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Today’s learning outcomes

● Density functional theory allows to study the 
electronic structure of real materials

● Tensor networks provide a method to tackle 
quantum many-body problems



  

A reminder from previous lectures
We can consider two broad groups of interacting quantum matter

With a mean field description

Approximate quadratic Hamiltonian
Effective single particle description

Without a mean field description

No good quadratic approximation
Requires exact solutions or numerical

Weakly correlated matter Strongly correlated matter



  

Computational methods for
quantum materials

Density functional theory

Real quantum materials
Especially in the weakly
interacting limit

Tensor-networks

To solve effective models
Captures many-body
entangled states



  

Sym
Density functional theory



  

The many-electron problem

The Hamiltonian for electrons in a solid

Has an associated electronic density



  

The Hohenberg-Kohn theorem

For the ground state of a system, there is a one-to-one relation between
the electronic density and the many-body wavefunction (Hohenberg-Kohn theorem)

The total energy can be written as a functional of the electronic-density

The ground state energy can be computed if we know the functional (which we do not)



  

The Kohn-Sham equations

We do not know the “true” functional for density-functional theory

Let us take an “imaginary” non-interacting electron gas, with the same density as the real one

For this “imaginary” system, we can write the functional as

where

And this is approximated
(LDA, GGA, metaGGA, etc)



  

The Kohn-Sham equations

Given a certain density-functional

An effective single-particle Hamiltonian must be solved, taking the form

Where the Hamiltonian is obtained as a functional derivative



  

The Kohn-Sham equations

Define your crystal
(atomic positions)

Electronic density Hamiltonian

KS eigenvectors

Solved selfconsistently in a certain basis (plane-waves, LAPW, etc)



  

Density-functional theory spectra

DFT maps the many-body electron problem to a new non-interacting problem

DFT eigenvalues

Effectively, the DFT procedure requires solving a selfconsistent set of equations, 
similar to those of mean-field methods (yet with additional terms)

The eigenvalues obtained in DFT are understood as the effective single-particle
energies of the true electronic state



  

DFT VS tight binding

DFT Tight binding

Graphene electronic structure



  

What can we study with density-
functional theory?

● Structural, magnetic and optical properties
– Anything related to the structure of the material
– Anything related with the single-particle eigenvalues

● Topological properties
– Single-particle eigenstates can be accessed

● Starting point for many-body methods and effective models
– Low-energy models can be extracted (Wannierization)



  

What can we study with density-
functional theory?

Phonon dispersions Electronic dispersions



  

When does density-functional
theory fail?

● Strongly correlated systems
– Mott insulators, rare earth compounds

● Many-body states that cannot be captured at 
the single particle level

● Other situations, as a result of the approximate 
nature of the XC functional



  

Fermi surfaces
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2
Sr

2
RuO
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Theory & experiment Experiment



  

Topological surface states
Bi

2
Se

3

Quantum spin-Hall insulators Topological semi-metals



  

Open-source software
for density-functional theory

Quantum Espresso Elk

(and many others)

https://www.quantum-espresso.org/

Pseudopotentials All-electron

https://elk.sourceforge.io/



  

Beyond density-functional theory
● DFT-DMFT

– Using DFT as a starting point for DMFT (dynamical mean-
field theory), suitable for Mott insulators

● GW
– Many-body corrections to the DFT eigenenergies

● Bethe-Salpenter equation
– To compute excitons from DFT



  

Sym
Tensor networks



  

The quantum many-body problem

Let us go back to a simple many-body problem

And let us imagine that we have L different sites on our system and S=1/2

What is the dimension of the Hilbert space?
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The quantum many-body problem

Let us go back to a simple many-body problem

A typical wavefunction is written as 

We need to determine in total coefficients

Is there an efficient way of storing so many coefficients?



  

The matrix-product state ansatz

For this wavefunction

Let us imagine to propose a parametrization in this form

dimension
dimension

(m dimension of the matrix)



  

The matrix-product state ansatz

● This ansatz enforces a maximum amount of 
entanglement entropy in the state

● One-dimensional problems, have ground states 
that can be captured with this ansatz

This ansatz can be generalized for time-evolution, excited states, open systems, etc...



  

Some (non-trivial) problems
tackled with MPS

Solving the 2D Hubbard
model at finite doping

Solving the 2D Heisenberg
model in frustrated lattices



  

When do MPS fail?

● This ansatz enforces a maximum amount of entanglement 
entropy in the state

● If the states have too much entanglement, MPS do not 
capture the state properly
– Time-evolution to long times
– Many-body problems above 1D
– Highly excited states
– Far from equilibrium states



  

When do MPS fail?

Sketch of the space parametrized with bond dimension D



  

The matrix product state 
representation



  

Matrix product operators

Operators can be represented in an analogous form



  

Operator state product

Products of operators and states can be represented graphically



  

Ground state calculations
To compute a ground state, we just have to minimize

This can be done by minimizing the energy with respect to each matrix

This algorithm is known as the density-matrix renormalization group



  

Tensor-networks, interactively

https://github.com/joselado/spinflare

A user interface to solve many-body problems with tensor-networks



  

Beyond matrix-product states

Tensor networks can be extended to deal with higher dimensional/critical systems

Multiscale renormalization ansatz Projected-entangled pair states



  

Software for generic
tensor-network calculations

ITensor

https://itensor.org/



  

Take home

● Density-functional theory allows to compute 
electronic spectra of real materials

● Tensor-network methods allow solving 1D 
quantum many-body problems



  

Reading material

● Titus Neupert lecture notes, pages 148-154
● Roman Orus practical guide on tensor 

networks, pages 118-136
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