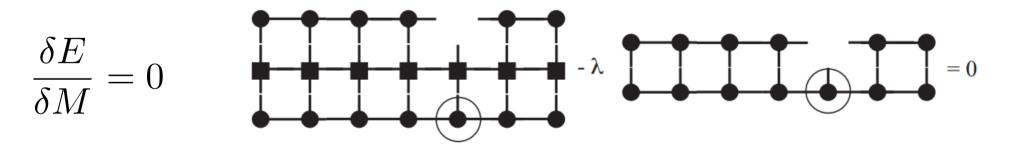


Ground state calculations

To compute a ground state, we just have to minimize

$$E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} \qquad \qquad E = \langle \Psi | H | \Psi \rangle - \lambda \langle \Psi | \Psi \rangle$$

This can be done by minimizing the energy with respect to each matrix



This algorithm is known as the density-matrix renormalization group

Tensor-networks, interactively

A user interface to solve many-body problems with tensor-networks

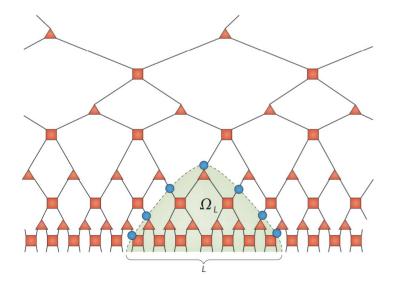
			Spin	8			
			n	F	12	ir	e
Spins Exchange	Fields Positions	Parameters		Magnetization	Static correlator	Dynamical correlator	Excitated sta
Number of spin sites	6			Component		x	-
Default spin site	1/2		•		Show	magnetization	
Full spin initialization							
Table with the spins							
1/2 1/2 1/2 1/2 1/2 1/2				$\langle S_n^x \rangle,$	$\langle S_n^y angle,\langle$	$S_n^z angle$	

https://github.com/joselado/spinflare

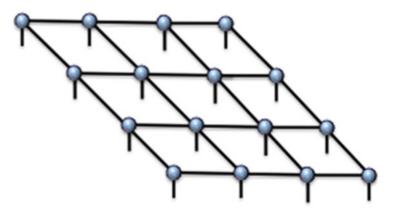
Beyond matrix-product states

Tensor networks can be extended to deal with higher dimensional/critical systems

Multiscale renormalization ansatz



Projected-entangled pair states



Software for generic tensor-network calculations

https://itensor.org/

Take home

- Density-functional theory allows to compute electronic spectra of real materials
- Tensor-network methods allow solving 1D quantum many-body problems

Reading material

- Titus Neupert lecture notes, pages 148-154
- Roman Orus practical guide on tensor networks, pages 118-136